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ABSTRACT
Ionizing radiation (IR) causes DNA damage, particularly DNA double-strand breaks (DSBs), which have significant
implications for genome stability. The major pathways of repairing DSBs are homologous recombination (HR) and
nonhomologous end joining (NHEJ). However, the repair mechanism of IR-induced DSBs in embryos is not well
understood, despite extensive research in somatic cells. The externally developing aquatic organism, Xenopus tropicalis,
serves as a valuable model for studying embryo development. A significant increase in zygotic transcription occurs at
the midblastula transition (MBT), resulting in a longer cell cycle and asynchronous cell divisions. This study examines
the impact of X-ray irradiation on Xenopus embryos before and after the MBT. The findings reveal a heightened X-
ray sensitivity in embryos prior to the MBT, indicating a distinct shift in the DNA repair pathway during embryo
development. Importantly, we show a transition in the dominant DSB repair pathway from NHEJ to HR before and
after the MBT. These results suggest that the MBT plays a crucial role in altering DSB repair mechanisms, thereby
influencing the IR sensitivity of developing embryos.
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INTRODUCTION
Ionizing radiation (IR) can cause a variety of DNA damages, alter-
ing its structure. The ability to repair DNA is crucial for recovery
from DNA damage, preventing cell death and reducing the accumula-
tion of mutations [1]. DNA double-strand breaks (DSBs), a type of
DNA damage caused by IR, are the most biologically harmful type
of DNA lesions and can lead to cell death [2]. DSBs can be repaired
through two primary pathways: homologous recombination (HR) and
nonhomologous end joining (NHEJ) [3]. These repair pathways are
highly conserved among vertebrates, highlighting their importance in

maintaining genome integrity [4]. Although the effects of IR are pri-
marily studied in somatic cells, research on its effects on embryos is
limited.

Xenopus tropicalis, an aquatic organism that develops externally,
allows for detailed observation of anlagen morphogenesis. Despite
its longer reproductive cycle compared to other model organisms,
Xenopus’s abundant embryonic cells and ease of manipulation during
early embryogenesis offer significant research potential. Xenopus
enables biophysical and physiological approaches to understand
developmental signals that can be extrapolated to higher vertebrates,
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including humans [5, 6]. It also serves as a bridge between conventional
in vitro and preclinical mammalian assays in biomedical research
and drug development [7–9]. Furthermore, Xenopus provides a
valuable bioindicator for assessing radioactive contamination due to
its heightened radiosensitivity when exposed to such stimuli [10],
enabling rapid data collection. In the course of Xenopus development,
a pivotal event occurs known as the midblastula transition (MBT).
At this stage, the cell cycle undergoes a deceleration, leading to an
extension of the G1 phase. Concurrently, the zygotic genome becomes
transcriptionally active, instigating asynchronous cell division. In
embryos, the pathways for apoptosis and DNA damage checkpoints
differ before and after the MBT [11, 12]. The administration of
hydroxyurea to embryos before the MBT results in apoptosis during
gastrulation [13], while irradiation after the MBT induces cell cycle
arrest [14]. However, there is a scarcity of studies directly comparing
the repair mechanisms of DSBs between embryos subjected to
irradiation before and after the MBT.

In this study, we examined the effects of X-ray irradiation on Xeno-
pus embryos before and after the MBT. Our findings revealed that
embryos before the MBT are more sensitive to X-rays compared to
those after the MBT. We also compared the use of HR and NHEJ in
repairing X-ray-induced DSBs before and after the MBT. Interestingly,
we observed that embryos before the MBT showed greater sensitivity
to X-rays when an NHEJ inhibitor was present, compared to when
an HR inhibitor was present. In contrast, embryos after the MBT
exhibited greater sensitivity to X-rays in the presence of an HR inhibitor
than in the presence of an NHEJ inhibitor. These findings provide
valuable insights into the unique DNA repair mechanism in Xenopus
embryos that helps maintain genome integrity.

MATERIALS AND METHODS
Embryos

Embryos were prepared following previously described methods
[15, 16]. In brief, X. tropicalis eggs were obtained through in vitro
fertilization and embryos were cultured in 0.1 × Marc’s Modified
Ringer’s (MMR) (100 mM NaCl, 2 mM KCl, 1 mM MgSO4, 2 mM
CaCl2, 5 mM2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid (HEPES) (pH 7.5)) with 50 μg/ml gentamycin on 1% agarose-
coated dishes at 27◦C. After fertilization, only embryos that were
developing normally were selected for further study. Prior to irradi-
ation, unfertilized eggs, uncleaved eggs and eggs that showed clear
signs of delayed development were removed. Dead embryos were
also removed, and MMR was replaced every 24 h. All experiments
were conducted in accordance with the guidelines of the Animal
Experimentation Ethics Committee of our institution and conformed
to internationally accepted regulations.

Irradiation
X-rays were produced using an OHMiC OM-303 M X-ray generator,
operating at 70 kV and 3 mA, with a 0.2 mm Al filter. The distance
from the source to the object was set at 300 mm. The dose rate and
linear energy transfer of the X-rays were 1.46 Gy/min and 10 keV/μm,
respectively. The Fricke dosimeter was used to measure the dose rate
[17], while the estimation of LET was based on the published data
[18]. The embryos were exposed to X-rays at 0.1× MMR at room
temperature.

Data availability
The datasets used in this study for the expression levels of DNA-
PKcs and RAD51 are publicly accessible. They can be found on the
National Center for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus under the accession number GSE65785 [19].

Treatments
For experiments involving DSB repair inhibitors, embryos were treated
with 0.1×MMR containing either NU7026 (ab120970, Abcam) or RI-
1 (ab144558, Abcam). This treatment started 1 h before irradiation and
continued until 48 h postfertilization (hpf).

Observation and analysis
At 48 hpf (late tailbud stage), tadpoles were anesthetized with 0.01%
MS-222 (Sigma Chemical) and fixed in 5% formalin for a minimum
of 1 h. Samples were observed under a microscope (SZ2-ILST; OLM-
PUS) at 5× magnification. The survival rate was calculated as follows:
[Number of living embryos at 48 hpf]/[Number of living embryos
before exposure to X-rays] × 100. The malformation rate was calcu-
lated as follows: [Number of embryos showing malformation at 48
hpf]/[Number of living embryos at 48 hpf] × 100.

RESULTS
In this study, Xenopus embryos were exposed to X-ray irradiation either
at 4 hpf (32-cell stage, pre-MBT) or at 7 hpf (late blastula stage, post-
MBT). The survival and malformation rates were analyzed at 48 hpf
(late tailbud stage) (Fig. 1A). Pre- and post-MBT irradiation resulted
in multiple morphological malformations, bent axis, short body length,
abnormal eye, abnormal trunk and combined abnormalities (Fig. 1B)
(Supplementary Table 1). When embryos were exposed to 5 Gy of
X-rays after the MBT stage, a 99% survival rate was observed (Fig. 1C,
left graph). However, complete mortality occurred when embryos
were exposed to 5 Gy of X-rays before the MBT stage. Irradiated
embryos exhibited dose-dependent developmental malformations,
with a higher rate of such abnormalities observed for irradiation before
than after the MBT (Fig. 1C, right graph). These data suggest that
embryos before the MBT are more sensitive to X-rays than those after
the MBT in terms of survival and malformation.

In mitotic cells, the function of DSB repair pathways, HR and
NHEJ, significantly influences sensitivity to IR [20]. However, it
remains unclear whether DSB repair is linked to the IR sensitivity
of embryos. To address this, we investigated the involvement of HR
and NHEJ in the repair of X-ray-induced DSBs before and after
the MBT. We employed DSB repair inhibitors and compared X-ray
sensitivity in embryos before and after the MBT, in the presence or
absence of the inhibitors. NHEJ is initiated by the Ku heterodimer,
followed by the activation of DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) and the sealing of broken ends by various
factors [21]. In somatic cells, the inhibition of DNA-PKcs significantly
reduces the frequency of NHEJ [22]. On the other hand, RAD51
plays a critical role in HR, participating in the search for homologous
sequences and strand pairing stages [23, 24]. In addition, DNA-
PKcs and RAD51 are expressed during early Xenopus development
(Fig. 2A) [19]. NU7026 and RI-1 were developed as inhibitors for
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Switch of DSB repair mechanisms at MBT in Xenopus • 317

Fig. 1. Effects of X-ray irradiation on the early development of X. tropicalis embryos. (A) Timeline of the experimental design:
embryos were irradiated either before the MBT at 32 cell stage (4 hpf) or after the MBT at the late blastula stage (7 hpf). Survival
and malformation were analyzed at the late tail bud stage (48 hpf). (B) Representative images: malformations observed at the late
tail bud stage (48 hpf). (C) Survival and malformation rates: left: survival rates; right: malformation rates of X. tropicalis embryos
irradiated with indicated doses of X-rays before the MBT (squares) and after the MBT (circles). The values are presented as mean
and standard deviation from three independent irradiation experiments (50 embryos per replicate).
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Fig. 2. Effects of DNA DSB repair inhibitors on the survival and malformation of embryos irradiated before the MBT.
(A) Time-courses of DNA-PKcs and RAD51 expression: time-courses of the expression levels of DNA-PKcs (left) and RAD51
(right) as revealed by polyA + RNA (RNA-seq) during early Xenopus development. Data sourced from Owens et al. [19].
(B) Experimental design timeline: embryos were irradiated before the MBT at 4 hpf, 1 h after the addition of inhibitors (NU7026
or RI-1) and incubated with inhibitors from 3 to 48 hpf. (C) NU7026 Treatment: left: survival rates; right: malformation rates of
embryos treated with NU7026 (a DNA-PKcs inhibitor, open circles) or NU7026 + X-rays (1 Gy, closed circles). (D) RI-1
treatment: left: survival rates; right: malformation rates of embryos treated with RI-1 (a RAD51 inhibitor, open circles) or
RI-1 + X-rays (1 Gy, closed circles).
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Fig. 3. Effects of DSB repair inhibitors on the survival and malformation of embryos irradiated after the MBT. (A) Experimental
design timeline: embryos were irradiated after the MBT at 7 hpf, 1 h after the addition of inhibitors (NU7026 or RI-1), and
incubated with inhibitors from 6 to 48 hpf. (B) NU7026 treatment: left: survival rates; right: malformation rates of embryos
treated with NU7026 (a DNA-PKcs inhibitor, open circles) or NU7026 + X-rays (1 Gy, closed circles). (C) RI-1 treatment: left:
survival rates; right: malformation rates of embryos treated with RI-1 (a RAD51 inhibitor, open circles) or RI-1 + X-rays (1 Gy,
closed circles).

DNA-PKcs and RAD51, respectively, and their activities were verified
for human proteins. NU7026 acts as an ATP-competitive inhibitor
of DNA-PKcs [25]. The DNA-PKcs protein sequence involved
in ATP binding is highly conserved between human and Xenopus

(Supplementary Fig. 1). Therefore, it is most likely that NU7026
also works as an ATP-competitive inhibitor of Xenopus DNA-PKcs,
blocking NHEJ in Xenopus. RI-1 binds covalently to the surface of
RAD51 protein at cysteine 319 and likely destabilizes an interface

https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrae012#supplementary-data
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Fig. 4. Model of changes in DSB repair pathways in developing
Xenopus embryo. In developing Xenopus embryos, the major
contributor to the repair of IR-induced DSBs is NHEJ before
the MBT, whereas it changes from NHEJ to HR after the MBT.

used to oligomerize RAD51 monomers into filaments on DNA [26].
The amino acid sequence of the RAD51 protein, including cysteine
319, is highly conserved in humans and Xenopus throughout its entire
length (Supplementary Fig. 2). Thus, it is considered that RI-1 inhibit
Xenopus RAD51, blocking HR in Xenopus.

Embryos were exposed to X-rays before the MBT (4 hpf) and
treated with inhibitors from 3 to 48 hpf (Fig. 2B). It is important
to note that without X-ray irradiation, concentrations of NU7026
and RI-1 ranging from 0 to 30 μM had little detectable effect on
embryo development in terms of survival and malformation rates
(Figs 2C and D). Therefore, we chose this concentration range for
further analysis. When embryos were irradiated with 1 Gy before
the MBT, there was a notable decrease in the survival rate and an
increase in malformations in a dose-dependent manner with NU7026
(Fig. 2C) (Supplementary Table 2). However, this was not observed
with RI-1 (Fig. 2D). These findings suggest that the inhibition of
NHEJ by NU7026, but not HR by RI-1, increases the X-ray sensitivity
of embryos before the MBT.

We further analyzed the effect of NU7026 and RI-1 on the X-ray
sensitivity of embryos after the MBT. Embryos were exposed to X-rays
after the MBT (7 hpf) and treated with inhibitors from 6 to 48 hpf
(Fig. 3A). The inhibitors (NU7026 and RI-1) alone had little effect on
survival and malformation (Figs 3B and C). When embryos were irra-
diated with 1 Gy after the MBT, the rates of survival and malformation
were comparable in the absence and presence of NU7026 (Fig. 3B).
Conversely, with RI-1, the embryos irradiated after the MBT showed a
decrease in the survival rate and an increase in the malformation rate in
a dose-dependent manner of RI-1 (Fig. 3C) (Supplementary Table 3).
These data suggest that inhibition of HR but not NHEJ increases the
X-ray sensitivity of embryos after the MBT.

DISCUSSION
Here we provide the evidence that NHEJ primarily contributes to the
repair of X-ray-induced DSBs before the MBT in Xenopus embryos,
while in embryos after the MBT, HR contributes more than NHEJ to
the repair of DSBs (Fig. 4).

We observed enhanced IR sensitivity in Xenopus embryos before
the MBT compared to later developmental stages (Fig. 1C). This
is consistent with previous studies on zebrafish embryos, which
also show the highest sensitivity to IR during early development
[27–29]. Therefore, the difference in IR sensitivity before and after the
MBT appears to be a conserved phenomenon between Xenopus and
zebrafish. Several possibilities could explain the apparent difference in

X-ray sensitivity before and after the MBT. First, the embryo before
the MBT might lack sufficient amounts or types of proteins required
for repairing IR-induced DNA damage, such as DSBs. Second, the
cell division cycle before the MBT is notably shorter than that after
the MBT, due to the absence of G1 and G2 phases. NHEJ is a rapid
process, whereas HR is comparatively slower and requires more time
for completion [30]. Consequently, in pre-MBT embryos, NHEJ is
well-suited for efficiently repairing DSBs, while HR functions are less
effective. This inadequacy may contribute to a heightened sensitivity
to IR in pre-MBT embryos. Third, the prevalence of NHEJ and the
relative deficiency of HR may lead to a decrease in the cell survival
rate of embryos before the MBT. This proposition finds support in the
observation that NHEJ predominates over HR in embryos before the
MBT (Fig. 2). Additionally, the toxic influence of NHEJ-dependent
DSB repair, in the absence of HR, results in abnormal joining of
chromatid breaks, leading to the formation of a radial chromosome
structure [31]. Nevertheless, further studies are imperative to elucidate
and assess the DNA repair capabilities of early Xenopus embryos.

The expression level of DNA-PKcs is considerably lower than that
of RAD51 before the MBT (Fig. 2A). However, according to the sur-
vival of irradiated embryos, NHEJ predominantly participates in the
repair of X-ray-induced DSBs before the MBT in Xenopus embryos,
whereas HR becomes more crucial than NHEJ in DSB repair after the
MBT (Fig. 4). There are a few possible reasons for these discrepancies.
First, the expression levels (the number of transcripts) of DNA-PKcs
and RAD51 do not necessarily reflect their protein levels. Second, the
expression and/or protein levels of HR-performing factors, other than
RAD51, may be low in early development, making HR inoperative.
These aspects should be fully clarified in future research.
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