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Abstract. The fibulins are a family of secreted
glycoproteins associated with basement membranes,
elastic fibers, and other matrices. They are expressed
in a variety of tissues. Association with these matrix
structures is mediated by their ability to interact with
many extracellular matrix constituents. The seven
members of the family are defined by the presence of
two structural modules, a tandem repeat of epidermal
growth factor-like modules and a unique C-terminal
fibulin-type module. They act not only as intermolec-

ular bridges within the extracellular matrix to form
supramolecular structures, but also as mediators for
cellular processes and tissue remodeling. These im-
portant functions of fibulins in a wide range of
biological processes have been shown in in vitro
systems, gene knockout mice, and human genetic
disorders. In this review, we describe the structure and
function of these proteins and discuss the implication
of fibulins in development and diseases.
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Introduction

The extracellular matrix (ECM) is very diverse in
nature and composition. This characteristic helps it
serve many functions such as supporting cells and
regulating intercellular communications. In addition
to controlling cell motility, it is essential for growth,
development, wound healing, and fibrosis. ECM
components are secreted into and often aggregate
with the existing matrix. Many proteins in the ECM
are glycoproteins, which include relatively large
molecules such as laminins, fibronectin, and elastins.
Other smaller ECM proteins serve to modulate
cellular behavior and functions. One such group of

ECM proteins is the fibulin protein family. Fibulin-1
was the first member discovered two decades ago by
affinity chromatography in an effort to elucidate the
cytoplasmic interactions of the b subunit of the
fibronectin receptor. In that study, fibulin-1 extracted
from human placenta was found to bind to a synthetic
peptide derived from the cytoplasmic domain of the
fibronectin receptor b subunit. Fibulin-1 was also
shown to bind to the native receptor in an in vitro
binding assay [1]. Although the fibulin-1 protein was
thought to be an intracellular molecule, serving as a
bridge between b integrins and cytoskeletal compo-
nents, sequencing and immunohistology revealed that
fibulin-1 was an ECM protein present in the fibril
matrix deposited by fibroblasts in culture and in the
blood [2]. A separate group also isolated fibulin-1
from a mouse EHS (Engelbreth-Holm-Swarm)* Corresponding author.
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tumor, which produces a large amount of basement
membrane components [3]. Since then, six more
members have been identified. Fibulin-2 was identi-
fied by comparative sequence analysis of mouse
fibulin-1 and was isolated from a mouse fibroblasts
cDNA library [4]. Fibulin-3 (also known as S1 –5,
Efemp1) was isolated by subtractive screening of a
cDNA library from senescent human diploid fibro-
blasts (HDF) established from a patient with Werner
syndrome and was found to regulate DNA synthesis
[5]. Fibulin-4 (also known as Efemp2) was cloned
during a search for new members of the fibulin family
by sequence homology [6]. Fibulin-5 (also known as
EVEC, DANCE) was isolated by subtraction hybrid-
ization to identify genes that regulate the transition
from quiescent vascular smooth muscle cells to the
proliferative state [7, 8]. Fibulin-6 (also known as
Hemicentin-1) was identified as the gene product of
the him-4 locus in Caenorhabditis elegans [9]. Lastly,
fibulin-7 (also known as TM14) was identified by
differential hybridization using tooth germ cDNA
microarrays [10].
Fibulins share a common multimodular organization
with tandem repeats of an epidermal growth factor
(EGF)-like module and a unique C-terminal fibulin-
type module. The fibulin-type module defines the
fibulin family of proteins, which includes seven
members in mammals, but has limited members in C.
elegans, chicken, and zebrafish [11]. They have roles in
the assembly and stabilization of supramolecular
ECM complexes. Due to their involvement in the
elaboration and stabilization of the ECM, the fibulins
have been implicated in tissue organogenesis, vasculo-
genesis, fibrogenesis, and tumorigenesis. Fibulins have
been found in association with ECM structures such as
connective tissue fibers, basement membranes, and
blood clots. Recent studies with in vitro systems,
mouse models, and human genetic disorders have led
to a better understanding of the functions of fibulins
[12 – 14]. The aim of this review is to summarize the
current knowledge about the roles of fibulins in
development and disease as well as their interactions
with other molecules.

Fibulin protein structure

Fibulins consist of modules grouped in domains I, II,
and III. Domain I represents the N terminus and is
variable among the family members. Domain II
represents the central portion and contains a variable
number of EGF-like modules in a tandem array. Most
of the EGF-like modules contain a consensus se-
quence for calcium binding and are known as calcium-
binding EGF (cbEGF)-like modules. The C-terminal

portion is the domain III, called the fibulin-type
module, specific to the fibulins and fibrillins [6]
(Fig. 1).
Alternative splicing in the fibulin-1 gene produces two
splice variants (C and D), which differ in domain III, in
mice, chickens, zebrafish, and nematodes. In humans,
two additional variants (A and B) exist, but at very low
levels [11, 15, 16]. Variant A lacks the complete
domain III, and variant B has smallest domain III
compared to variants C and D. In fibulin-2, the third
EGF-like module can be present or absent as a result
of alternative splicing in an exon. Both variants are
found in humans and mice, but it is not known if these
proteins have a different function [16]. Alternative
splicing of fibulin-3 results in five variants, which have
a partial or complete absence of domain I [5]. Two of
these variants lack the signal peptide and their
expression levels are low. An alternatively spliced
variant of fibulin-4 lacking the signal peptide has also
been reported [17]. All of the fibulins are glycopro-
teins and have several N-linked acceptor sites [10, 14].
The members of the fibulin family have been classified
into two subgroups. The first subgroup consists of
fibulin-1 (100 kDa) and fibulin-2 (195 kDa). They are
larger than the other members because they have
three anaphylatoxin (AT) modules in domain I, which
are components of the complement system involved in
inflammation and defense against parasites, and more
EGF-like modules in the central portion. In addition,
fibulin-2 contains an extra portion in the N-terminal
domain with two cysteine-rich segments (Fig. 1). The
second subgroup contains the rest of the members,
fibulin-3 to fibulin-7. They are smaller proteins of 50 –
60 kDa, except for fibulin-6, which contains a larger
N-terminal domain with nine immunoglobulin C-2
modules and six thrombospondin type I repeats.
Fibulin-7 has a unique N-terminal domain I, contain-
ing a sushi domain, also known as complement control
protein (CCP) domain or short consensus repeat
(SCR), which is involved in protein-protein interac-
tions and in the regulation of the complement system
and blood coagulation. These fibulins (fibulin-3 to
fibulin-7) were originally identified during searches
for new proteins and have been given different
acronyms. Because they contain the fibulin motif
and tandem array of EGF domains, they have been
recognized as members of the fibulin family [6, 7, 10].

Interactions of fibulins with ECM components

Assigning functions to novel proteins is one of the
most challenging problems. One approach is to study
protein-protein interactions. As part of the ECM,
fibulin proteins interact and bind to other proteins in
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the matrix. Many studies have been done to identify
the binding partners for fibulin proteins, which are
summarized in Table 1 [14, 18]. Fibulin-1 and fibulin-2
are localized in basement membranes, elastic fibers,
and other connective tissue structures [3, 19 – 21].
Both interact with many common binding partners,
but with some specificity (Table 1). Cells produce
fibronectin-based fibrillar matrices, which are essen-
tial for many biological processes including embryo-
genesis, morphogenesis, and tissue generation. Fibro-
nectin fibrillogenesis is initiated by integrin binding to
the RGD-containing cell-binding domain of fibronec-
tin and facilitated by formation of focal and fibrillar
adhesions [22, 23]. Fibulin-1 and fibulin-2 are asso-
ciated with the fibronectin-based fibrils produced by
fibroblasts and other cell types [2, 11, 24]. Fibulin-1
binds to the type III repeats of fibronectin, which has a
heparin binding site, through EGF-like modules [25,
26]. Recombinant mouse fibulin-2, but not fibulin-1,
binds strongly to purified aIIb3 integrin and with a
lesser extent to avb3 integrin through the RGD motif
in the N-terminal domain [27].
Fibulin-1 and fibulin-2 are associated with basement
membranes in various tissues. Basement membranes
are thin ECMs that separate epithelial and mesen-
chymal cells and surround cells, such as endothelial

and muscle cells. They provide the scaffolding for cells
and tissues and have an essential role in tissue
morphogenesis that affects cell adhesion, migration,
proliferation, and differentiation. Basement mem-
branes consist of collagen IV, laminin, perlecan,
nidogen/entactin, and other molecules, which interact
with each other to form the supramolecular structure
and also bind cell surface receptors such as integrins
and syndecans [28]. Fibulin-1 and fibulin-2 bind to
several basement membrane components. Fibulin-1
binds to the C-terminal globular domain (G domain)
of the laminin a1 and a2 chains [28, 29]. The G domain
of laminin a chains has a role in many biological
activities such as cell adhesion and migration and
binding to a-dystroglycan and integrins [30, 31].
Fibulin-2 also binds to the G domain of the laminin
a2 chain [32]. Fibulin-1 and fibulin-2 bind to the short
arm of the laminin g2 chain. The laminin g2 chain is a
subunit of epithelial cell-specific laminin-5, which is a
component of the anchoring filament that functions to
link these cells to the basement membrane. The
interaction of these fibulins with laminin-5 may
enhance the anchorage force between epidermal
cells and the basement membrane.
Fibulin-1 and fibulin-2 bind to the globular domains
G2 and G3 of nidogen-1, which have been identified as

Figure 1. Domain structures of fibulin family proteins. The seven members of the family display similar modular arrangement, consisting of
domains I, II and III. Domain III at the C terminus contains a sushi motif and domain II at the center consists of EGF-like motifs. These
motifs in domains II and III are common to all fibulins. The N-terminal domain I varies in size and motifs among the fibulin family.
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a binding region for perlecan and laminin g1, a
component of laminin-1, respectively [33, 34]. The
fibulin-1-nidogen-1 interaction varies depending on
fibulin domain III isoforms, and fibulin-1C (a splice
variant of fibulin-1) shows the strongest binding to
nidogen-1 compared to another splicing variant fibu-
lin-1D [33]. In addition, EGF-like modules in domain
II of fibulin-1 are also involved in the binding to
nidogen-1 [35]. Fibulin-2, but not fibulin-1, binds to
domain IV of perlecan, a large heparan sulfate
proteoglycan, which is present in basement mem-
branes and other tissues such as cartilage. Domain IV
of perlecan consists of multiple Ig-like modules and
has binding sites for nidogens and fibronectin [36].

The interaction of fibulin-1 and fibulin-2 with these
basement membrane components may provide the
scaffold to support tissues such as capillaries integrity
and functions.
Fibulin-1 and fibulin-2 are localized in elastic fibers. In
elastic fiber assembly, tropoelastins (elastin precur-
sors) are deposited on microfibrils in an orderly
manner and cross-linked by lysyl oxidases (LOXs).
Elastic fibers provide the scaffold for connective
tissues and they are essential for the function of the
skin, lungs, arteries and other organs. Fibulin-1 and
fibulin-2 bind to tropoelastin 2, with fibulin-2 having a
much higher affinity to tropoelastin compared to
fibulin-1. Fibulin-2, but not fibulin-1, binds to fibrillin-

Table 1. Molecular interactions of fibulin family members.

Protein Interacting protein References

Fibulin-1 Fibronectin [25, 26]
Aggrecan [37]
Versican [37]
Nidogen [33]
HB-EGF [44]
Laminin-a1 and laminin-a2 chains [28,29]
ECMI (extracellular matrix protein-1) [47]
Angiogenin [46]
NOVH (Nephrobalstoma overexpressed) [43]
Tropoelastin [18]
Fibulin-7 [10]
Fibrinogen [41]
ADAMTS-1 (disintegrin-like and metalloprotease with thrombospondin motifs) [39]
Sex hormone-binding globulin (SHBG) [40]
b-amyloid precursor protein [45]

Fibulin-2 aIIb3 integrin; avb3 integrin [27]
Laminin-a2 chain [32]
Sex hormone-binding globulin (SHBG) [40]
Fibrillin [21]
Aggrecan [38]
Versican [38]
Fibronectin [30]
Nidogen [34]
Perlecan [36]
Tropoelastin [18]

Fibulin-3
(Efemp1)

Tropoelastin [18]

Fibulin-4
(Efemp2)

Tropoelastin [18]

Fibulin-5
(DANCE; EVEC)

a5b1, a4b1 [102]
Tropoelastin [18]
Elastin monomers [48, 49]
LOXL-1 (Lysyl oxidase-like 1) [50,51]
LTBP-2 (latent TGF-b-binding protein-2) [52]

Fibulin-6
(Hemicentin)

Not described

Fibulin-7
(TM14)

Fibronectin [10]
Heparin [10]
Fibulin-1 [10]
Dsp (Dentin sialoprotein) [10]
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1, a microfibril-associated protein [21], suggesting that
fibulin-2 may function to anchor elastin to micro-
fibrils.
The large chondroitin sulfate proteoglycans aggrecan
and versican (PG-M) bind to both fibulin-1 and
fibulin-2 through their C-terminal type-2 lectin do-
mains [37, 38]. Aggrecan has a large number of
chondroitin sulfate chains and forms large aggregates
with hyaluronan and link protein in the cartilage
matrix, which provides mechanical strength to resist
compression in joints. Versican is expressed in artic-
ular cartilage and other mesenchyme tissues. It has
been shown that fibulin-2 forms a network with
aggrecan and versican. These results suggest that
fibulin-1, fibulin-2, and other fibulins expressed in
cartilage may play a role in stabilization and function
of the cartilage matrix. A yeast two-hybrid-screen
identified a specific interaction between fibulin-1 and
ADAMTS-1, a member of the ADAMTS (a disinte-
grin-like and metalloprotease with thrombospondin
motifs) family proteases [39]. Fibulin-1 enhances
ADAMTS-mediated proteolysis of aggrecan, a
known substrate for ADMTS-1 and a binding partner
for fibulin-1 [39]. Although fibulin-1 is not a substrate
for ADAMTS-1, it may form a ternary complex with
ADAMTS-1 and aggrecan to promote aggrecan
turnover and plays a role in tissue remodeling.
Fibulin-1D and fibulin-2 interact with sex hormone-
binding globulin (SHBG) [40], suggesting that these
fibulins regulate steroid hormone action by seques-
tering SHBG in the ECM.
Fibulin-1 is also a binding partner for fibrinogen and it
can be incorporated into fibrin clots, suggesting a role
for fibulin-1 in thrombi formation [41]. Indeed, it has
been shown that fibulin-1 mediates platelet adhesion
by forming a bridge between cells and fibrinogen, a
characteristic similar to collagens I and IV, and
fibronectin [42]. Fibulin-1 also interacts with NOVH
(nephroblastoma overexpressed), a member of the
CCN family of growth regulators [43]. The isoform
fibulin-1C interacts with the heparin-binding EGF-
like growth factor (HB-EGF), which is implicated in
tumor formation, cell migration, ECM formation,
wound healing, and cell adhesion [44]. Fibulin-1 binds
to the N-terminal portion of the secreted form of b-
amyloid precursor protein (sAPP) [45]. This interac-
tion is mediated through EGF modules of fibulin-1 in
a Ca2+-dependent manner and blocks sAPP-mediated
proliferation of neural stem cells [45]. Since fibulin-1
in brain is expressed primarily by neurons, these
results suggest that fibulin-1 may modulate neuro-
trophic activities of APP. Other ECM proteins such as
angiogenin, fibulin-7, and ECM-1 also interact with
fibulin-1 [10, 18, 46, 47].

Fibulin-1 and fibulin-2 present a wide repertoire of
interactions. However, for the other members of the
family, fewer binding partners have been found to
date. No protein interactions have been reported for
fibulin-6. Fibulin-3, fibulin-4, and fibulin-5 bind to
tropoelastin and play important roles in the assembly
of elastic fibers during development, but they do not
interact with fibronectin [18]. Fibulin-5 binds mono-
mer elastin through the cbEGF modules [48, 49].
Fibulin-5 interacts with LOXL-1 (lysyl oxidase-like 1),
-2 and -4, which are essential for the initial step for the
polymerization of tropoelastin monomers, the process
called coacervation [50, 51]. This interaction is
mediated through the C-terminal part of fibulin-5.
Recent study suggests that fibulin-5 acts as an
organizer for elastic-fiber formation by inducing
elastic fiber assembly and promoting coacervation of
tropoelastin through tethering LOXs [51]. Fibulin-5
also binds to LTBP-2, a member of the latent TGF-b-
binding family, through cbEGF modules [52]. Unlike
other members of LTBPs, LTBP-2 cannot bind to
TGF-b [53] and it is localized to the elastin-associated
microfibrils [54]. It was shown in cell culture that
deposition of fibulin-5 and elastin is dependent on
fibrillin-1 but not either fibrillin-2 or LTBP-2. On the
other hand, suppression of LTBP-2 promotes deposi-
tion of fibulin-5 and elastin onto fibrillin-2 micro-
fibrils. These results may suggest that LTBP-2 regu-
lates which microfibrils fibulin-5 should be deposited
on for elastic fiber assembly. In fibulin-5-transfected
cells, a portion of recombinant fibulin-5 is specifically
cleaved to yield a C-terminal truncated fragment by a
serine protease [51]. The truncated fragment cannot
deposit on microfibrils and causes inactivation of the
elastogenic activities of the full-length fibulin-5.
Interestingly, in mouse skin, the amount of the full-
length fibulin-5 is reduced and that of a C-terminal
truncated fibulin-5 fragment increases with age [51].
Since elasticity in tissue is thought be reduced with
aging, proteolysis of fibulin-5 may be involved in the
deterioration of tissue elasticity during aging. Fibulin-
7 binds to dentin sialoprotein (Dsp), fibronectin, and
heparin. It also interacts with fibulin-1 [10]. Table 1
summarizes the known binding proteins for each
fibulin member. All of these interaction data indicate
that fibulins are versatile proteins that associate with
ECM proteins for the formation of supramolecular
structures and cellular processes.

Expression of fibulins

The expression pattern of fibulins is summarized in
Table 2. Fibulin-1 and fibulin-2, the first 2 members
identified in the family, are present in some basement
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membranes and many other connective tissues [1, 4,
15]. Fibulin-1 expression is particularly prominent in
areas undergoing epithelial-mesenchymal transitions
such as the endocardial cushion tissue, developing
myotomes, neural crest, tooth, and hair follicle during
development [19]. Fibulin-1 exists in the great vessels,
coronary artery, brain, choroid plexus and the me-
ninges, and other connective tissues such as kidney,
lung and liver [19]. Fibulin-1 is expressed in the ECM
in association with the digits in the developing limb. It
has also been found in perichondrial structures in
human embryos [55]. The chondrocytes do not
express fibulin-1 at gestational week 6.5 and 8, but
by gestational week 10, the interterritorial matrix of
hypertrophic chondrocytes is very rich in fibulin-1 and
fibulin-2. Fibulin-1 is observed in cartilage during
chondrogenesis in mice [18, 19].
Fibulin-2 expression partially overlaps with that of
fibulin-1 but is more restricted to certain tissues.
Similar to fibulin-1, fibulin-2 is expressed at sites
where polarized epithelial cells convert into mesen-
chyme during development of endocardial cushion
tissue and in neural crest cells. Fibulin-2 expression is
particularly high in the developing heart [56]. Fibulin-
2 is expressed by the smooth muscle precursor cells of
developing aortic arch vessels [57]. Fibulin-2 is
synthesized by the endothelial cells of coronary
arteries and veins but not by the capillary endothelial
cells in the myocardium. Fibulin-2 is expressed in
developing cartilage, especially in the perichondrium
[18, 19, 57].
Fibulin-3 is found in condensing mesenchyme, which
gives rise to cartilage and bone [58]. It resides in
developing bone structures of the cranial and axial
skeleton [58]. In E12.5 mouse, the expression of
fibulin-3 is localized in the regions of developing
filamentous bones and in the primordial cartilage of
limb buds. From this stage on, the signal becomes
intense in the developing vertebral cartilage. By
E13.5, expression can be seen in the cartilage anlagen
of developing forelimbs and hindlimbs as well as in the
face, where the ossification of the membranous bone
of the facial skeleton occurs [58]. Fibulin-3 expression

is detected in structures in the developing cranial area,
rib cage, vertebrae, and appendicular skeleton. This
expression pattern suggests that fibulin-3 may play a
role in regulating the shaping of the skeletal elements
in the body. Indeed, fibulin-3 knockout mice have
reduced bone density [59]. Fibulin-3 is also highly
expressed by epithelial and endothelial cells through-
out the body [6, 18, 58].
Fibulin-4 is strongly expressed in the heart, moder-
ately in skeletal muscle, and weakly in the placenta,
brain, lungs, kidneys and pancreas [6]. It is expressed
by adult human fibroblasts and is located in vessel
walls and basement membranes. Fibulin-4 is expressed
in articular chondrocytes and cultured chondrocytes
[60]. A recent study reported that fibulin-4 is an
osteoarthritis (OA)-specific autoantigen because the
protein is present in sera obtained from patients with
OA [60].
Fibulin-5 is expressed prominently in regions of
epithelial-mesenchymal interactions during develop-
ment of the artery, endothelial cushion tissue, neural
crest, and mesenchymal tissue [7, 8, 12, 14]. Fibulin-5
is first detected in neural crest cells at E9.5 and
subsequently expressed in the dorsal aortae, the
vascular smooth muscle of the great vessels, the
endocardial cushion and epicardium in rodent em-
bryos. In adult tissues, it is localized in the heart,
ovaries, and colon as well as in the kidneys, pancreas,
testis, and lungs.
Fibulin-6 is expressed in skin fibroblasts, retinal
pigment epithelial cells, and retinal endothelial cells
[61, 62].
Fibulin-7 mRNA is highly expressed in teeth as well as
the placenta, hair follicles, and cartilage. Expression of
fibulin-7 mRNA is seen in preodontoblasts and in
odontoblasts during molar and incisor development.
The protein is deposited in predentin and dentin
matrices. In dentin, fibulin-7 is located along the
dentinal tubes. In addition, fibulin-7 mRNA is ex-
pressed in spongiotrophoblasts of the placenta, the
articular cartilage, and proliferative and prehypertro-
phic chondrocytes of cartilage as well as in the
perichondrium [10].

Table 2. Expression pattern.

Fibulin member Expression

Fibulin-1 Vessels walls, basement membranes, microfibrils and elastic fibers. Cartilage

Fibulin-2 Basement membranes, heart, placenta and ovary. Cartilage

Fibulin-3 (Efemp1) Cartilage, bone and retina.

Fibulin-4 (Efemp2) Cardiac valve, heart, lung, kidney and skeletal muscle. Cartilage.

Fibulin-5 (DANCE; EVEC) Great vessel and cardiac valves. Lung, uterus, cartilage.

Fibulin-6 (Hemicentin-1) Skin fibroblasts and retinal pigment epithelium.

Fibulin-7 (TM14) Incisors and molars. Cartilage, hair follicles and extraembryonic tissues.
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Dysregulation of fibulin-1 and fibulin-5 has been
reported in cancer [13, 63]. Fibulin-1 expression is
increased in ovarian and breast carcinomas [64 – 67].
However, overexpression of fibulin-1D reduces tumor
formation [68], whereas the ratio of fibulin-1C to
fubulin-1D is increased in ovarian carcinoma [69].
Fibulin-1 variants may function as a modulator for
tumor formation. Fibulin-5 expression is decreased in
a variety of human cancers, including those of the
breast, kidney, ovary, and colon [70], suggesting that
fibulin-5 may function as a tumor suppressor.

Mutations of fibulins in human diseases

Mutations of several fibulin genes have been identi-
fied in human genetic disorders [12]. It was reported
that the fibulin-1 gene is disrupted in patients from
one family with complex synpolydactyly (SPD), a rare
dominantly inherited malformation of the distal limbs
[54]. They have metacarpal and metatarsal synostoses
(bone fusion), which is different from that of
HOXD13 mutations, the most common causes of
SPD [71]. A chromosomal translocation occurs in the
last intron (intron 19) of the fibulin-1 gene that results
in the deficiency of alternative splicing variant fibulin-
1D, but not fibulin-1C. Since no fusion transcript is
detectable, the translocation likely results in a hap-
loinsufficiency for fibulin-1D that may be responsible
for the digit malformation. Fibulin-1D may be re-
quired for cell migration and apoptosis for proper digit
formation. Mutations in other ECM molecules such as
laminin-a5 [72, 73] and fibrillin-2 [73] are also known
to cause malformed digits. A defect in fibulin-1D
expression is associated with the autosomal dominant
giant platelet syndromes, which represent a group of
disorders characterized by variable degrees of macro-
thrombocytopenia with combinations of deafness,
renal disease, and eye abnormalities. In this case, a
heterozygous mutation in the splice acceptor site of
fibulin-1 exon 19 causes lack of fibulin-1D expression
and overexpression of the antisense RNA [74]. These
results indicate distinct functional roles between
fibulin-1C and fibulin-1D isoforms, which are consis-
tent with those from biochemical data [33].
Several findings indicate the involvement of fibulins in
inherited eye disorders such as retinopathies or
macular degeneration. Missense mutation R345W in
the EGF domain of fibulin-3 is thought to cause
Doyne honeycomb retinal dystrophy, also known as
malattia leventinese (ML), which is a dominant
macular degenerative disease characterized by yel-
low-white deposits known as drusen that accumulate
beneath the retinal pigment epithelium (RPE) [75].
Patients with ML develop symptoms comparable to

those age-related macular degeneration (AMD), the
most common cause of incurable blindness.
Defects in fibulin-4, such as the missense mutation
G169A [76], cause autosomal recessive cutis laxa,
which is a heterogeneous group of connective tissue
disorders characterized by cutaneous abnormalities
and variable systemic manifestations such as loose
skin. In addition to skin, internal organs enriched in
elastic fibers, such as the lung and the arteries, are also
affected.
Defects in the fibulin-5 gene cause cutis laxa and
AMD. In most subjects, the disease manifests as
yellowish accumulations of drusen beneath the RPE
and within the elastin-containing structure (known as
Bruch membrane). In cutis laxa, the missense muta-
tions in fibulin-5 gene S227P and C217R result in
misfolding and decreased secretion and interactions of
fibulin-5 with elastin and fibrillin-1 [77, 78]. There is
impaired elastic fiber development, suggesting that
fibulin-5 is necessary for the proper elastic fiber
formation [79]. In AMD, missense mutations G412E,
G267S, I169T and Q124P lead to decreased fibulin-5
secretion [80]. A heterozygous gene duplication
resulting in a tandem duplication of the first to the
fourth cbEGF modules of fibulin-5 was found in a
sporadic cutis patient [81]. The mutant fibulin-5 is
secreted and causes a dominant negative effect.
Although the Q5346R mutation in fibulin-6 was
thought to be a causal mutation for AMD pedigree,
a recent study suggests that the mutation may not
contribute to the disease [82]. No human diseases
associated with fibulin-7 gene have been described to
date.

Fibulin animal models

Creation of animal models provides an insight on the
roles of fibulins in development, tissues functions, and
disease. Fibulin-1, -2, -3, -4, and -5 have been knocked
out in mice and fibulin-1 and fibulin-6 in C. elegans. All
of them, except fibulin-2, display marked phenotypic
defects in multiple organ systems (Table 3). Creation
of knock-in mice that have a missense mutation in the
fibulin-3 locus confirmed that the R345W fibulin-3
mutation causes the pathogenic phenotype.

Fibulin-1 knockout mice and fibulin-1 mutant C.
elegans. Two studies have analyzed mice deficient of
fibulin-1. In the first report [83], mice lacking the
fibulin-1 gene were created by homologous recombi-
nation in embryonic stem (ES) cells. These mice
develop bleeding in the cranial mesenchyme, skin and
skeletal muscles, and most of them die within 24– 48 h
after birth. These mice also have reduced loop
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formation in renal glomeruli and a delay in the proper
formation of lung alveoli. The endothelial compart-
ments show irregular cell shape, suggesting that
fibulin-1 may interact with endothelial cells. More
recently, knockout mice for the fibulin-1 gene were
created by gene trap insertion [84]. These mice also
show bleeding, lung abnormalities and perinatal
lethality as reported by Kostka and coworkers [83],
but in the gene-trap fibulin-1 null mice there are also
abnormalities of the outflow tract, arch arteries,
pharyngeal glands, cranial nerves, and cephalic skel-
eton, which were not previously reported. One of the
reasons for these differences is variation in the genetic
background [84].
Fibulin-1 knockout C. elegans are smaller in overall
body size than the wild type and they had severe
defects in gonad morphogenesis [85 – 87]. Matrix
metalloproteases, the major family of proteolytic
enzymes responsible for degrading ECM components,
have a key role in remodeling the ECM during cell
migration. In C. elegans, two secreted ADAMTS
proteases MIG-17 and GON-1 are required for gonad
morphogenesis by regulating migration of the distal
tip cell (DTC) that guides the developing gonad as it
extends [88, 89]. GON-1 is required for DTC migra-
tion and general expansion of the gonad rudiment. On
the other hand, MIG-17 regulates the direction of
DTC migration. Fibulin-1 has been shown to work
cooperatively with these ADAMTS proteases in this
process [86, 87]. Fibulin-1 and GON-1 have antago-
nistic roles in gonad formation; GON-1 promotes

expansion and elongation, whereas fibulin-1 blocks
these processes [87]. It is proposed that proteolysis by
MIG-17 recruits fibulin-1 to the gonad basement
membrane for guiding DTC migration [86]. However,
the molecular mechanisms and signaling pathways in
these processes are not clear.
C. elegans fibulin-1C and fibulin-1D isoforms have
distinct second EGF and fibulin-like modules as a
result of alternative splicing variants [11, 85]. Studies
using a transgene approach in rescue experiments and
loss-of function analysis have identified the roles of
fibulin-1 isoforms and domain functions. Fibulin-1C
has specific roles for pharynx, intestine, gonad and
muscle morphogenesis and is required to regulate cell
shape and adhesion. Fibulin-1D assembles in the
flexible polymers that connect the pharynx and body
wall muscle. Both isoforms requires fibulin-6 (hemi-
centin) for assembly at hemidesmosomes-mediated
mechanosensory neuron and uterine attachments to
the epidermis [90]. In addition, assembly of fibulin-1C
at uterine and mechanosensory neuron attachments is
depend on perlecan, whereas assembly of fibulin-1D
at mechanosensory neuron attachments is dependent
on laminin [90]. These results indicate that these
isoforms have distinct functional roles in matrix
networks. Fibulin-1C regulates both gonadal width
and growth [91]. The N-terminal two complete EGF
repeats are critical for gonadal growth, whereas both
the EGF and fibulin-like domains are required for
constraining gonadal width [91]. These studies suggest
that these modules of fibulin-1 have distinct functions

Table 3. Fibulin knockout mice and human diseases.

Fibulin
member

Mouse KO phenotype Human disorders

Mutation Phenotype

Fibulin-1 Die perinatally as a result of hemorrhages, due to defects
associated with capillary endothelial cells. Profound
morphological abnormalities of the heart, pharyngeal
glands and bones of the skull.

Translocation
Defect of the D
variant
haploinsuficinecy

Limb defects.
Giant platelet syndrome. Vitroretinal
dystrophy.

Fibulin-2 No phenotype. Viable and fertile. No anatomical
abnormalities.

Unknown Unknown.

Fibulin-3
(Efemp1)

Reduced reproductiviy, early aging and herniation. Missense Malattia leventinese. Doyne honeycomb
retinal dystrophy. Age-related macular
degeneration.

Fibulin-4
(Efemp2)

Die perinatally. Lung and vascular defects: emphysema,
artery tortuosity, aneurysm, and hemorrhages.

Missense Neonatal lethal pulmonary artery
occlusion, aortic aneurysm,
arachnodactyly, and mild cutis laxa.

Fibulin-5
(DANCE,
EVEC)

Disorganized elastic-fiber networks, resulting in loose skin,
aortic abnormalities, and lung defects.

Missense Cutis laxa. Age-related macular
degeneration.

Fibulin-6
(Hemicentin-
1)

Unknown. Missense
(uncertain)

Age-related macular degeneration
(uncertain).

Fibulin-7
(TM14)

Unknown. Unknown Unknown.
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in nematode development and tissue functions.
Whether mammal fibulins have similar activities of
their modules remain to be elucidated.

Fibulin-2 knockout mice. The fibulin-2 knockout mice
[92] are viable, fertile, and free of anatomic abnor-
malities. Fibulin-2 may have a functional redundancy
with other matrix proteins and/or play a role in
pathological conditions.

Fibulin-3 knockout and knock-in mice. The knockout
mice for fibulin-3 [59] show reduced reproduction and
display early aging-related phenotypes including re-
duced lifespan, body mass, hair growth, fat, and
muscle as well as organ atrophy. Although the
missense mutation R345W in the fibulin-3 gene is a
likely cause of ML, an inherited AMD [59], the
fibulin-3 knockout mice do not have macular degen-
eration [49]. However, knock-in mice containing the
R345W mutation in fibulin-3 develop early onset of
macular degeneration in both heterozygous and
homozygous mice [93, 94]. The phenotype and
haploinsufficiency of the knock-in mice mimics
those of AMD patients. The mutant mice develop
deposits of membranous materials between Bruch�s
membrane and the RPE. This basal deposition
increases with age and is considered to be a major
cause of macular degeneration. In transfection experi-
ments, the R345W mutant fibulin-3 is misfolded in
cells and secreted insufficiently, which causes endo-
plasmic reticulum (ER) stress and may lead to
dysfunction of RPE cells [95]. The ER stress may
explain in part extensive vacuolization and loss of
basolateral infoldings of RPE cells. The secreted
mutant fibulin-3 might cause an altered structure of
Bruch�s membrane, which may lead to abnormal
cellular signaling in RPE cells that induces excess
matrix production. Unlike fibulin-3 deficiency, mutant
fibulin-3 causes only macular degeneration but no
other obvious systemic defects. The function of
fibulin-3 in Bruch�s membrane is unique to RPE
cells, which may be more susceptible to subtle changes
in the matrix structure. Missense mutations in fibulin-
4 and fibulin-5 have been reported for association with
AMD [61, 96]. These mutations may cause AMD by a
mechanism similar to that of the fibulin-3 mutation.
Although the reason why mutant fibulin-3 leads to the
basal deposits is still not clear, the knock-in mice are a
useful model for the development of prevention and
treatment strategies for AMD.

Fibulin-4 knockout mice. The fibulin-4 knockout mice
die in the perinatal period [97]. They exhibit lung and
vascular defects such as emphysema, artery tortuosity,
irregularity, aneurysm, and hemorrhages. They do not

form elastic fibers, indicating a key role of fibulin-4 in
vascular homeostasis. Cardiac abnormalities have
been further supported by a mouse model of under-
expression of fibulin-4 [98] where they generated a
fibulin-4 allele with reduced expression by transcrip-
tional interference through the placement of a TKneo
targeting construct in a downstream gene (Mus81).
The phenotype of these mice resembles connective
tissue disorders such as Marfan syndrome.

Fibulin-5 knockout mice. Fibulin-5 knockout mice
survive to adulthood and develop elastinopathy with
disorganization of elastic fibers, resulting in loose skin,
tortuous and extended blood vessels and emphysem-
atous lungs [99, 100], resembling the cutis laxa
syndrome in humans. Because fibulin-5 interacts
with elastic fibers and with cells through integrins, it
may anchor elastic fibers to cells, which may stabilize
elastic fibers in the skin, lung and vasculature. In
mutant mice, cutaneous blood vessels are increased,
and excess vascular sprouting from larger systemic
vessels is also observed, suggesting that fibulin-5 not
only plays a role in elastic fiber development, but also
modulates angiogenesis. In vascular injury induced by
carotid artery ligation, fibulin-5 knockout mice show
an exaggerated vascular remodeling response includ-
ing neointima formation and thickened adventitia.
Altered extensibility of the vessel wall alone cannot
explain these abnormalities. An increase in vascular
smooth muscle cell proliferation and migration in the
absence of fibulin-5 may, in part, cause the abnormal
vascular remodeling as supported by the analysis in
cell culture analysis [99, 100]. These results suggest
that fibulin-5 may modulate signaling pathways to
inhibit vascular smooth muscle cell proliferation and
migration.

Fibulin-6 knockout C. elegans. C. elegans deficient in
fibulin-6 (hemicentin-1) display defective cell-cell and
cell-matrix interactions [9]. In these nematodes the
uterine and intestinal cells do not affix to the body
wall. There are also failures in the assembly of
hemidesmosomes and intermediate filaments in the
epidermis.

Cell adhesion and migration activities of fibulins

Some of the fibulin proteins are involved in cell
adhesion and migration. Fibulin-2, fibulin-5, and
fibulin-7 bind cells through integrin receptors.
Mouse fibulin-2 binds to aIIb3 and avb3 integrins
through the RGD motif in the N-terminal domain
[27]. Fibulin-1 has no activity in cell adhesion in the
majority of cell lines tested [27, 101]. However, A431
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epidermal carcinoma cells moderately adhered to
fibulin-1 [101]. Fibulin-1 inhibits cell adhesion to and
migration on fibronectin. It was proposed that the
binding of fibulin-1 to fibronectin generates a new
anti-adhesive site [101].
Fibulin-5 binds to human umbilical vein endothelial
cells in an RGD-dependent manner [8]. A bacterially
expressed fibulin-5 binds to Chinese-hamster ovary
cells expressing recombinant avb3, avb5 and a9b1
integrins [100]. Fibulin-5 also interacts with primary
human smooth muscle cells through a5b1 and a4b1,
but the cells show low spreading and low migration
and proliferation on fibulin-5 [102]. Proliferation and
migration of smooth muscle cells from fibulin-5
knockout mice are enhanced in response to platelet-
derived growth factor and inhibited by overexpression
of fibulin-5 [103]. Fibronectin promotes attachment,
spreading and migration of smooth muscle cells
through the same integrins used for fibulin-5. How-
ever, fibulin-5 inhibits fibronectin-mediated cellular
activities [102]. These results suggest that fibulin-5
modulates fibronectin-mediated cell adhesion and
migration. Fibulin-5 is an antagonist of angiogenesis
and endothelial cell activities [104]. It abrogates
angiogenic sprouting by endothelial cells, and inhibits
their proliferation and invasion through Matrigel.
Fibulin-7 has been shown to have cell-type specific
adhesion activity. The binding activity is specific for
dental mesenchyme cells and odontoblasts. Data
obtained from inhibition assays suggest that hepar-
an-sulfate receptors and b1-integrin are responsible
for the fibulin-7–cell interaction [10]. When odonto-
blasts differentiate from dental mesenchyme, the
basement membrane separating the dental mesen-
chyme and epithelium is replaced by dentin. However,
the matrix molecules responsible for odontoblasts
attachment to predentin are unknown. Since fibulin-7
is localized at the apical pericellular regions of
preodontoblasts, fibulin-7 may serve this role.

Conclusions

The fibulin family consists of seven members in
mammals but fewer members in C. elegans, chicken,
and zebrafish. Fibulins interact with ECM molecules,
stabilize the supramolecular structures, and in some
case bridge cells and ECM structures and play roles in
tissue functions. Genetic studies of inherited diseases
and animal models have demonstrated the importance
of fibulins in multiple developmental and pathogenic
processes, such as proper elastogenesis, vascular
formation and vision. Fibulins function not only as a
structural ECM component but also as a modulator
for various cellular processes, such as cell growth,

differentiation, angiogenesis, and tumor growth. The
molecular mechanisms of fibulin actions in those
cellular processes need to be further explored. Many
fibulin members are expressed in cartilage, especially
in articular cartilage and the perichondrium during
development. However, their roles in skeletal devel-
opment and diseases are still unclear.
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