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Abstract In this review, subtypes of functional a1-adre-

noceptor are discussed. These are cell membrane receptors,

belonging to the seven-transmembrane-spanning G-pro-

tein-linked family of receptors, which respond to the

physiological agonist noradrenaline. a1-Adrenoceptors can

be divided into a1A-, a1B- and a1D-adrenoceptors, all of

which mediate contractile responses involving Gq/11 and

inositol phosphate turnover. A fourth a1-adrenoceptor, the

a1L-, represents a functional phenotype of the a1A-adre-

noceptor. a1-Adrenoceptor subtype knock-out mice have

refined our knowledge of the functions of a-adrenoceptor

subtypes, particuarly as subtype-selective agonists and

antagonists are not available for all subtypes. a1-Adreno-

ceptors function as stimulatory receptors involved

particularly in smooth muscle contraction, especially con-

traction of vascular smooth muscle, both in local

vasoconstriction and in the control of blood pressure and

temperature, and contraction of the prostate and bladder

neck. Central actions are now being elucidated.
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Introduction

Adrenoceptors, or adrenergic receptors, are cell membrane

receptors belonging to the seven-transmembrane-spanning

G-protein-linked superfamily of receptors. They respond to

the sympathetic neurotransmitter noradrenaline and to the

hormone adrenaline (and to various exogenous agonists) by

producing a response within the cell involving a second

messenger or ion channel. Adrenoceptors are classically

the receptors involved in the ‘‘fight or flight’’ reaction, the

mobilisation of resources caused by activation of the

sympathetic nervous system that prepares the body for

bouts of severe activity. Sympathetic activation will cause

a1-adrenoceptor-mediated vasoconstriction in less vital

vascular beds, particularly splanchnic and skin (although

the skin vasculature may dilate later to dissipate heat), to

divert blood to skeletal muscle in exercise. Sympathetic

activation also mobilises blood from the reservoir in the

large veins (the capacitance vessels) by veniconstriction,

again largely involving a1- (and a2-) adrenoceptors.

Historically, employing a series of agonists, Ahlquist [1]

described two types of adrenoceptor based on the rank

order of potency of these agonists. The receptor termed a
was mainly excitatory, except in the intestine, and the

receptor termed b was mainly inhibitory, except in the

heart. In Ahlquist’s classification, a-adrenoceptors were

receptors present on smooth muscle, i.e. postjunctional

receptors. These were later classified as postjunctional

a1-adrenoceptors, when evidence accumulated for pre-

junctional a2-adrenoceptors [2]. Later, when evidence

accumulated for a2-adrenoceptors located postjunctionally,

this purely anatomical classification was refined into a

pharmacological subclassification, independent of location

[3]. Further advances in our understanding of a1-adreno-

ceptors have come from the development of new

pharmacological methodologies for the study of receptors.

The first of these was the technique of the radioligand

binding assay: a1-adrenoceptors were initially subdivided

into a1A and a1B-subtypes, based on the affinities of a
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series of ligands, especially WB 4101 and prazosin [4], and

based on the ability of the alkylating agent chloroethyl-

clonidine to inactivate the a1B but not the a1A subtype [5].

Under this classification, functional receptors mediating

contractions of rat vas deferens were a1A-, and those of rat

spleen were a1B-adrenoceptors [5] (see Fig. 1).

The study of a-adrenoceptors was revolutionised by

molecular biology: cloning techniques revealed initially

four subtypes of a1-adrenoceptor. The a1b-adrenceptor

subtype (the lower case subscript being used for recombi-

nant receptors and upper case subscript for

pharmacologically defined receptor subtypes) was the first

to be cloned, from the hamster [6], and this clone expressed

a protein with the radioligand binding properties of the

a1B-adrenoceptor. Other clones were the rat a1a- [7], the

bovine a1c- [8] and rat a1d-adrenoceptor [9]. However, the

a1a and a1d clones showed 99.8% homogeneity and

appeared to represent the same subtype. It is now clear that

the a1a/a1d clone represents a novel subtype of a1-adre-

noceptor (a1D), whereas the a1c is now identified with the

a1A-ligand binding site. These clones have now been

renamed to match the functional receptors: a1A (formerly

a1c), a1B (formerly a1b) and a1D (formerly a1a/a1d) (see

Fig. 1). Hence, three genes for a1-adrenoceptors have now

been identified (a1A, a1B, a1D) [see 10–12].

Figure 1 shows how the subclassification of a1-adreno-

ceptors has developed since 1948. The a1L-adrenoceptor

is dependent on the a1A-adrenoceptor gene and is

a phenotype of the a1A-adrenoceptor (see below).

a1-Adrenoceptors are predominantly linked to the G-pro-

tein Gq/11 and activation of phospholipase C (PLC) (see

Table 1). No adrenoceptor belongs to the class of ionotropic

receptors, those with an intrinsic ion channel, unlike the

situation with another monoamine, 5-hydroxytryptamine.

The object of this review is to look at functional sub-

types of a1-adrenoceptors and their physiological roles.

Function of a1-adrenoceptors

a1-Adrenoceptors function as stimulatory receptors and are

the classical adrenoceptors mediating smooth muscle con-

traction, and in the vascular system have a major role in the

control of blood pressure. A fall in blood pressure due to

causes such as haemorrhage will activate the baroreceptor

reflex and cause sympathetic activation to vasconstrict less

vital vascular beds, especially splanchnic and skin.

a1-Adrenoceptor antagonists lower blood pressure in

hypertension, but are not widely employed. a1-Adreno-

ceptor agonist-mediated vasoconstriction can be used to

treat hypotension, and these agonists are widely used as

over the counter nasal decongestants, acting by reducing

blood flow to the nasal musosa. Pseudoephedrine, when

used as a nasal decongestant, shows some selectivity for

local over cardiovascular actions: it is reported to have

nasal actions at 60 mg [13], no cardiovascular actions at up

to 120 mg [14] or cardiovascular actions at 120–180 mg

[15–17]. The reason for this selectivity is unclear, but

pseudoephedrine may show some slight selectivity for

a1A-adrenoceptors [18] and moderate potency as a beta-2

adrenoceptor agonist [19].

Ocular effects involve a1-adrenoceptor-mediated dila-

tation of the pupil by contracting the dilator pupillae

muscle, increasing the amount of light reaching the retina.

a1-Adrenoceptor agonists also have actions to reduce

intraocular pressure, presumably by restricting blood flow.

Other actions include bronchoconstriction, constriction of

sphincters in the gastrointestinal tract and salivary secre-

tions. a1-Adrenoceptors may be important in the regulation

of human lipid metabolism [20] and in the uptake of

glucose into adipocytes [21].

Genitourinary actions are also important, and

a1-adrenoceptors are involved in contraction of the vas

deferens and in contracting the neck of the bladder, and are

involved in prostate function. a1-Adrenoceptors mediate

inhibition of micturition by constriction of the bladder

neck, and this may involve mainly a1D-adrenoceptors [22],

but the density of alpha1-adrenoceptors in the neck of the

bladder is greater in males, suggesting an additional sexual

function to prevent retrograde ejaculation into the bladder.

a1-Adrenoceptors mediate contraction of the vas deferens

and seminal vesicles, and this has an important role in

ejaculation. a1A-KO mice, lacking the a1A-adrenoceptor,

have a 50% reduction in pregnancy rate, with further

reduction with knockout of all three alpha1-adrenoceptors,

and this is mainly due to decreased ejaculatory function

because of diminished contractile response of the vas
Fig. 1 The historical development of the subclassification of

a1-adrenoceptors. For details, see text
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deferens [23]. The same is true of mice lacking the puri-

nergic P2X1 receptor [24], suggesting that both a1A- and

purinergic responses are required for normal vas deferens

function and ejaculation.

A major stimulus to the development of new a1-adre-

noceptor antagonist drugs has been drug therapy of benign

prostatic hypertrophy, which affects an increasing propor-

tion of men as they age, causing problems with micturition

due to outflow obstruction. Outflow obstruction consists of

a static component due to compression of the urethra by the

enlarged prostate, and a dynamic component due to

a1-adrenoceptor-mediated contraction of the bladder neck,

prostate and urethra. The dynamic component may con-

tribute nearly 50% of the total urethral obstruction [25],

leading to the use of initially non-selective a-adrenoceptor

antagonists [26]. New a1-adrenoceptor antagonists were

developed for effects in the lower urinary tract (see [27]),

and the receptors involved were identifed as a1A-adreno-

ceptors. Recent evidence suggests that, in addition to a1A-

adrenoceptors, a1D-adrenoceptors are also present to a

significant extent in human prostate [28]. However, some

antagonists that were selective for a1A-adrenoceptors in

ligand-binding studies had low potencies in functional

studies of the lower urinary tract, e.g. RS 17053 [29].

These studies brought the study of a1A-adrenoceptors into

contact with parallel studies of a1L-adrenoceptors (see

below).

Selective ligands for alpha1-adrenoceptor subtypes

RS 100329 is a selective a1A-adrenoceptor antagonist [30],

and A61603 is an a1A-adrenoceptor selective agonist,

reported to be 200 times more potent than noradrenaline at

causing contractions of rat vas deferens [31].

Risperidone, AH11110A and cyclazosin have been

proposed as selective a1B-adrenoceptor antagonists [32–

34], but these selectivities have been questioned in func-

tional studies [35–37]. Chloroethylclonidine has been used

to identify subtypes of a1-adrenoceptor because of its

reported actions to selectively alkylate a1B-adrenoceptors,

but chloroethylclonidine interacts with all subtypes of

a1-adrenoceptor [38, 39] and with a2-adrenoceptors [38,

40]. Overall there is currently no useful antagonist for the

study of functional a1B-adrenoceptors.

BMY 7378 is a selective a1D-adrenoceptor antagonist

[41], but also shows potency as an a2C-adrenoceptor

antagonist [42] and is an antagonist/partial agonst at

5-HT1A receptors [43]. Despite this, it had proved to be a

very useful selective antagonist in functional studies.

Silodosin (KMD-3213) is reported to be a selective

a1A- and a1L-adrenoceptor antagonist, but is marketed as

an a1A-adrenoceptor antagonist [44].

In the present author’s opinion, the most reliable and

widely studied selective antagonists are RS 100329

(a1A) and BMY 7378 (a1D) when used at appropriate

concentrations and taking cogniscence of the pitfalls

(see Table 1).

Responses mediated by a1A-adrenoceptors

Contractions are reported to be mediated at least partly by

a1A-adrenoceptors in a number of tissues including rat vas

deferens [45–48], rat renal artery (also a1D: [49]), rat tail

artery [50, 51], rat right atrium (positive inotropic actions

Table 1 Summary of a1-adrenoceptor subtype characteristics

Receptor subtype a1A a1B a1D

Functional responses Control of blood pressure;

vasoconstriction;

smooth muscle contraction

Regulatory;

minor contractile role

Control of blood pressure;

vasoconstriction;

smooth muscle contraction

Location (relative to innervation) Junctional and non-junctional Junctional (mainly?)

Functional response (model systems) Rat vas deferens contraction Rat spleen contraction Rat aorta contraction

Ligand-binding assay (other than transfected) Rat submandibular gland Rat spleen (None)

Noradrenaline potency Moderate Moderate High

Selective agonists A61603 / /

Selective antagonists RS 100329 / BMY 7378

Sensitivity to CECa ? ?? ?

Second messengers systems Gq/11, PI turnover Gq/11, PI turnover Gq/11, PI turnover

a CEC affects all subtypes

A 61603, (N-[5-(4,5-dihydro-1H-imidazol-2yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]-methanesulfonamide); BMY 7378, (8-[2-(4-(2-

methoxyphenyl) piperazin-1-yl)ethyl]-8-azaspiro[4,5]decane-7,9-dione); CEC, chloroethylclonidine; Gq/11, G-protein; PI, phosphoinositol
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[52]), rabbit ear artery [53], pig internal anal sphincter (also

a1L: [54]), human vas deferens [55, 56] and human pros-

tate ([57]; also a1B: [58], a1D: [28]; but see below for

a1L). In rat vas deferens, a1A-adrenoceptors mediate two

types of response: phasic, probably due to release of Ca2?

from ryanodine sensitive stores, and tonic via protein

kinase C involving diacylglycerol and influx of Ca2? via

nifedipine-sensitive L-type channels [47] and possibly also

T-type channels. Rat submandibular gland has been

employed as a model of a1A-adrenoceptor ligand-binding

sites (see [59]), but may contain both a1A- and a1B-

adrenoceptors [60]. Positive inotropic actions of phenyl-

ephrine in mouse involve alpha1A-adrenoceptors [61].

Contractions to noradrenaline were minimal in prostate

from the a1A-adrenoceptor KO mice [62].

a1A-Adrenoceptor overexpression increases beta-adre-

noceptor-mediated contractility in the heart and improves

outcome from myocardiac infarction [63].

a1L-Adrenoceptors: a1A-adrenoceptors

One of the earliest functional subclassifications of

a1-adrenoceptors was a1H and a1L, with high and low

affinity for prazosin (see [64]), although prazosin has a

wide range of affinities for a1-adrenoceptors in functional

studies [11, 65]. Muramatsu and coworkers [66] subdivided

a1-adrenoceptors into three subtypes, a1H, a1N and a1L,

based on their affinities especially for prazosin. a1H-

Adrenoceptors had high affinity for prazosin and appeared

to match the a1A, a1B, a1D classification [67], whereas

a1L (the a1N designation was dropped) had low affinity for

prazosin and did not seem to match molecular cloning-

based classifications. Under this classification and based on

the low potency of prazosin, a1L-adrenoceptors were

present in rabbit aorta, mesenteric and carotid arteries [66],

guinea-pig aorta [67], rat anococcygeus mucle [68] and rat

vas deferens (in addition to a1A: [69]; in longitudinal but

not circular muscle: [70]). However, other authors have

found that contractions of rat vas deferens to exogenous

agonists are mediated by a1A-adrenoceptors as demon-

strated by the very significant correlation with a1A-

adrenoceptor ligand binding sites [71]. a1L-Adrenoceptors

have also been reported in rabbit cutaneous resistance

arteries (predominant adrenoceptor is a1B: [72]), rat small

mesenteric artery [73], pig prostatic small arteries [74],

guinea-pig aorta [75], rabbit iris [76], pig internal anal

sphincter [54], rabbit bladder neck [77], in human, rat and

dog urethra, dog and mouse prostate, but not in human

prostate [58, 78, 79]. In contrast, Muramatsu et al. [67]

reported a1L-adrenoceptors in human prostate. a1L-Adre-

noceptor-mediated responses in prostate were abolished in

a1A-adrenoceptor KO mice [62].

a1-Adrenoceptors displayed properties of the a1A-

adrenoceptor in ligand bind studies, but properties of the

a1L-adrenoceptor in functional studies [80, 81] or in intact

tissue segments [82]. In studies of mRNA levels, a1L-

adrenoceptors correlated with tissues expressing predomi-

nantly alpha1A-adrenoceptors [83]. Genetic polymorphism

of a1A-adrenoceptors does not explain a1L-adrenoceptors,

since human a1A-adrenoceptor splice variants [84] and

homo- and heterodimers of human a1A variants [85, 86]

have been found to have similar pharmacological charac-

teristics. It can be concluded that a1L-adrenoceptors are a

functional phenotype of the a1A-adrenoceptor, although as

yet it is not clear under what circumstances a1L-adreno-

ceptor pharmacology is exhibited.

Responses mediated by a1B-adrenoceptors

Studies of a1B-adrenoceptor-mediated function have been

hampered by lack of a truly selective antagonist. Con-

tractions are reported to be mediated at least partly by a1B-

adrenoceptors in a number of tissues including rat spleen

(in addition to a2-adrenoceptors) [45, 46, 48], mouse

spleen [87], rat right atrium (positive inotropic, also a1A:

[52]), rabbit corpus cavernosum [48], rabbit cutaneous

resistance arteries (also a1L: [72]) and human prostate

(also a1A: [58], but see also a1L). Rat spleen is employed

as a model of a1B-adrenoceptor ligand-binding sites (see

[59]). Rat submandibular gland is reported to contain both

a1A and a1B-adrenoceptors, but the secretion of saliva

may mainly involve a1B-adrenoceptors [60].

The function of a1B-adrenoceptors has been clarified by

the use of knockout technology. In aorta from a1B-KO

mice there was a small reduction in the potency of nor-

adrenaline or phenylephrine as compared to WT [88], or no

significant change in potency [89]. Combined a1B/a1D-

KO abolished contractions to noradrenaline and phenyl-

ephrine in aorta, having more effect than a1D-KO alone

[89]. Daly et al. [90] demonstrated a minor contractile role

of a1B-adrenoceptors in mouse arteries, including the aorta

and tail artery, using knockout technology. Although a1B-

KO mice show some differences in vascular responsive-

ness, it has been pointed out that if the a1B-adrenoceptor

has a regulatory or trophic role or is required for cell sur-

face expression of other subtypes (see [86]), its absence

might affect vascular responses involving other

a1-adrenoceptors even though it was not directly involved

in contraction [90]. Hence, results in studies of KO animals

must be considered in the light of information from wild-

type animals. Contractions in rat tail artery develop more

slowly in a1B-adrenoceptor knock-out mice [91], so that

subtle differences can be revealed following receptor

knock-out.
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a1B-Adrenoceptor overexpression decreases beta-adre-

noceptor-mediated contractility in the heart [63] and results

in hypertrophy of the cardiac muscle and hypotension [92],

and predisposes to heart failure [63]. Pressor responses to

phenylephrine in vivo and contractions in the isolated

mesenteric artery were unchanged by a1B-adrenoceptor

overexpression [92]. Overexpression of a1B-adrenoceptors

blunts the positive inotropic actions on phenylephrine in

mouse isolated heart because of a reduction in

a1A-adrenoceptors, suggesting a regulatory rather than

contractile role for this receptor [61].

Responses mediated by a1D-adrenoceptors

Contractions are reported to be mediated at least partly by

a1D-adrenoceptors in a number of tissues including rat

aorta, mesenteric artery, iliac artery and pulmonary artery

[93, 94], rat renal artery (also a1A: [49]), rat carotid artery,

mesenteric artery, aorta [50], rabbit aorta (also possibly

a1A: [53]) and rabbit ventricle (also other subtypes: [95]).

In contrast, a1D-adrenoceptors are reported not to be

involved in caudal, mesenteric or renal arteries [93]. In

studies of mouse carotid artery from WT and alpha1D-KO,

there was evidence for predominantly a1D-adrenoceptor-

mediated contractions with some regulatory role for the

a1B-adrenoceptor [96]. Mouse aortic contractions to nor-

adrenaline and phenylephrine were unaffected by a1B-KO

[89], markedly reduced by a1D-KO [89, 97], but abolished

by combination of a1B/1D-KO [89], suggesting a regula-

tory or co-operative role for a1B-adrenoceptors. However,

overexpression of a1B-adrenoceptors did not affect the

a1D-adrenoceptor response of mouse aorta [98] or mes-

enteric artery [92]. In mouse mesenteric artery, a1B- had

no role, a1D-adrenoceptors had a large role in contractions

[99], and a1D-adrenoceptors can be revealed in femoral

arteries using KO mice [100].

In addition to mediating contractions of vascular smooth

muscle, a1-adrenoceptors may induce endothelium-

dependent relaxations. It is reported that endothelium-

dependent relaxations occur to phenylephrine in the rat

mesenteric vascular bed due to a1D-adrenoceptor stimul-

aton [101], and a1D-adrenoceptor activation has trophic

effects on endothelial cells [102].

Adrenoceptors mediating contractions to nerve stimu-

lation are predominantly a1D in both rat [71] and mouse

vas deferens (evidence from a1D-KO mice, [103]),

although contractions of exogenous noradrenaline are

predominantly a1A-adrenoceptor mediated [45]. In rat

femoral arteries, contractions to exogenous noradrenaline

were mediated by a1A-adrenoceptors, but responses to

nerve released noradrenaline involved a1A- and a1D-

adrenoceptors [100]. In addition to a1A-adrenoceptors,

a1D-adrenoceptors are also expressed to a significant

extent in human prostate [28], although their location has

not been established.

Sympathectomy has been shown to alter the balance of

a1-adrenoceptor subtypes in rat vas deferens. Although

ligand-binding studies of normal rat vas deferens demon-

strate a single population of a1A-adrenoceptors, tissues

from rats sympathectomised with 6-hydroxydopamine

demonstrate both a1A- and a1D-adrenoceptors [71].

Results obtained from sympathectomised rats suggests

that phasic contractions are mainly a1D-adrenoceptor

mediated, whereas tonic contractions are mainly a1A-

adrenoceptor mediated, based on the effects of BMY 7378

and the a1A-adrenoceptor antagonist RS 100329. Like-

wise, it has been reported that a1D-adrenoceptors are

involved in reserpine-induced supersensitivity of rat tail

artery [104]. These studies suggest that a1D-adrenoceptors

are restricted to the junctional region by nerve activity, but

if nerves are lost, these receptors spread from the junctional

region along the smooth muscle. As a corollary, the rat

aorta, which lacks a functional innervation, contains

mainly a1D-adrenoceptors on the smooth muscle. How

widespread are neuronal a1D-adrenoceptors? Clearly,

contractions in a number of tissues are mediated by more

than one subtype of a1-adrenoceptor, and currently avail-

able subtype-selective antagonists (particularly for a1B-

adrenoceptor) are often not selective enough to tease out

clearly which receptors are present, requiring the continued

use of a1-adrenoceptor KO mice.

Inverse agonists

It has become clear in recent years that antagonists may act

as inverse agonists at a1-adrenoceptors. This means that

they not only block the actions of agonists at the receptor,

they also reduce the constitutive baseline activity of the

G-protein coupled receptor in the absence of agonist. Pure

antagonists, or neutral antagonists, do not affect baseline

activity of the G-protein coupled receptor.

A number of studies have investigated the ability of

calcium re-addition to produce contractions in the absence

of an a1-adrenoceptor agonist following depletion of

calcium stores, particularly in rat aorta, and the ability of

a1-adrenoceptor antagonists to inhibit this contraction

[105]. This phenomenon occurred in aorta [105] and iliac

and proximal mesenteric arteries [106], but not tail artery

(see [107]), and was blocked by benoxathian, WB 41001,

prazosin, BMY 73778 and 5-methylurapidil [105, 107].

Furthermore, increased potency of BMY 7378 in aorta

from SHR suggested an increase in this phenomenon in

hypertension (see [107]). It was concluded by these authors

that the phenomenon of contraction to calcium re-addition
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occurred only for a1D-adrenoceptors, suggesting that these

are constitutively active. Studies of human aortic smooth

muscle cells have confirmed that the a1D-adrenoceptor is

coupled to increases in intracellular calcium [108], and

other studies of native receptors suggest the a1D is con-

stitutively active [109].

In studies of constitutively active mutations of a1a and

a1b adrenoceptors, a number of antagonists exhibited

inverse agonism with marked inhibition: 5-methylurapidil,

RS 17053 and tamsulosin at the alpha1a, and 5-methylu-

rapidil at the 1b, but prazosin had only minor actions [110].

Receptor dimers and oligomers

G-protein-coupled receptors can also exist as dimers, or

oligomers, both homologous and heterologous [111, 112].

Co-expression of the a1D- with a1B [86] or beta2-

adrenoceptors [113] is reported to increase the cell surface

expression of a1D-adrenoceptors, suggesting that a1D-

adrenoceptor expression and function may involve het-

erodimerization with these other adrenoceptors. How this

relates to expression of a1D-adrenoceptors in various

smooth muscles is as yet unclear, as a1D-adrenoceptor-

mediated actions can be easily investigated in functional

studies (see above). Studies of other G-protein coupled

receptors have found that the serotonin 5-HT2A and the

glutamate mGlu2 receptor form functional dimers with

distinct signalling [114].

a1-Adrenoceptor-mediated second messenger systems

a1-Adrenoceptor agonists can induce smooth muscle con-

traction and other responses by depolarisation-mediated

calcium entry through L-type or T-type calcium channels,

by directly activating Ca2? channels to cause calcium entry,

by releasing Ca2? from intracellular stores or by sensitising

the contractile apparatus to Ca2? [115] (see Fig. 2).

a1-Adrenoceptors are coupled to a wide variety of sec-

ond messenger systems via G-proteins, predominatly by

pertussis toxin-insensitive G-proteins of the Gq/11 family

to phospholipase C [116, 117]. Activation of all a1-adre-

noceptor subtypes results via phospholipase C in formation

of inositol triphosphate and diacylglycerol. Diacylglycerol

stimulates protein kinase C, and inositol triphosphate acts

on the inositol triphosphate receptor in endoplasmic retic-

ulum to release stored calcium: the net result is increased

entry of extracellular Ca2? and/or release from Ca2? stores

[116, 117] (see Fig. 2). a1-Adrenoceptor activation causes

phospholipase A2 stimulation and arachidonic acid release

in the mammalian COS cell line [118], possibly through

Gi/Go [119], causes arachidonic acid release by

phospholipase D activation in rat tail artery [120] and can

lead to cAMP production [118, 121]. The positive inotropic

actions of alpha1-adrenoceptor agonists in rat heart involve

Gs and stimulation of cAMP production leading to inhi-

bition of potassium efflux [122].

In addition to signalling through heterotrimeric G-pro-

teins, a1-adrenoceptors may mediate responses through

other mechanisms. In rat tail artery, a1-adrenoceptor-

mediated calcium sensitisation is due mainly to the acti-

vation, via the small GTP binding protein RhoA, of Rho

kinase [123], which phosphorylates and so inhibits myosin

light-chain phosphatase (see [124]) (see Fig. 2).

Control of blood pressure

a1-Adrenoceptors in the vascular system have a major role

in the control of blood pressure and in the baroreflex

response to falls in blood pressure. Piascik et al. [125]

reported that the a1A-adrenoceptor subtype played a role in

the tonic maintenance of blood pressure in the conscious

rat, whereas the a1B-adrenoceptor (or perhaps more cor-

rectly non-alpha1A-adrenoceptor) subtype participates in

the response to exogenous agonists. In the pithed rat, both

pressor nerve responses and responses to exogenous nor-

adrenaline are reported to involve both a1A- and a1D-

adrenoceptors [126], and in the pithed mouse the pressor

response to noradrenaline is largely a1A-adrenoceptor

mediated [127].

Studies of knock-out mice have given insights into the

role of the various subtypes of alpha1-adrenoceptor in

Fig. 2 A simplified diagram illustrating the possible ways in which

a1-adrenoceptor activation can result in contraction, by Ca2?

mobilisation or Ca2? sensitisation. alpha1 alpha1-adrenoceptor, SR
sarcoplasmic reticulum, PLC phospholipase C, IP3 inositol triphos-

phate, DAG diacylgylcerol, PKC protein kinase C, MLCK myosin

light chain kinase, MLCP myosin light chain phosphatase, stim
stimulate
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blood pressure control. In knock-out mice lacking the a1A-

adrenoceptor, there was a significant fall in blood pressure,

both in tail cuff meaurement and invasive recording, but

the pressor response to phenylephrine was largely

unchanged [128] (Table 2). In knock-out mice lacking the

a1B-adrenoceptor subtype, there was no effect on basal

blood pressure [88, 89], but the pressor responses to

phenylephrine were significantly blunted [88] or unchan-

ged [89]. However, in a1A/a1B double knockout mice,

there was no significant fall in blood pressure [129]. In

mice lacking the alpha1D-adrenoceptor, or both a1D and

a1B, there was a significant fall in resting blood pressure

both by tail cuff and invasive recording, and a small fall in

the pressor response both to phenylephrine and noradren-

aline [89, 97]. Of note in Table 2 are several facts. Firstly,

tail cuff SBP seems a poor guide to invasive MAP. Sec-

ondly, MAP in the WT varied markedly among studies

(varying between 116.5 and 138 mmHg). This can be

explained partly by differing genetic backgrounds, but

perhaps also by surgical preparation. Although all studies

were in conscious animals, the animals were allowed to

recover for 3–24 h, so that animals would not have fully

recovered from the surgical trauma.

It was found that the pressor responses to the a-adre-

noceptor agonists noradrenaline and/or phenylephrine

were almost unchanged in a1A-KO mice, but reduced in

both a1D- and a1B-KO mice. This is perhaps surprising as

one might have expected, from the wealth of published

studies, that the a1A and a1D-adrenoceptors would be

most important for control of blood pressure. However,

there may have been compensatory mechanisms for the

loss of a1A-adrenoceptors in particular, and the

a1B-adrenoceptor may have a modulatory rather than

contractile role (see above). Hence, both a1A- and

a1D-adrenoceptors are involved in acute blood pressure

control, which would agree with the findings with antag-

onist drugs.

Temperature control

Another important role of vascular a1-adrenoceptors is

temperature control, as vasoconstriction of superficial

blood vessels is an important mechanism to conserve heat.

Methylenedioxymethamphetamine (MDMA) is a widely

used recreational drug of abuse, and toxic effects include a

life-threatening hyperthermia that can occur particularly

when the drug is used in a ‘‘rave’’ environment. In animal

studies, MDMA disrupts thermoregulation, often causing

hypothermia at low ambient temperatures and hyperther-

mia at high ambient temperatures [130, 131]. In the

presence of a1-adrenoceptor antagonists, the monophasic

hyperthermic response produced by MDMA in mouse

became a biphasic response: hypothermia followed by

hyperthermia, and this probably involves both a1A- and

a1D-adrenoceptors [132]. b3-Adrenoceptors have also

been implicated in thermogenesis [133], but b3-adreno-

ceptor ligands have been associated with a1-adrenoceptor

antagonism, and some of the actions may involve alpha1-

adrenoceptors [59, 134].

Table 2 Blood pressure responses in WT and a1-adrenoceptor subtype KO mice

Parameter WT a1A-KO a1B-KO a1D-KO Notes Ref.

Conscious tail cuff

SBP (mmHg)

114 104* / / [128]

99 / 99 93* 1B/1D double KO: 92* [89]

108.7 / / 99.1* 1A/1B double KO: 112 [97]

111 / / / [129]

Conscious invasive

MAP (mmHg)

138 121* / / 24 h post surgery [128]

119.3 / 118.5 / 3 h post surgery [88]

118 / 111 109* 1B/1D double KO: 103*;

24 h post surgery

[89]

116.5 / / 106.9* 24 h post surgery [97]

Phe pressor No change [128] Decrease [88] Small decrease [97]

No change [89] No change [89] 1B/1D double KO: decrease

[89]

NA pressor Small decrease [88] Small decrease [97]

Small decrease [89] Decrease [89] 1B/1D double KO: decrease

[89]

Results taken from [88, 89, 97, 128, 129]

SBP systolic blood pressure (recorded by tail cuff), HR heart rate, MAP mean arterial pressure (recorded by invasive cannula), phe pressor
pressor response to phenylephrine relative to WT, NA pressor pressor response to noradrenaline relative to WT

*Significant difference from respective WT
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Peripheral effects of MDMA at a1-adrenoceptors can

explain a component of the hyperthermia: cutaneous

vasoconstriction by MDMA prevents an early hypothermic

response to the drug. At low ambient temperatures, cuta-

neous vasoconstriction is already marked so that MDMA

produces little further vasoconstriction and the, presumed

central, hypothermic actions of MDMA may predominate.

At high ambient temperatures cutaneous dilatation has

occurred, allowing a marked vasoconstrictor component to

the actions of MDMA, and hyperthermia predominates.

Hence, peripheral a1-adrenoceptor-mediated vasoconstric-

tor actions of MDMA modulate central hypo- and

hyperthermic components.

Neuronal a1-adrenoceptors

a1A-Adrenoceptors [135] and a1B-adrenoceptors [136] are

involved in a number of actions in neurones and glial cells

in the CNS. a1D-Adrenoceptors are also present in the

CNS as demonstrated by a significant fall in alpha1-

binding in a1D-KO mice [97]. a1B-Adrenoceptor over-

expression resulted in apoptotic neurodegeneration with a

corresponding multiple system atrophy including a

Parkinson-like syndrome and grand mal seizures [137].

a1-Adrenoceptor-mediated inhibition

Although the concept of prejunctional inhibition mediated

by a2-adrenoceptors is well established (see [2]), some

studies support the contention that inhibitory prejunctional

a1-adrenoceptors exist in pithed rat, rat ventricle, rat vas

deferens, rat kidney, dog heart, rat atria, rat tail artery,

guinea-pig atria and on the cholinergic nerves of rat gastric

fundus (for references, see [11]). Prejunctional inhibition in

the CNS involving a1-adrenoceptors is also reported in, for

instance, the paraventricular nucleus [138]. Other studies

suggest transsynaptic inhibition by prostaglandins or pur-

ines produced postjunctionally by a1-adrenoceptor

stimulation [139, 140], and the possibility of a2-adreno-

ceptor-mediated actions of some a1-adrenoceptor

antagonists must be considered.

a1-Adrenoceptor-mediated facilitation

a1-Adrenoceptor agonists have been reported to facilitate

release of acetylcholine in rat heart [141] and cat [142] and

rat bladder [143, 144]. These a1-adrenoceptors may be on

the soma of bladder parasympathetic neurones and mediate

a slow postsynaptic depolarisation [143]. In the CNS,

facilitation of rat spinal motoneuron activity [145] and of

vasopressin release [146] are reported to be mediated by

a1-adrenoceptors. a1-Adrenoceptor activation stimulates

inhibitory GABAergic neurotransmission in rat spinal cord

[147], rat cerebellum [148], mouse accessory olfactory

bulb [149] and mouse hypothalamus [150]. The a1-adre-

noceptor-mediated facilitation may involve protein kinase

C and increases in intracellular calcium [146, 148, 151].

Concluding remarks

Pharmacological and receptor knockout techniques have

greatly increased our understanding of a1-adrenoceptors in

terms of location and function of the three subtypes. Areas

of particular interest in the next few years will be investi-

gation of the role of a1-adrenoceptor subtypes in the

central nervous system, development of ‘missing’ subtype

selective agonists and antagonists, further development of

drugs for benign prostatic hypertrophy and elucidation of

the role of the a1B-adrenoceptor.
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