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Abstract In the three domains of life, the Sec, YidC/

Oxa1, and Tat translocases play important roles in protein

translocation across membranes and membrane protein

insertion. While extensive studies have been performed on

the endoplasmic reticular and Escherichia coli systems, far

fewer studies have been done on archaea, other Gram-

negative bacteria, and Gram-positive bacteria. Interest-

ingly, work carried out to date has shown that there are

differences in the protein transport systems in terms of the

number of translocase components and, in some cases, the

translocation mechanisms and energy sources that drive

translocation. In this review, we will describe the different

systems employed to translocate and insert proteins across

or into the cytoplasmic membrane of archaea and bacteria.

Keywords Archaea � Gram-positive � SecYEG �
Tat � YidC

Introduction

All living cells are compartmentalized, irrespective of

whether they belong to the eukaryotic, prokaryotic, or

archaeal domains of life. The most complex cells are found

in eukaryotes, and these contain a number of membrane-

bound organelles, such as the endoplasmic reticulum (ER),

nucleus, mitochondrion, peroxisome, golgi, nucleus, and

lysosome. In total, there are over ten aqueous compart-

ments and ten membrane subcellular locations in

eukaryotic cells, each containing a unique set of proteins.

Cells of bacteria and archaea are relatively simpler, with

fewer aqueous compartments and intracellular membranes.

Gram-negative bacteria contain at least four subcellular

locations (cytoplasm, inner membrane, periplasm, and

outer membrane), while Gram-positive bacteria and ar-

chaea each contain at least three subcellular locations

(cytoplasm, membrane, and cell wall).

Proteins are sorted to their correct intracellular desti-

nations or the extracellular space from their site of

synthesis, which is typically in the cytoplasm. This process

can be very complex, as in the case of a chloroplast protein

localized to the thylakoid lumen, which involves protein

import into the chloroplast across the outer and inner

membranes, followed by translocation across the internal

thylakoid membrane.

Approximately 25% of all proteins in a cell must

cross at least one membrane to be properly localized, and

roughly 20–25% of all proteins are membrane proteins

that must insert into the lipid bilayer. Archaea, bacteria,

and eukaryotes possess specialized translocases and in-

sertases that catalyze the translocation of proteins into

the membrane. The Sec machinery operates to insert

proteins into the ER of eukaryotes and into the cyto-

plasmic membrane (plasma membrane) of bacteria and

archaea, but it cannot translocate folded substrates across

the membrane. In contrast, the Tat (twin-arginine trans-

location) system functions to translocate folded proteins

across the cytoplasmic membrane in bacteria and archaea
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as well as across the chloroplast thylakoid membrane in

eukaryotes. The YidC/Oxa1 insertase inserts proteins into

the membrane in mitochondria, chloroplasts, bacteria

and, possibly, certain archaea. Whereas the Sec system

can function both in the insertion of proteins into the

membrane and the translocation of proteins across

membranes, the YidC system is dedicated primarily to

inserting proteins into the membrane, while the Tat

system functions to translocate proteins both into and

across membranes.

The focus of this review is to discuss our current state of

knowledge regarding how proteins are transported in bac-

teria and archaea. Here, we review the mechanisms by

which proteins are selected for protein translocation and

targeted to the translocase in the membrane. We also dis-

cuss the insertases used to insert membrane proteins and

the different translocation complexes used to transport

folded and unfolded substrates while maintaining the

membrane permeability barrier. The transport of proteins in

the ER and Escherichia coli systems are only briefly dis-

cussed (see [1–5] for recent reviews of these systems).

Membrane proteins

Integral membrane proteins come in two basic structures:

helix bundle and b-barrel configurations. The a-helical

integral membrane proteins can span the membrane with

different numbers of transmembrane helices and in differ-

ent orientations relative to the membrane. Transmembrane

segments can vary in length, but they are typically 20–30

residues long, and the hydrophilic loops connecting the

transmembrane regions are usually short [6]. The orienta-

tion of integral membrane proteins tends to follow the

‘‘positive inside rule’’ with lysine and arginine residues

enriched in cytoplasmic rather than extracytoplasmic

regions. This ‘‘positive inside rule’’ is obeyed by bacterial

inner membrane proteins, eukaryotic plasma membrane

proteins, thylakoid membrane proteins, and mitochondrial

inner membrane proteins [7–9]. Positively charged residues

flanking the transmembrane helices are determinants of

membrane protein topology, i.e., the topology can be

manipulated by changing the location of the positively

charged residues bordering the transmembrane segments

(for review, see Dalbey [10]). The other basic structure of

integral membrane proteins is encountered in b-barrel

proteins. These proteins contain b-sheets arranged in such a

way that two or more peptide backbones are placed side by

side and stabilized by hydrogen bonding. b-Barrel proteins

are found mostly in the bacterial outer membrane and the

mitochondrial outer membrane. The reader is referred to

Ruiz et al. [11] for a review of the assembly of b-barrel

proteins into the outer membrane of bacteria.

Topology prediction programs

The experimental determination of the three-dimensional

(3D) structure of membrane proteins is very difficult, pri-

marily because procedures for producing large quantities of

properly folded membrane proteins and for subsequent

crystallization are often not successful. Consequently, the

development of computational methods for predicting the

topology of membrane proteins has been of great impor-

tance in attempts to obtain a better understanding of the

function(s) of membrane proteins.

The first prediction programs were based on hydro-

phobicity plots, as the membrane spanning a-helices

generally consists of stretches of hydrophobic amino acids

[12–15]. This strategy was improved by the inclusion of the

‘‘positive inside rule’’ in the predictions, which enables the

prediction of the in–out topology [16]. Based on these

residue-based principles, several prediction programs have

been developed (e.g., Toppred [12, 16]).

The second generation of prediction programs considers

the protein sequence as a whole, instead of as single resi-

dues. Several successful prediction programs (e.g.,

TMHMM, HMMTOP) are based on hidden Markov

Models (HMM) [17–19], but there are also many other

successful model-based approaches (e.g., MEMSAT,

ToppredII, TMAP, PHDtm) [19–21]. All of these programs

calculate the most probable topology of a protein based on

the odds of each amino acid of the protein being positioned

at a certain location (intra- or extracytoplasmic or in the

membrane). In general, these model-based prediction pro-

grams score better than the residue-based prediction

programs [22]. Two new prediction programs have recently

been introduced that are not based on the statistical chances

that residues are localized at a certain site but, rather, on

the energetics of membrane insertion and the ‘‘positive

inside rule’’ (SCAMPI, TopPredDG) [23].

Further improvements of the model-based predictions

have been achieved through the use of artificial neural

networks (MEMSAT 3, PHDtm) and by the inclusion of

HMM models for signal peptide predictions to discriminate

signal peptides from transmembrane helices (Phobius,

MEMSAT 3) [21, 24–27]. Additionally, increasingly more

programs have been developed to include evolutionary

information; for example, predictions based on the recog-

nition of evolutionary conserved profiles or on multiple-

sequence alignments of homologs (e.g., Polyphobius,

PRODIV-TMHMM, PHDtm) [24, 28].

All of the above-mentioned topology prediction pro-

grams are based on the assumption that a membrane

protein consists of intra- and extracellular loops with

alternating a-helices and that these a-helices have to

completely span the membrane in an orientation that is

largely perpendicular to the membrane surface. However,
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in reality, protein structure is often more complex than is

assumed by the prediction program and includes short

membrane spans and long tilted membrane spans, helices

that only partially insert into the membrane, and kinked

helices. The recently developed program OCTOPUS is

currently the only available online membrane protein

topology prediction program that can predict some of

these more complex features of membrane-inserted helices

[29, 30].

Signal recognition particle targeting pathway

The first step in the biogenesis of membrane proteins is

the targeting of proteins to the membrane. In this step, the

signal recognition particle (SRP) system plays a primary

role (Fig. 1). This SRP targeting system was initially

discovered through studies on the ER system. The SRP is

composed of six protein subunits and a 7S RNA (Table 1)

[31]. It binds to the ribosome-bound nascent chain when

the signal peptide emerges from the ribosome. The

binding of SRP arrests protein synthesis [32], thereby

enabling the nascent chain/SRP complex to be targeted to

the membrane before the nascent chain grows too large

and achieves a folded conformation, thus rendering it

incapable of being translocated across the membrane.

Targeting of the nascent chain to the membrane is

achieved by recognition of the SRP-nascent chain-ribo-

some complex by the membrane-associated SRP receptor.

The ER SRP receptor (SR) is a dimer composed of a

membrane-embedded subunit (SRb) and a peripherally

membrane-associated subunit (SRa) [33]. Both the SR and

SRP have GTPase activity [31]. The interaction of SRP

with its receptor occurs only when both have bound

guanosine-5’-triphosphate (GTP). Binding of the ribosome

to the Sec61 channel for protein translocation across the

membrane causes the release of SRP from the ribosome-

nascent chain complex and stimulates the hydrolysis of

GTP which, in turn, promotes the dissociation of SRP

from the SR [34, 35]. It has recently been shown that the

SRP RNA can stimulate the interaction of SRP with the

SR when the SRP is bound to a signal sequence [36]. In

this fashion, RNA stimulates the GTPase activities of the

SRP and SR complex.

In E. coli, the SRP targeting system is critical for the

membrane insertion of many—but not all—inner mem-

brane proteins [37]. The system is much simpler in E. coli

than in eukaryotes. The E. coli SRP is composed of Ffh (54

homologs) and a 4.5S RNA; the E. coli SRP receptor is

FtsY, which is homologous to the SRP receptor (SRa)

(Fig. 1; Table 1) (for review, see [38]). In E. coli, Ffh, 4.5S

RNA, and FtsY are all essential for cellular growth [2, 39].

Many secretory proteins, on the other hand, are targeted to

the membrane by the SecB pathway. These proteins bind to

Fig. 1 Signal recognition

particle (SRP) targeting

pathway. a SRP binds to the

ribosome-nascent chain

complex when the signal

peptide emerges from the

ribosome and targets the

complex to the membrane by

binding to its receptor on the

membrane. The endoplasmic

reticulum (ER) SRP receptor is

a dimer with a peripheral

membrane protein subunit (SRa)

and an integral membrane

protein subunit (SRb). b In

bacteria and archaea, the SRP

receptor FtsY contains only one

protein subunit, which is

homologous to subunit SRa in

the ER
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SecB in the cytoplasm and are then targeted to SecA,

localized at the inner membrane surface.

SRP membrane targeting in Gram-positive bacteria

Not surprisingly, the SRP system which targets proteins for

secretion in Bacillus subtilis and other Gram-positive

bacteria is homologous to the system in E. coli (Fig. 1b).

However, E. coli proteins can be targeted to the Sec

translocase either via the SRP pathway or by SecB tar-

geting. This latter pathway is absent from all Gram-positive

bacteria. Proteomic studies have indicated that many

secretory proteins in B. subtilis are likely to be targeted to

the Sec translocase by the SRP pathway [40]. Interestingly,

the extracellular accumulation of individual proteins was

found to be affected to different extents by depletion of Ffh

or FtsY, and the observed SRP dependence of certain

secretory proteins did not seem to correlate with signal

peptide length or hydrophobicity. This is a remarkable

finding because the SRP of B. subtilis is known to have a

clear preference for the most hydrophobic signals [41].

These findings suggest that other, yet unidentified, deter-

minants in secretory proteins are probably also important in

terms of SRP dependence. The high-level production of

secretory proteins also resulted in elevated cellular Ffh and

FtsY levels, which is due to post-transcriptional regulation

[40].

The SRP in B. subtilis consists of Ffh, the small cyto-

plasmic (sc)RNA, and the non-specific DNA-binding

protein HBsu, and it can bind to the SRP receptor FtsY

(Table 1) [42–45]. Ffh and FtsY are paralogs sharing a

homologous GTPase domain. Its scRNA of 271 nucleotides

contains the three conserved domains (I, II, and IV) of the

eukaryotic 7S RNA [46]. The ffh, hbs, ftsY, and scr genes

are essential in B. subtilis [47, 48] as well as in other Gram-

positives, such as Staphylococcus aureus and Streptococ-

cus pneumoniae [49, 50]. However, it should be noted that

Ffh and FtsY can be depleted to sub-detection levels

without any major effects on growth and cell viability

when B. subtilis cells are grown in broth [40]. A third

paralog of Ffh and FtsY, named FlhF, is present in B.

subtilis and a number of other Gram-positive and Gram-

negative bacteria (but not in E. coli) [51]. FlhF has been

implicated in type III secretion system (T3SS)-like flagellar

protein targeting systems. Indeed, the mutation of flhF in

Bacillus cereus results in strong motility and secretion

phenotypes since FlhF is involved in assembly of the fla-

gellum, cell motility, and regulation of protein secretion

[52]. The structure of B. subtilis FlhF has been determined

[53], and unlike the situation in B. cereus, B. subtilis FlhF

does not seem to be involved in protein secretion and is

even dispensable for cell motility [54].

Strikingly, Streptococcus mutans can survive without

ffh, ftsY, and scr, although the mutant strains are acid- and

salt-sensitive, which is probably due to inefficient inte-

gration of the F1F0 ATPase into the membrane [55–57].

The levels of several important chaperones and proteases

are increased in these mutants, whereas protein synthesis

seems to be down-regulated, which suggests that the S.

mutans cells can somehow adapt to the absence of the SRP

pathway [58].

The SRP pathway in archaea

In archaea, the SRP targeting pathway represents an

intermediate between the SRP system of bacteria and

Eukarya. Just like the SRP pathway, which is essential for

the insertion of membrane proteins in E. coli and B. sub-

tilis, archaeal SRP has been proven to be essential by

showing that the ffh gene is indispensable for cell viability

[59].

The archaeal SRP is composed of SRP54/Ffh, SRP19

homologs, and a 7S-like SRP RNA, which works as a

framework for the assembly of SRP protein components

(Table 1) [60]. Despite the overall lack of sequence con-

servation, archaeal SRP RNA has a very similar secondary

structure to its counterpart in Eukarya, except for the

presence of an additional helix (helix 1) formed by pairing

Table 1 The translocation and targeting components in the ER, Archaeal and Bacterial plasma membrane

Translocation and targeting components Endoplasmic reticulum Archaea Escherichia coli Bacillus subtilis

SRP RNA 7S 7S 4.5S scRNA

SRP protein subunits SRP54, SRP19, SRP9/14, SRP 68/72 Ffh, SRP19 Ffh Ffh, HBsu

SR a, b FtsY FtsY FtsY

Sec translocase Sec61abc SecYEb SecYEG SecYEG

Associated subunits Sec62/63, Sec71/72, TRAM SecDF SecDFYajC SecDFYajC

Motor ATPase Bip / SecA SecA

YidC system / YidC YidC SpoIIIJ, YqjG

Tat translocase / TatA, TatC TatA, TatB, TatE, TatC TatAdCd, TatAyCy

SRP, Signal recognition particle; SR, Endoplasmic reticulum (ER) SRP receptor; scRNA, small cytoplasmic RNA
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the 50 end and 30 end of the RNA and the absence of helix 6

that is found in the eukaryotic molecule [61]. The structure

of the SRP complex in Methanococcus jannaschii is con-

sistent with the view that the association of SRP RNA with

the SPR54 NG domain plays a prime role in regulating the

ordered sequence of events in protein targeting [62].

SRP54/Ffh performs the main function in the SRP

pathway since it is responsible for the binding of the nas-

cent chain and SPR receptor [63, 64]. Unlike the eukaryotic

SRP54, some archaeal SRP54/Ffh proteins are missing the

conserved threonine at the GTP binding site, which sug-

gests a mechanism of GTP hydrolysis that differs from the

eukaryotic SRP54 [60]. The targeting of ribosome-nascent

chain complexes to the membrane is mediated by the

interaction between the NG domain of SRP54 and SR. It

has been shown that these two GTPases interact tightly

through a ‘‘twinning’’ of their GTP substrates [65, 66].

SRP19 is found in all archaea, which suggests that

SRP19 may play a role in the archaeal SRP system. In

Eukarya, SRP19 is involved in SRP assembly and facili-

tates the binding of SRP54 to the SRP RNA by interacting

with SRP RNA helix 8 [67–70]. Nevertheless, it has been

shown that, unlike in Eukarya, archaeal SRP19 is not

strictly required for the binding of archaeal SRP RNA to

SRP54/Ffh [67, 71, 72]. The SRP19-independent binding

of archaeal SRP RNA and SRP54/Ffh seems to reflect the

stability of the SRP complex, which may be required for

growth at extreme temperatures or pH values or in highly

saline environments [68]. The structure of the SRP com-

plex from Pyrococcus furiosus [73] revealed that the

SRP54 signal sequence-binding domain (M domain) is

linked to the GTPase domain (NG domain) by a flexible a-

helix, which likely helps its scanning for newly synthesized

signal sequences.

Archaea do not have the eukaryotic SRP components

SRP9/14, which are responsible for the translational pause

in Eukarya, or the components SRP68/72, which are

involved in the docking of nascent chain-SRP complexes to

the ER membrane in Eukarya [74–76]. It is thus possible

that the tRNA-like structure of the archaeal SRP RNA Alu

domain could directly contact the ribosome without SRP9/

14 [77].

All archaea contain the SRP receptor FtsY (Table 1).

This SRP receptor has a C-terminal nucleotide-binding

domain that is highly conserved in the SRa of Eukarya

and the bacterial FtsY [78]. In contrast, the N-terminal

region of the archaeal FtsY has no sequence similarity to

its eukaryotic and bacterial counterparts. However, most

archaeal FtsY proteins contain clusters of positively

charged residues. For the E. coli FtsY, it has been sug-

gested that these charged residues facilitate the binding to

negatively charged head groups of the phospholipids at the

surface of the membrane [79–81]. Between these charged

motifs in the archaeal FtsY are hydrophobic residues that

are implicated in interactions with the hydrophobic core of

the lipid bilayer. Interestingly, the structure of FtsY in its

free and GDP�magnesium-bound form differs from the

structure of bacterial FtsY as it contains a long N-terminal

helix [82, 83].

Functionally, the FtsY in archaea is more similar to its

bacterial counterparts than to the eukaryotic SRP. As in

bacteria [2], the archaeal FtsY can be detected both in a

soluble cytoplasmic state and a membrane-bound state [84,

85]. Additionally, the archaeal FtsY also works alone as an

SRP receptor without any inner membrane partner [86].

The Sec pathway

The main machinery for protein export and membrane

protein insertion in E. coli is the Sec translocase-mediated

pathway [1, 87]. The Sec translocase is comprised of the

SecYEG translocation channel and the accessory compo-

nents SecA, SecDFYajC, and YidC (Fig. 2; Table 1). SecA

is the motor ATPase and is essential for driving the export

of proteins across the inner membrane in E. coli [88] and

for translocating hydrophilic domains of certain inner

membrane proteins [89]. Exported proteins are translocated

through the center of the Sec channel as a loop, with the N-

and C-terminal ends located at the cytoplasmic surface of

the membrane. SecA is believed to promote protein export

by driving the substrate into the SecYEG channel through a

power-stroke or Brownian ratchet mode-of-action [1]. The

protein chain is moved across the channel in steps of 20–25

residues as SecA undergoes a series of conformational

changes through cycles of ATP binding and hydrolysis at

the membrane surface [90–92]. SecDF improves protein

export and membrane protein insertion efficiency in vivo

although these components are not absolutely essential [93,

94]. YidC is required for membrane protein insertion of

certain Sec-dependent substrates and for membrane inser-

tion of Sec-independent substrates (for review, see Kiefer

and Kuhn [95]). YidC is particularly important for the

biogenesis of inner membrane respiratory chain complexes

[96, 97], but it typically does not play a critical role in the

export of the protein across the inner membrane [98].

The translocation components in the ER are the Sec

61abc translocation channel, Sec62/Sec63/Sec71/Sec72

components, translocation-associated membrane protein

(TRAM), in some cases, Bip (Fig. 2b; Table 1) [1, 87].

Sec61a and Sec61c are homologous to the bacterial SecY

and SecE, respectively [99]. Sec61abc and, in some cases,

TRAM facilitate co-translational protein translocation. It is

believed that an SRP-targeted protein is pushed through the

channel in an N- and C-terminal direction as the protein

is being synthesized one amino acid at a time. For
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post-translational protein export, the Secabc channel

mediates the insertion of the exported protein across the

membrane, but this process also requires the Sec62/Sec71/

Sec72 components for protein targeting to the translocation

site [100]. The ATPase Bip in the ER lumen drives the

polypeptide through the Secabc channel [101]. Thus,

unlike the SecA ATPase in E. coli, which functions from

the cytoplasmic side of the membrane, Bip acts from the

extracytoplasmic side of the membrane.

As in E. coli, the most important machinery for the

secretion of proteins and insertion of membrane proteins in

Gram-positive bacteria is the Sec machinery. Similar to E.

coli and the ER system, proteins are targeted to the Sec-

translocase by a signal peptide, consisting of a positively

charged N-terminus (N-region), a hydrophobic core (H-

region), and a cleavage site (C-region). In general, signal

peptides in Gram-positive bacteria are longer and more

hydrophobic than E. coli signal peptides [102]. The

increased hydrophobicity of B. subtilis signal peptides has

been shown to be critical for efficient targeting to the Sec

translocase in B. subtilis, whereas in E. coli this high

hydrophobicity is not required [41].

Again identical to the situation in E. coli, SecA, SecY,

and SecE are essential for the survival of B. subtilis

(Fig. 2c; Table 1). SecG is dispensable, although its

absence results in cold sensitivity and secretion defects [47,

103]. In accordance with the fact that SecG is not essential

for growth, the sequence of SecG is much less conserved

among Gram-positive and Gram-negative bacteria, and

SecG is even totally absent from several Gram-positive

species. SecE is substantially smaller in Gram-positive

bacteria than in Gram-negative ones, with the SecE of the

former consisting of only one membrane span, which

corresponds to the C-terminal membrane span of the E. coli

SecE. In E. coli, the two N-terminal membrane spans of

SecE are important in preventing the degradation of SecE

by FtsH [104], but they are dispensable for protein trans-

location. The major components of the Sec-translocases in

E. coli and B. subtilis are quite similar, and hybrid tran-

slocases (combining SecY, SecE, SecG, and SecA from

both bacteria) can form stable complexes; however, these

hybrid complexes are very inefficient in terms of substrate

recognition and translocation in E. coli [105].

Differences found in the Gram-positive Sec pathway

Some Gram-positive bacteria and mycobacteria (mostly

pathogenic species) contain two secA genes. Interestingly,

usually only the most conserved secA gene is essential for

transport of the vast majority of exported proteins and cell

survival, while the other copy is involved in the secretion of

a specific subset of proteins (for reviews, see Rigel and

Braunstein [106] and Sibbald et al. [107]). One exception is

Corynebacterium glutamicum, for which both copies of

secA are essential for survival [108]. A second secY gene

has also been found in several Gram-positive bacteria with

two secA genes [106, 109, 110]. In a number of these spe-

cies, such as Streptococcus gordonii, the secY2 gene is

located in an operon containing other genes that are required

for the translocation of the SecA2/SecY2-dependent

Fig. 2 The translocation machineries of the Sec pathway. a In

Escherichia coli, the translocation apparatus comprises SecYEG,

SecDF, SecA, and YidC. b In the ER, the Sec translocase comprises the

Sec61abc translocation channel, Sec62/Sec63 complex, containing

Sec62, Sec63, Sec71, and Sec72 components, and chaperone Bip. c In

Bacillus subtilis, the Sec translocase components are SecYEG, SecDF

and SecA. d In archaea, the Sec translocase components are SecYEb
and SecDF
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proteins [109–111]. In S. gordonii, two of these genes

encode SecE and SecG paralogs, respectively [112]. This

finding suggests that the other genes may also encode pro-

teins that are part of a novel accessory Sec translocase that

functions in parallel or in concert with the canonical Sec

translocase.

Proteins secreted by SecA2 or SecA2/SecY2 are often

involved in virulence [109, 113]. Some of these proteins

are totally dependent on secretion by the accessory Sec

translocase [109, 113, 114], whereas other proteins can be

secreted either by the accessory or the canonical Sec

pathway [113]. Although it seems that glycosylation in the

cytoplasm can prevent proteins from being translocated by

the canonical Sec translocase, studies on the GspB glyco-

protein from S. gordonii have shown that such proteins can

be translocated by the accessory Sec translocases [112,

115]. Just how proteins are specifically targeted to the

accessory secretion pathway is currently unknown, but Sec

pathway specificity is at least in part determined by subtle

differences in the SecA and SecA2 subunits, as unique

contacts between SecA2 and the other components of the

accessory Sec system seem to preclude cross-functioning

with the canonical Sec system [116]. Some of the proteins

that depend on this pathway have a conventional signal

peptide, whereas other proteins either have a signal peptide

with an atypically long N-region, or they seem to lack a

signal sequence altogether [106, 112, 114, 115, 117, 118].

Homologs of the SecDFYajC complex are also present in

B. subtilis and other Gram-positive bacteria. Interestingly, in

B. subtilis, SecD and SecF are present as a ‘Siamese twin’,

i.e., as a fusion of these two homologous proteins, called

SecDF [119]. This Siamese twin unit seems to be ubiquitous

among the Firmicutes, but it can also be found in several

other Gram-positive and Gram-negative species. Knockout

of secDF in B. subtilis results in cold sensitivity and reduces

the capacity to secrete overproduced proteins [119].

Therefore, it is believed that SecDF increases the efficiency

of protein translocation by an as yet unknown mechanism.

While most studies on the Sec pathway in Gram-positive

bacteria have dealt with exported proteins, very few studies

have addressed the requirement of the Sec pathway for

membrane protein insertion [120]. Notably, however, good

progress has been made in the analysis of the membrane

proteome of Gram-positive bacteria, such as B. subtilis, and

in this context Bunai and co-workers were first to report the

SecA requirement of 11 integral membrane proteins with

one or two transmembrane segments on the basis of pro-

teomic studies [121]. As new and improved tools for the

analysis of membrane proteins by proteomics are becoming

available, it can be anticipated that they will soon be applied

to the dissection of the roles of Sec pathway components

in membrane protein biogenesis in organisms such as

B. subtilis and S. aureus [122–125].

Localization and structure of SecYEG complexes

The subcellular localization of SecA and SecY in B. sub-

tilis was investigated using green fluorescent protein (GFP)

fusions and also by immunofluorescence for SecY. The

results of these studies indicated that the membrane-bound

Sec translocase (as in E. coli) may be present in a spiral-

like structure along the cell [126]. Interestingly, in the

coccus-shaped Gram-positive bacterium Streptococcus

pyogenes, the Sec translocase was found to be located at

only one specific site, the Exportal, which has been defined

as a microdomain specialized in secretion [127, 128]. The

mechanisms by which these distributions are accomplished

and the purpose of these arrangements are still poorly

understood, although it has been proposed that the con-

centrated secretion at specific sites might enable bacteria to

coordinate protein translocation and subsequent folding

[128]. Consistent with this idea, the HtrA protease, which

is involved in the maturation of a secreted cysteine protease

(SpeB), was localized exclusively to the ExPortal of S.

pyogenes [128]. However, it remains to be shown whether

extracytoplasmic folding catalysts that assist in the folding

of Sec-dependently translocated proteins are also localized

at the Exportal.

To understand how SecA functions in protein export,

the structure of this protein was determined by X-ray

crystallography. More than five structures of SecA have

been identified from a number of Gram-positive (B. sub-

tilus and Mycobacterium tuberculosis) and Gram-negative

bacteria (Thermus thermophilus, E. coli, and Thermotoga

maritima) [129–134]. Most of the SecA structures are in

the dimeric state, but there are also several structures of

monomeric SecA. Briefly, SecA is composed of five

functional regions (for review, see Papanikou et al. [135]):

two nucleotide binding domains (NBD1 and NBD2), a pre-

protein crosslinking domain (PPXD), a a-helical scaffold

domain (HSD), and a C-terminal translocation domain

(HWD and IRA1). The SecA structure can take two dif-

ferent conformations based on the distance between PPXD

and HWD: one in the closed state (Fig. 3a) and one in the

open state (Fig. 3b). While Osborne et al. [131] have

proposed that the groove between the PPXD and HSD is

the substrate binding region, Cooper et al. [136] have

proposed—on the basis of electron paramagnetic reso-

nance (EPR) studies—that this binding site is located on

the opposite side of PPXD. However, it should be noted

that these structures were determined in the absence of the

Sec translocation channel. In 2008, the structure of the

SecA/SecYEG complex from T. maritima, a Gram-nega-

tive bacterium, was solved at a resolution of 4.5 Å [134].

The structure of the SecA/SecYEG complex showed one

SecA bound to one copy of SecYEG. This structure

revealed a SecA clamp region formed by PPXD, NBD2,
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and part of the HSD that may be involved in capturing the

substrate (Fig. 3c). When SecA binds to the SecYEG

complex, SecYEG undergoes a conformational change that

primes the channel for translocation (Fig. 3d). The SecA

binding also causes the lateral gate of the SecYEG channel

to open up towards the center of the lipid bilayer and the

plug to move away from the center of the channel toward

the periplasmic side of the membrane (Fig. 3d). Interest-

ingly, there is a two-helix finger in SecA near the entrance

of the SecYEG channel (Fig. 3d) which the authors sug-

gest moves up and down in each ATP hydrolysis cycle to

drive the exported protein through the SecYEG complex.

Subsequent studies with SecA, SecYEG, and a substrate

trapped in the channel using disulfide crosslinking were

able to identify which region of the two-helix finger of

SecA can contact the peptide substrate during protein

translocation [137].

The structure of the Sec channel (SecYE complex) from

the Gram-negative bacterium T. thermophilus was recently

solved at a resolution of 3.2 Å with bound Fab fragments

of the monoclonal antibody [138]. Tsukazaki et al. [138]

found that the transmembrane helices TM6, TM8, and

TM9 of the SecYE complex from T. thermophilus were

shifted at about 10 Å relative to the Methanococcus jann-

aschii SecYEb complex that lacks the Fab fragment and

SecA. They proposed that the structure of the SecYE

channel is in the pre-open state that may mimic the con-

formation when SecA is bound; the Fab fragment contacts

cytoplasmic loops C4 and C5 of SecY, which is the same

region to which SecA can be crosslinked. The region of

SecA that contacts SecYE in T. thermophilus has been

named motif IV [138].

Despite recent progress, a number of issues still remain

to be addressed in the structural area of the Sec complex.

Fig. 3 Structure of the SecA and the SecY (Sec61) channel. a–c
Different conformations of SecA with the view from the cytosol: a the

closed conformation, b the open conformation, c the SecY-binding

conformation. The pre-protein crosslinking domain (PPXD) is shown

in green, the a-helical scaffold domain (HSD) in blue, the nucleotide

binding domains (NBD2 and NBD1) in yellow and red, respectively. d
The two-helix finger of SecA at the cytoplasmic entrance of the

SecYEG complex. The finger is highlighted in orange and indicated

by an arrow. SecYEG is colored red, except for the TM2 and TM7

segments, which are in blue and the ‘‘plug’’ in yellow. e The

hydrophobic pore ring within the center of the Sec61abc channel. The

view is from cytosol. The N- and C-terminal halves are in red and

green, respectively. The residues comprising the hydrophobic pore

ring are highlighted in yellow and indicated by an arrow. f The lateral

gate region within the Sec61abc complex is indicated by an arrow at

the interface of TM2b and TM7. The view is from cytosol, as in d.

The figures were constructed using the coordinates from the protein

data base. PDB accession numbers: a 1M6N, b 1TF2, c, d 3DIN, e, f
1RH5
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For example, the structure of the SecA/SecYEG complex

suggests that a two-helix finger is important as it is local-

ized at the entrance of the SecYEG translocation channel.

The hypothesis is that the SecA two-helix finger moves

back and forth during the ATPase cycle and that these

movements are involved in translocation of the substrate.

This hypothesis needs to be tested. Another important

question requiring an answer is whether the SecA/SecYEG

structure corresponds to the state following capture of a

substrate in the respective organism from which this

translocase has been derived. The determination of the

structure of SecA/SecYEG with a bound substrate would

be helpful in proving this. Also, more experimental data are

needed to establish the substrate binding site of SecA. The

determination of the structure of a SecA/substrate complex

would be helpful to show whether the groove between

PPXD, NBD2, and part of HSD is the binding site for the

substrate.

The archaeal Sec translocase

As in bacteria and eukaryotes, archaea use the Sec trans-

locase to export secretory proteins across the membrane

and to insert proteins into the membrane. The archaeal Sec

translocase consists of SecY, SecE, and Sec61b (Fig. 2d;

Table 1) SecY genes are found in all archaeal genomes

and, like its eukaryal and bacterial counterparts, the SecY

protein of archaea spans the membrane ten times [139–

141]. Complementation experiments using a conditionally

lethal E. coli SecY mutant transformed with an archaeal

secY gene suggest that the archaeal SecY can functionally

replace the bacterial SecY [139]. The SecY in archaea is,

however, more similar to the eukaryotic Sec61a than the

bacterial SecY [140]. Likewise, the archaeal SecE is more

like eukaryotic Sec61c in that it has a single transmem-

brane domain at the C terminus [140]. In contrast to the

clear homology between Sec61ac in eukaryotes and SecYE

in bacteria, Sec61b and SecG do not resemble each other at

all [140]. In archaea, the Sec61b homolog was first found

by PSI-BLAST searches [140, 142].

The structure of the archaeal Sec translocase was solved

in 2004 in M. jannaschii at a resolution of 3.2 Å [143].

This first structure of a protein-conducting channel was a

landmark achievement. The structure showed that the Sec

translocase forms a clamshell-like structure within the

membrane. SecY forms the core of the channel, while SecE

and Sec61b help to stabilize it in the membrane. In the

center of the channel is a constriction point comprised of a

pore ring, 3–5 Å in size, through which the hydrophilic

region of the exported protein is believed to pass (Fig. 3e).

The translocation channel also has an opening on one side

via the TM2b/TM7 interface region, which the authors

called the lateral gate (Fig. 3f). In an earlier study, this

region had been shown to bind the signal peptide [144].

Based on these results, in 2004, van den Berg et al. pro-

posed that the signal peptide initially binds to the lateral

gate prior to exiting the channel and integrating into the

lipid bilayer [143].

Based on the structure of the Sec translocation channel,

it was hypothesized that the transmembrane segments of

membrane proteins would exit the channel through the

lateral gate. While the lateral gate is closed in the M.

jannaschii Sec channel, it is believed to open up by a

‘‘breathing action’’ to allow the transmembrane segments

to integrate into the lipid bilayer. The structure of the T.

maritima SecYEG/SecA complex showed that the lateral

gate is more open toward the center [134]. Currently, there

is no evidence that this TM2b/TM7 interface region

undergoes structural changes or that the opening is trig-

gered by the incoming transmembrane segment.

While the same SecYEb/Sec61abc complex is used in

archaea and ER, the eukaryotic associated subunits Sec62/

63, Sec71/72, and TRAM have not yet been identified in

archaea [140, 145]. At the same time, bacterial associated

subunits, such as SecD and SecF, are found in many ar-

chaea with high conservation, while homologs of SecA

have not yet been discovered. The apparent absence of

SecA implies that archaea may use an accessory protein,

such as an ATPase, that is different from SecA as an

energy-transducing source for protein transport or that

these organisms may even rely entirely on the ion gradient

across the membrane to drive protein translocation.

Another possibility is that the energy source is derived

from GTP hydrolysis, with the protein pushed through the

Sec translocation channel as the protein is being synthe-

sized, as is proposed in the ER system for the SRP-targeted

proteins.

Although the archaeal SecDF shows high similarity to

bacterial SecDF in terms of membrane topology and

positioning of the conserved sequence elements, there are

differences in the large extracytoplasmic domains of these

proteins, especially in the SecD protein [146]. These dif-

ferences may be due to the function of the loop in bacteria,

which seems to modulate SecA during the protein trans-

location step [147–149]. Accordingly, there is no need for

conservation of this loop region in archaea due to the

absence of SecA [86, 150].

YidC-pathway

Operating in parallel with the Sec pathway is the evolu-

tionarily conserved YidC pathway, which is found not only

in bacteria and some archaea (Table 1), but also in the

mitochondria and chloroplasts of eukaryotes [151, 152].

YidC is an essential protein in E. coli that is required for
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the membrane insertion of proteins previously thought to

insert spontaneously [98]. YidC functions as a membrane

insertase to mediate membrane protein insertion [153]

(Fig. 4a). It can also function cooperatively with the Sec-

YEG translocase to mediate the membrane integration of

proteins [154, 155]. In the Sec pathway, SecDFYajC

physically links YidC to the Sec translocase [156]. Inter-

estingly, residues 215–265 within the periplasmic domain

of the E. coli YidC are required for YidC to interact with

SecF [157].

A number of Sec-dependent and Sec-independent sub-

strates have been shown to require YidC for insertion,

including subunit 2 of cytochrome bo3 oxidase (CyoA) and

subunits a and c (of the F1Fo ATP synthase) [95, 158]. This

explains to a large extent why YidC depletion causes a

large perturbation in the assembly and activity of the F1Fo

ATP synthase and cytochrome bo oxidase [96, 159, 160].

Structural studies on the E. coli YidC

In terms of structural studies on YidC, all we know so far is

that the E. coli YidC, similar to the YidC homologs from

most Gram-negative bacteria, spans the membrane six

times with a large periplasmic domain located between the

first two transmembrane segments (Fig. 4b; [161]). The

structure of the periplasmic domain has been determined

by X-ray crystallography and found to form a b-super

sandwich fold [162, 163]. Crosslinking methods have

revealed that TM3 of YidC is in the proximity of the

substrate during membrane biogenesis [164, 165], while

intrinsic fluorescence spectroscopy studies showed that

substrate binding to YidC causes a conformational change

in YidC [166]. A debatable issue is whether YidC functions

as a monomer or oligomer during membrane protein

insertion. Purified YidC appears as a monomer and dimer

on a blue native polyacrylamide gel, and purified Oxa1, the

mitochondrial homolog, as a tetramer [167, 168].

Based on cryo-electron microscopy and crosslinking

studies, Kohler et al. [169] recently proposed that YidC

forms dimeric insertion pores on translating ribosomes. In

their model, the insertion pore is formed at the interface of

two YidC molecules with transmembrane segment (TS) 2

and 3 of one YidC subunit interacting with TS2 and TS3 of

the other subunit. Supporting evidence for this model is

provided by the fact that a dimeric YidC or a dimeric Oxa1

can be formed via disulfide crosslinking by adding an

oxidizing agent to the YidC sample; YidC contains a single

cysteine at position 423 in TM3, and Oxa1 contains a

single cysteine in TM1 corresponding to TM2 of YidC.

Likewise, a critical role of TM2 and TM3 in YidC function

Fig. 4 The YidC pathway. a YidC can function on its own to mediate

membrane protein insertion. b Membrane topology of YidC in E. coli
with six transmembrane segments and a large periplasmic domain

between transmembrane helices 1 and 2. c Membrane topology of

YidC in B. subtilis. d Predicted membrane topology of YidC in

Euryarchaeota
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is supported by genetic studies [170, 171]. Clearly, it is

important to provide further biochemical and structural

data to support this model. It will be necessary to obtain a

high-resolution structure of YidC in order to determine the

structural basis of the YidC insertase and chaperone

functions. Knowledge of the structure will reveal whether

YidC has a lateral gate, as seen with the Sec translocation

channel.

Gram-positive YidC

All Gram-positive bacteria have at least one gene encoding

a YidC homolog within their genome, but most also con-

tain a second gene for a YidC homolog. Generally, the

YidC proteins of Gram-positive bacteria are shorter than

their homologs in Gram-negative bacteria [145, 172].

Typically, many of the former span the membrane five

times (Fig. 4c) and are synthesized with a cleavable signal

peptide that is processed by the lipoprotein signal pepti-

dase. The C-terminal domain contains five transmembrane

helices that are conserved in all bacterial, mitochondrial,

and chloroplasts members [172]. The transmembrane seg-

ments of the B. subtilis YidC homologs are numbered 2–6

since they correspond to their respective transmembrane

segments in the Gram-negative bacterial YidC. In B. sub-

tilis, two paralogs of YidC are present: SpoIIIJ and YqjG.

The presence of either one of these proteins is sufficient for

cell survival, indicating that they can complement each

other, at least partially [173, 174]. Consistent with their

role in membrane protein integration, depletion of SpoIIIJ

in cells lacking YqjG leads to a decreased stability of

specific membrane proteins, such as CtaC and FtsH,

although the stability of the other membrane proteins tested

to date remains unaffected [173]. In addition, SpoIIIJ-

depleted cells lacking YqjG have been found to display a

post-translocational defect in protein secretion. This phe-

notype is most likely indirectly caused by a defect in

membrane protein biogenesis.

A sporulation defect is observed in the absence of

SpoIIIJ. This defect cannot be complemented by native

YqjG, but it can be complemented by some mutated forms

of YqjG [175]. This sporulation defect is possibly caused

by impaired or incorrect integration of the SpoIIIAE pro-

tein into the membrane, while the correct integration of this

protein is required for completion of the sporulation pro-

cess [175, 176]. These findings demonstrate that SpoIIIJ

and YqjG have only partially overlapping substrate speci-

ficities [173–175] and cannot fully complement for each

other.

Analogous to B. subtilis, two paralogs of YidC have

been identified in S. mutans: YidC1 and YidC2 [56, 177].

Attempts to simultaneously delete yidC1 and yidC2 have

all failed, indicating that the presence of at least one of

these proteins is required for cell survival. Interestingly, the

deletion of yidC2 (but not of yidC1) in S. mutans leads to a

similar phenotype as the deletion of members of the SRP

pathway. In one study, combining a yidC2 deletion with

deletions in genes for the SRP pathway resulted in barely

viable strains [56], which suggests that YidC2 can com-

pensate for the absence of the SRP pathway, thus enabling

the survival of S. mutans without a functional SRP. This

result also implied that YidC2 in S. mutans may have a

similar function as its homolog Oxa1p in yeast mitochon-

dria. In these organelles, the missing SRP pathway is

functionally replaced by Oxa1p to which the mitochondrial

ribosomes bind directly for cotranslational insertion of

proteins into the inner membrane. Support for this view

was recently obtained by studies showing that YidC2 from

S. mutans and Oxa1p from yeast mitochondria can recip-

rocally complement each other in vivo [178].

YidC in Euryarchaeota

Genes for YidC homologs have been found in the genome

sequences of Euryarchaeota, but not in the genome

sequences of other archaea [145, 172]. The euryarchaeotal

YidC homologs are predicted to lack two of the trans-

membrane segments (corresponding to transmembrane 4

and 5 of the E. coli YidC) that are present in the bacterial,

mitochondrial, and chloroplast homologs (Fig. 4d) [145].

Transmembrane segments 2, 3, and 4 are homologous to

transmembrane segments 2, 3, and 6 of the Gram-negative

bacterial YidC, respectively. No functional studies have

been reported yet on the archaeal YidC homologs. There-

fore, their relevance for membrane protein integration

remains to be established.

Tat pathway

A third widely conserved translocation system is the twin-

arginine translocation (Tat) system. The Tat translocase

can transport fully folded proteins across membranes,

whereas the Sec translocase can only transport proteins that

are in an unfolded state [1, 179–182]. The Tat translocase

is found in many bacteria, archaea, and plant chloroplasts.

Usually, only a small subset of proteins are transported via

the Tat system to the inner membrane, the periplasm, or the

extracellular environment [183]. However, in some ar-

chaea, almost all proteins appear to be secreted via the Tat

system [59, 184]. The Tat pathway also seems to be

responsible for the transport of many proteins in Strepto-

myces and Mycobacterium species [185–189]. Importantly,

the Tat pathway that is found in several bacterial pathogens

is required for their virulence in plants and humans [190–

195].
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Signal peptides targeting proteins to the Sec or Tat

translocases are quite similar in overall structure. However,

the N-domain of Tat signal peptides contains a typical

twin-arginine motif, ZRRX//, where Z designates a

hydrophilic residue, X can be any residue, and / is a

hydrophobic residue [179]. The H-domain is usually less

hydrophobic than that in Sec signal peptides [196]. A

prerequisite for a protein to be directed to the Tat system is

the presence of the Tat signal peptide, as the twin-arginine

residues facilitate recognition by the Tat translocase

(Fig. 5a) [196]. Nevertheless, in many cases, the Tat-signal

peptide by itself cannot determine pathway selectivity.

Certain Tat signal peptides can target fused Sec substrates

to the Sec pathway [197]. However, the introduction of

positive charges at the N-terminus of the mature protein to

be exported prevents translocation by the Sec pathway, but

not the Tat pathway [197]. Consistently, the C-region of

Tat signal peptides often contains positively charged resi-

dues that help avoid translocation via the Sec translocase

[198–201]. Based on the known properties of Tat signal

peptides, the Tatfind algorithm was developed for sys-

tematic whole-genome searches to identify Tat-dependent

transported proteins [59].

The composition of the Tat translocase is variable. In

Gram-negative bacteria, three distinct proteins are required

for Tat-mediated translocation: TatA, TatB, and TatC.

Escherichia coli additionally contains a TatA paralog

named TatE, which is dispensable for protein transport via

the Tat pathway (Fig. 5b; Table 1). Notably, TatB is absent

in most Gram-positive bacteria and archaea (Fig. 5c and d)

[202]. Thus, the minimal Tat translocase is composed of

one TatA and one TatC subunit. However, additional

copies of TatA and/or TatC are often found (e.g., B. subtilis

contains three TatA homologs and two TatC homologs, but

no TatB homolog).

Structural features of the Tat complexes

and the translocation pore

TatA and TatB are predicted to consist of a transmembrane

helix, a hinge-region, a cytoplasmic amphipathic helix, and

a cytoplasmic domain of variable length (Fig. 5b).

Although both proteins are related, the overall sequence

conservation is poor (only one amino acid is invariably

conserved). The cytoplasmic domain is larger in TatB

proteins than in TatA proteins [202]. TatC contains six

transmembrane spans, with both the – and C-terminus

facing the cytoplasm [203, 204]. The amino acid sequence

conservation in TatC protein is better than in the TatA/B-

like proteins but, even so, there are only 15 well-conserved

amino acids in TatC.

Some structural information is currently available on the

translocation pore of the Tat-translocase in E. coli, which

probably consists of a large ring-shaped multimer of TatA

proteins of variable size [205–207]. TatB and TatC are

involved in signal peptide recognition and the targeting of

proteins to the TatA pore (Fig. 5a) [207–210]. TatC seems

to be mainly involved in the initial signal peptide recog-

nition, whereas TatB seems to be required for the transfer

of the protein from TatC to TatA [208]. The exact mech-

anism of signal recognition, docking to the TatA-pore, and

subsequent translocation remains to be elucidated.

Notably, the exact mechanism by which the Tat trans-

locase facilitates translocation is a matter of debate [180,

181]. Although likely, it is not known with absolute cer-

tainty whether TatA is the pore [206] or whether the pore

comprises all the components (TatABC) [181]. The vari-

ously shaped TatA multimers that have been observed were

isolated after detergent treatment and may not actually

occur in the membrane. To help understand the mechanism

by which proteins are translocated by the Tat translocase,

researchers need to obtain an atomic structure of the Tat

machinery as this structure would clarify how the Tat

machinery transports differently sized folded substrates

while preventing the leakage of solutes and ions across the

membrane.

Multiple Tat translocases in the Gram-positive

B. subtilis

Interestingly, although TatA and TatB have different

functions within Gram-negative Tat translocases, muta-

tions in TatA in E. coli have been found to enable Tat-

mediated transport in the absence of TatB. This finding

indicates that TatA is intrinsically capable of performing

the function of TatB [211]. Additionally, the TatAd protein

from B. subtilis can complement for the absence of either

TatAE or TatB in E. coli [212]. These findings, plus the

fact that TatB is missing from most Gram-positive bacteria,

indicate that the Gram-positive version of TatA performs

the functions of both TatA and TatB in organisms lacking a

tatB gene [213].

Two independently operating Tat translocases exist in B.

subtilis, namely, TatAdCd and TatAyCy (Fig. 5c; Table 1).

Despite this abundance of Tat translocases, however, only

two proteins have been identified that are exclusively

transported by these translocases: the Dyp-type peroxidase

YwbN is secreted via TatAyCy, and the phosphodiesterase

PhoD is secreted by TatAdCd [214, 215]. A third Tat sub-

strate, the esterase LipA, can be secreted both via the Sec

and Tat pathways, with Tat-dependent secretion being most

evident under conditions of LipA hyper-production [216].

Tat-dependent LipA secretion seems to be facilitated both

by TatAdCd and TatAyCy. These findings indicate that the

two Tat translocases of B. subtilis have overlapping but

non-identical substrate specificities. The function of a third
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Fig. 5 Protein export by the twin-arginine translocation (Tat) path-

way. a Proposed mechanism of export by the Tat pathway. RR Twin-

arginine motif in the signal peptide of a protein translocated via Tat.

b Membrane topology for TatA, TatE, TatB, and TatC in E. coli.

c Membrane topology for TatA and TatC in B. subtilis. d The

membrane topology of TatA and TatC in the Archaeon Halobacte-
rium sp. NRC-1. N N-terminus, C C-region
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TatA subunit in B. subtilis, denoted TatAc, is not clear,

since no proteins have been found that are secreted in a

TatAc-dependent manner [214, 215].

The archaeal Tat pathway

Little is currently known about the archaeal Tat pathway,

and most information has been derived from genomic

sequencing. The Tat components (TatA and TatC) in ar-

chaea are similar to those found in E. coli and chloroplasts.

Similar to most Gram-positive bacteria, TatB is not

detectable in archaea, although it is clearly required for Tat

translocation in E. coli [217]. The TatC in archaea is

homologous to the TatC in bacteria and chloroplasts, but

only a limited number of residues are well-conserved.

Remarkably, most sequenced haloarchaea have a Tat

component that is a natural fusion of two TatC subunits

(Fig. 5d) [184, 218, 219]. The function of the TatC–TatC

fusion protein may be related to the Tat translocation under

high salt conditions, since this component seems to be

specific to haloarchaea.

As observed in many Gram-positive bacteria, there can

be multiple copies of the Tat components in archaea. The

haloarchaeon, Haloferax volcanii, has been shown to have

two TatA homologs and two TatC homologs, with three of

these being essential for cell viability [184]. At the same

time, the number of these components is not related to the

number of the Tat substrates. For example, Sulfolobus

solfataricus, which has only five predicted Tat substrates,

has three copies of TatA and two copies of TatC. In

comparison, Halobacterium sp. NRC-1, which encodes 68

putative Tat substrates, has only one copy of TatA and two

copies of TatC. One possible explanation is that this

observed bias towards Tat-dependent protein transport in

haloarchaea, such as Halobacterium, may relate to the fact

that many secretory proteins have to fold rapidly to prevent

aggregation under highly saline conditions. Therefore,

these proteins would fold in the cytoplasm and be trans-

ported by the Tat pathway [59, 218]. Interestingly, the bias

towards Tat-dependent protein transport in the haloarcha-

eon H. volcanii seems so strong that it even exports soluble

C-terminally anchored membrane proteins and lipoproteins

via Tat [220]. However, many of the observed putative

substrates for the Tat translocase in archaea, in general, are

cofactor-binding proteins, and these need to be folded

before translocation to allow for cofactor assembly. For

example, all of the predicted Tat substrates in T. acido-

philum and T. volcanicum are Rieske iron-sulphur proteins.

A recent study in the haloarchaeon Haloarcula hispa-

nica showed that the secretion of a Tat-dependent

substrate, a-amylase, does not depend on the proton motive

force as it does in the chloroplasts and bacterial system

[221, 222], but rather on the sodium-motive force [223].

A similar electrical gradient may drive transport in the

halophile Halobacterium sp. NRC-1, which is predicted to

use the Tat pathway for the translocation of more than 90%

of its secreted proteins [59, 184]. One possible explanation

may be the high extracellular salt concentration imposed by

its particular lifestyle. Interestingly, Tat-dependent trans-

location in E. coli has been shown recently to be able to

rely on the electrical transmembrane gradient, independent

of the pH gradient [224].

Summary

The emerging studies reviewed in this paper reveal

remarkable differences in the ways a number of bacteria

and archaea insert and translocate proteins across the cell

membrane as compared to the well-established E. coli and

ER systems. These differences illustrate the importance of

examining protein export and membrane biogenesis in a

variety of different organisms with the aim of searching for

conserved principles. A common theme is that there are

multiple copies of the translocation components in Gram-

positive bacteria and archaea. The presence of multiple

copies of the translocation components, such as SecY,

SecA, YidC, TatA, or TatC, may have to do with different

substrate specificities making protein export or membrane

protein insertion more efficient for certain substrates.

Furthermore, the expression of differently multiplied

translocation components can be regulated in different

ways, providing the cells with the possibility to fine-tune

their translocation machinery to particular needs, such as

those as dictated by environmental conditions. In many

cases, certain translocation components can contribute to

the virulence of pathogenic bacteria. Also, in contrast to the

situation found in the widely studied bacteria, such as E.

coli and B. subtilis, the Tat translocation system can play a

mainstream role for the export of proteins in certain other

Gram-positive bacteria and archaea.

One of the most important recent developments in the

field is the elucidation of structures of the Sec complex

from the Archaeon M. jannaschii and the Gram-negative

bacteria Thermotoga maritima and Thermus thermophilus

and of a SecA/SecYEG complex from T. maritima. These

structures as well as recent biochemical studies reveal how

the translocase can function to move polypeptides through

the center of the channel via the pore ring and how it

allows the exit of transmembrane segments into the lipid

bilayer. Elucidation of the SecA/SecYEG structure

revealed a two-helix finger that may be involved in trans-

locating the substrate through the channel.

Taken together, the observations reviewed in this paper

indicate that there are still plenty of opportunities for new

discoveries in the field of protein insertion and
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translocation across cell membranes, in particular in

organisms that live in extreme and challenging ecological

niches. Studies on protein translocation in these organisms

are likely to deepen our insights in the structure and

function of protein translocation machineries that are

conserved in all three domains of life.
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