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Abstract Heparan sulfate proteoglycans are a remarkably

diverse family of glycosaminoglycan-bearing protein cores

that include the syndecans, the glypicans, perlecan, agrin,

and collagen XVIII. Members of this protein class play key

roles during normal processes that occur during develop-

ment, tissue morphogenesis, and wound healing. As key

components of basement membranes in organs and tissues,

they also participate in selective filtration of biological

fluids, in establishing cellular barriers, and in modulation

of angiogenesis. The ability to perform these functions is

provided both by the features of the protein cores as well as

by the unique properties of heparan sulfate, which is

assembled as a polymer of N-acetylglucosamine and glu-

curonic acid and modified by specific enzymes to generate

specialized biologically active structures. This article dis-

cusses the structures and functions of this amazing family

of proteoglycans and provides a platform for further study

of the individual members.
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Introduction

Proteoglycans are remarkably complex molecules with

functions associated not only with their protein cores but

also with their constituent carbohydrate chains. These

functions range from structural roles in the extracellular

matrix to control of growth factor gradients, cell migration

and behavior. Proteoglycans are classified based on the

types of carbohydrate chains they contain. In this regard,

the signature carbohydrate chains are large, linear, highly

negatively charged polymers called glycosaminoglycans.

Glycosaminoglycans are further classified based on their

characteristic disaccharide repeating structures. Heparan

sulfate (HS) is one class of glycosaminoglycans initially

assembled as a polymer of N-acetylglucosamine and glu-

curonic acid and subsequently modified in several ways to

generate more complex, biologically active structures. HS

proteoglycans (HSPGs) are found in all animals from

worms and insects to higher mammals, and mutations

associated with them usually have large phenotypic

consequences.

While much has been learned about the diverse roles

these molecules play, we still do not completely under-

stand the full extent of HSPG function. This review will

focus on several well-described HSPGs of the extracel-

lular matrix. We will discuss their structures, the variety

of interactions they support, both via their protein cores

and constituent HS chains, and the impact mutations in

HSPG core proteins and HS biosynthetic enzymes play

in various developmental and biological processes. For

convenience, all structural information provided is for

the RefSeq human version of these proteins. Information

on alternate forms can be found on the Swiss-Prot

database (http://www.uniprot.org/) pages using the ID

provided.
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Core proteins

Perlecan

Perlecan, also called heparan sulfate proteoglycan 2

(HSPG2), is an ancient, structurally conserved HS bearing

proteoglycan that is wholly secreted into the extracellular

space, where it is incorporated into the basement mem-

branes separating epithelial and stromal compartments in

tissues or into the territorial matrices surrounding mesen-

chymal cells [1, 2]. The core protein of human pre-perlecan

consists of 4,391 amino acids of which the first 21 are

removed by signal peptidase (Fig. 1). The mature core

protein is modular, containing 1 sperm protein–enteroki-

nase–agrin (SEA) module in unique domain I, 4 EGF-like

domains, 11 laminin epidermal growth factor (EGF)-like

domains, 22 Ig-like C2 domains, 3 laminin G-like domains,

3 laminin IV type A domains, and 4 low density lipoprotein

(LDL) receptor class A domains (UniProtKB/Swiss-Prot

entry P98160). The core protein is by nature functionally

complex, offering a very large number of functional sur-

faces for interactions with other proteins which can be

HS-dependent, HS-influenced, or HS-independent. Many

important functions have been ascribed to perlecan

including modulation of angiogenesis [3], solute filtration

[4, 5], growth factor delivery [6], initiation of chondro-

genesis [2], regulation of cell adhesion [7, 8], and

fibrillogenesis [9]. For instance, the C-terminus of perlecan

can be processed by proteases into a fragment (Fig. 1) with

anti-angiogenic activity called endorepellin [10, 11].

Agrin

Agrin (AGRN), once known as neural aggregating factor,

is best known for its ability to cluster synaptic proteins

including acetylcholine receptors at neuromuscular junc-

tions, although there are recent challenges to the

mechanistic paradigm [12, 13]. The mature agrin core

protein is produced by removal of a 29 amino acid signal

sequence from a 2,045 amino acid precursor form prior to

secretion (Fig. 1). The agrin core protein has a unique N-

terminus or NtA domain followed by eight Kazal-like

domains. The central portion of the agrin core protein

contains an SEA domain flanked by two Ser/Thr-rich

regions to which multiple heparan sulfate glycosamino-

glycan chains are attached. Chondroitin sulfate also may be

present in this region [14]. C-terminal to the central region

are alternating EGF-like and laminin G domains, four of

the first and three of the second (UniProtKB/Swiss-Prot

entry O00468). Agrin, primarily known as a modulator of

synaptogenesis, is increasingly recognized for a broader

range of functions in the nervous system [15].

Collagen XVIII

This multifunctional protein, once called MFP, is charac-

terized as a ‘‘multiplexin’’, a class of proteins with multiple

triple helix domains interspaced with non-triple helical

domains [16]. The core protein (UniProtKB/Swiss-Prot

entry P39060) contains 1,754 amino acids, the first 23 of

which comprise the signal sequence (Fig. 1). A unique

feature of collagen XVIII (COL18A1) is that the C-terminus

is cleaved post-translationally to produce endostatin (amino

acids 1572–1754), an effective blocker of both endothelial

cell proliferation and angiogenesis [17]. The core protein

also contains a frizzled (FZ) domain (amino acids 329–446),

a cysteine rich domain (CRD) that contains ten conserved

cysteines that form five disulfide bridges. FZ domains are

present in diverse group of proteins including several

receptor tyrosine kinases [18]. The CRD in the Drosophila

gene product Frizzled is part of the extracellular region

implicated as the Wnt binding domain [19]. Collagen XVIII

also contains a thrombospondin-type laminin G domain

(TspN) also found in various laminins, the N-terminus of

thrombospondin and pentraxins. TspN-containing proteins

typically are multi-domain adhesive matrix proteins that
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Fig. 1 Comparison of relative sizes of HSPG core proteins and their

processed fragments. The relative sizes of five major HSPG core

proteins are illustrated by the length of the horizontal bars. For those

with multiple family members, such as the syndecans and glypicans,

the relative size of the largest family member is shown. All lose an

approximately 20 amino acid N-terminal signal peptide in the

secretory route. Only syndecan is retained as a transmembrane

protein (darker box), although glypicans receive a lipid anchor

(shown as anchor symbol) after removal of a C-terminal fragment

which retains them on the cell surface. Gaps in the sequences of the

core proteins with scissors show demonstrated sites of protein

processing. For endostatin (collagen XVIII) and endorepellin (perl-

ecan), the released fragment has potent biological activity
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function as molecular connectors between cells and matrix,

and participate in cellular communication [20]. An RGD cell

adhesion motif is also present on the core protein (amino

acids 1330–1332) just upstream of the cleavage site for

generation of endostatin. Multiple sites for both N-linked

and O-linked glycosylation are also present.

Syndecans

There are four syndecans (SDC1–4), all of which are single

pass type I transmembrane proteins with a large glycosa-

minoglycan-bearing ectodomain, an approximately 20

amino acid transmembrane region, and a comparatively

short cytoplasmic tail (Fig. 1). Syndecan 3 (UniProtKB/

Swiss-Prot entry O75056) is the longest at 442 amino

acids, Syndecan 1 (UniProtKB/Swiss-Prot entry P18827) is

significantly shorter at 310 amino acids, Syndecan 2

(UniProtKB/Swiss-Prot entry P34741) is shorter at 201,

and Syndecan 4 (UniProtKB/Swiss-Prot entry P31431)

shorter still at 198 amino acids. All four mature syndecans

are produced by cleavage of an 18–22 amino acid signal

peptide present in the pre-protein. Syndecan 1, also des-

ignated CD138, is present in both stromal and epithelial

cells. The mature protein core contains a unique 232 amino

acid extracellular domain that is modified by carbohydrate

chains that include both O-linked chondroitin sulfate and

N-linked structures in addition to HS. A 21 amino acid

transmembrane segment links the extracellular domain to

the 35 amino acid long cytoplasmic tail on the cell’s

interior. A site for phosphorylation is conserved at tyrosine

309. Syndecan 2, common name fibroglycan, is typically

made by fibroblasts. It has a 126 amino acid long ectodo-

main, followed by short transmembrane and cytoplasmic

domains. There are three conserved sites of HS modifica-

tion at amino acids 41, 55, and 57. Syndecan 3, or N-

syndecan, is expressed in the nervous system, the adrenal

gland, and the spleen. It has a large ectodomain of some

387 amino acids that contains six potential sites for gly-

cosaminoglycan attachment. Isoform 1 of this protein is

considered the reference sequence, but several isoforms

have been reported, one of which (isoform 3) is missing

amino acids 112–125. Syndecan 4, also called amphiglycan

or ryudocan, has a 127 amino acid extracellular domain

with three sites for addition of HS, at amino acids 39, 61

and 63. The transmembrane and cytoplasmic domains are

of approximately equal lengths, 25 and 28 amino acids,

respectively. A conserved site for tyrosine phosphorylation

is at amino acid 197 on the cytoplasmic tail.

Glypicans

The hallmark quality of the six glypicans is their

attachment to the cell membrane by a glycosyl

phosphatidylinositol linkage (Fig. 1). For this feature, they

have been dubbed the ‘‘glypican-related integral membrane

proteoglycan family’’ (GRIPS) [21]. All are proteins of

some 550–580 amino acids that are made as precursors

with a signal peptide destined for cleavage during bio-

synthesis. Additionally, all glypicans have a large globular

cysteine-rich domain with 14 invariant cysteines residues

followed by the HS modified ‘‘stalk’’. Glypican 1

(UniProtKB/Swiss-Prot entry P35052) is lipid modified at

serine 530, and has four potential sites for gagosylation

along with two sites for N-linked modification. The mature

protein is generated after removal of amino acids 531–558

at the C-terminus. Glypican 2 (UniProtKB/Swiss-Prot entry

Q8N158) is also called cerebroglycan. It is lipid modified

at amino acid 554 which becomes the C-terminus after

processing removes amino acids 555–579. Glypican 3

(UniProtKB/Swiss-Prot entry P51654) is also called intes-

tinal protein OCI-5. Its 580 amino acid long precursor

protein core is processed similarly to the other glypicans.

Glypican 4 (UniProtKB/Swiss-Prot entry O75487) has

been termed K-glypican for its abundance in the kidney. It

is derived from a precursor of 556 amino acids, with a

mature form ending at amino acid 529 after addition of the

lipid anchor and removal of the C-terminus. It contains

both HS and N-linked carbohydrate additions. Glypican 5

(UniProtKB/Swiss-Prot entry P78333) has multiple sites

for modification by N-linked carbohydrate chains and for

addition of HS. Between amino acids 446 and 509, there

are five sites for O-gagosylation; thus, a high negative

charge density can be achieved in this portion of the

molecule near the cell surface. There are several potential

sites for addition of the lipid modification near the C-ter-

minus of glypican 5, and it is not certain which of these is

used. Glypican 6 (UniProtKB/Swiss-Prot entry Q9Y625) is

lipid modified on amino acid 529 and is processed at both

ends from a 555 amino acid precursor like the other

glypican family members.

Core protein interactions

Perlecan

Perlecan is a giant modular protein with domains for

interacting with many binding partners. A domain-by-

domain list of those potential binding interactions,

including those with many basement membrane proteins

such as laminin and collagen IV, was recently published by

our group and will not be repeated here [1]. Perlecan has a

strong tendency to aggregate, and has been found in a

variety of extracellular deposits including those containing

b-amyloid [22], b2-microglobulin [23], and collagen [24].

Perlecan is processed by a variety of proteases, with
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proteolytic processing by BMP-1/Tolloid-like metallopro-

teases responsible for the production of the C-terminal

fragment, endorepellin [10], which has potent anti-angio-

genic properties [11]. Domain IV of perlecan contains a

tandem of immunoglobulin repeats with the capacity to

interact with other proteins containing similar repeats in a

‘‘zipper-like’’ fashion. Cell surface proteins with Ig mod-

ules include ectodomains of ion channels [25], cadherins

[26], and other immunoglobulin superfamily members

[27]. A novel peptide derived from one of these Ig modules

in domain IV of perlecan interacts with cell surface

receptors and alters cell adhesion [7]. Fibroblast growth

factor-18 (FGF-18) has been reported to bind to the core

protein of perlecan in domain III [28]. Interactions of

perlecan core protein with WARP, a member of the von

Willebrand factor A domain superfamily found in cartilage

matrix, have also been reported [29]. Mapping studies also

showed interaction of perlecan domains I and II with a

central region of fibrillin-1 [30].

Agrin

Known as ‘‘neural aggregating factor’’, agrin made by

nerve cells clusters acetylcholine receptors at neuromus-

cular junctions by virtue of its interactions with the

signaling complex located at the synapse. The so-called

‘‘laminin/integrin–agrin–a-dystroglycan network’’ [31]

links the signaling complex to the basement membrane and

is key to synaptic transmission and prevention of muscular

dystrophy [32]. The binding of agrin to laminin occurs

through the NtA domain (amino acids 30–157) and has

been analyzed in detail [33]. The interaction with a-dys-

troglycan is glysosylation-dependent [34]. Agrin has also

been found along with glypican 1 in amyloid fibrils [35].

Agrin can also interact with a-synuclein and by doing so

increase its insolubility and tendency to form fibrils, an

occurrence which has been implicated in the development

of Parkinson’s disease [36].

Collagen XVIII

Collagen XVIII and its derivative, endostatin, interact with

a wide variety of protein components of the basement

membrane [37]. Endostatins interactions with a host of cell

surface receptors and extracellular matrix proteins

responsible for its potent anti-angiogenic activities have

been well reviewed [38, 39]. Interestingly, endostatin was

recently reported to interact with fibrinogen [40].

Syndecans

Syndecan family members classically link the functions of

the cell surface heparin-binding growth factor receptors to

the cytoskeleton, a function facilitated by their uniqueness

as transmembrane HSPGs. Acting as high capacity, low

affinity co-receptors able to deliver bound heparin-binding

growth factors to their cognate low capacity, high affinity

receptors, syndecans play key roles in signal transduction

[41]. Syndecan-1 was recently shown to interact with

CD147, an association proposed to be essential for cyclo-

philin B-induced activation of p44/42 mitogen-activated

protein kinases and promotion of cell adhesion and che-

motaxis [42]. Interactions with proteases lead to

ectodomain shedding [43]. Muramatsu et al. [44] recently

described an approach for identifying proteins that interact

with HSPGs and discriminating between those which

interact with protein cores and those which require intact

proteoglycan. Syndecan 4 was used as the binding partner

for this demonstration. The conserved site for tyrosine

phosphorylation on the cytoplasmic tail of syndecans is

thought to be important in regulating interactions with the

cytoskeleton. Syntenin-1 recruitment, for example,

depends on the dephosphorylation of Tyr-309 located

within the syndecan-1 PDZ binding domain EFYA [45].

Glypicans

The core protein of the glypicans is unique in that the C-

terminus is processed prior to addition of the lipid anchor.

Glypicans are modified by proprotein convertases, includ-

ing furin, but remain together as disulfide-linked

complexes [46–48]. Glypican interactions with slit proteins

are important in axonal guidance and related develop-

mental processes in nervous tissue [49]. Glypican-1 has

also been reported to be present in amyloid plaques of

Alzheimer’s disease, perhaps by binding directly to beta-

amyloid protein [50]. Altogether, the molecular processing

and interactions of glypican family members remain rela-

tively poorly understood.

Heparan sulfate

Synthesis and structure

As mentioned above, heparan sulfate (HS) chains are linear

polysaccharides consisting of alternating glucosamine and

uronic acid residues [50 disaccharide units in length.

These polymers are initially assembled as a simple polymer

of D-N-acetylglucosamine and D-glucuronic acid. Subse-

quently, the polymer is variously N-deacetylated and

N-sulfated, glucuronic acid epimerized to iduronic acid and

O-sulfated. These modifications occur through an ordered

series of reactions which appear to be controlled primarily

by changes in the levels of expression of the various

enzymes that act at each step. In multiple cases, more than
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one distinct gene encodes isozymes of HS biosynthetic

activities providing redundancy, tissue specificity and

opportunity for differential gene regulation (reviewed in

[51]).

Interactions

Heparan sulfate polymer modification tends to occur in

block regions along the large HS chains resulting in highly

modified regions and regions with little or no modifications

[52]. As a general rule, HS-binding proteins preferentially

bind to the more modified, and therefore more highly

charged, regions. Examples of proteins that preferentially

bind to particular HS structures and the structures they

prefer are listed in Table 1. Many of the preferred struc-

tures have similar or lower charge densities than less

preferred or poorly interacting structures indicating that

these interactions involve more than simple charge inter-

actions. Nonetheless, it should be kept in mind that HS is

the most highly negatively charged extracellular molecule

in higher species, and therefore interactions of many pro-

teins with a net positive charge with HS have little

specificity beyond charge interactions.

Heparanases and Sulfs

Just as there are extracellular activities that hydrolyze

specific sites of HSPG protein cores, i.e., metalloproteases,

there are extracellular activities that hydrolyze specific

motifs in HS chains, namely heparanase-1 and Sulfs

(reviewed in [53, 54]). Only one enzymatically active

heparanase has been identified, heparanase-1. Although

transcripts that appear to encode isozymes of heparanase-1

have been detected, no protein product or enzymatic

activity has been reported for these species. Heparanase-1

is a endo-beta-D-glucuronidase cleaving between glucur-

onosyl and N-sulfated acetylglucosaminyl residues in HS

chains. Although the substrate specificity of this enzyme is

not completely elucidated, the saccharide motifs recog-

nized by heparanase-1 are found in restricted, less

modified, low-sulfated regions of HS chains and, therefore,

tend to be inbetween regions active in protein binding [55].

While minimum sulfation is required for heparanase-1

activity, specific sulfation patterns such as 3-O-sulfation of

the glucosamine residue on the reducing side of the target

glucuronic acid residue were found to be inhibitory when

present in highly sulfated domains [56]. Consequently, in

addition to breaking down the extracellular matrix, hepa-

ranase-1 can release complexes of HS fragments bound to

proteins. In the case of HS-binding growth factors, this has

particular biological significance since various receptors

for HS-binding growth factors also bind HS and require the

formation of a ternary growth factor:HS:growth factor

receptor complex for efficient signal transduction [57–59].

In most cases, it appears that the bulk of heparanase-1

produced by cells remains intracellular where it presum-

ably participates in lysosomal HS degradation. Consistent

with this is the observation that heparanase-1 displays an

acidic pH optimum [60, 61]. In fact, at neutral pH, hepa-

ranase-1 only displays 10–20% of its maximal activity. In

this regard, it has been suggested that at the cell surface

heparanase-1 may function more as a HS-binding protein

[62, 63]. In agreement with this notion is the finding that

heparanase-1 mutants that are catalytically inactive can

still reach the cell surface and participate in HS-dependent

cell adhesion processes [63].

Heparanase-1 is highly expressed by endothelial cells

[64], various tumor cells [65], trophoblast [66] and decid-

ual cells of mouse embryo implantation sites [67]. Its

patterns of expression are consistent with a role in extra-

cellular matrix remodeling as well as growth factor release.

Two proteins have been identified that are naturally

occurring inhibitors of heparanase activity, namely eosin-

ophil major basic protein [68] and heparin/HS-binding

protein/RPL29 [69]. In addition to inhibiting heparanase-1

activity, HIP/RPL29 also displaces HS-binding growth

factors from HS-bearing substrates [69]. Thus, a complex

scenario exists where HIP/RPL29 displays seemingly

antagonistic actions in terms of HS-binding growth factor

release. It is possible that HIP/RPL29, and possibly

eosinophil basic protein, provide a means of releasing and

increasing HS-binding growth factor bioavailability while

simultaneously promoting stability of HS-bearing extra-

cellular matrices. In addition to these natural inhibitors,

several synthetic heparanase-1 inhibitors have been iden-

tified [70]. One of these, PI-88, has been used in vivo as an

antagonist of tumor progression [71] and has potential in

clinical applications.

Table 1 Preference of growth factor binding to HS structures

HS-binding growth factor Preferred HS binding features Refs.

FGF2 [IdoA(2-O-SO3) ? GlcNSO3]2-4 [149–151]

FGF4 [GlcNSO4(6-O-SO3) ? IdoA (2-O-SO3)]3 [150, 151]

VEGF165 Sequences [8 saccharides containing both 2- and 6-O-SO3 modifications [150]

HGF IdoA ? GlcNSO3(6-O-SO3) and [IdoA(2-O-SO3) ? GlcNSO3(6-O-SO3)]2 [150, 152–154]
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Sulfs are secreted enzymes that remove 6-O-sulfates

from glucosaminyl residues in HS chains. Two proteins

have been identified, Sulf1 and Sulf2, that are products of

two distinct genes [54]. Unlike heparanase-1, sulfs are

maximally active at neutral pH and, therefore, are expected

to be fully active upon secretion [72]. Release of

6-O-sulfate residues is not expected to alter the physical

structure of the extracellular matrix to a significant extent;

however, this modification would be expected to modify

the biological properties of the extracellular matrix

substantially. Many HS-binding proteins recognize

6-O-sulfates as part of the high affinity binding motif in HS

(see Table 1 for examples). Thus, Sulf action may either

destroy binding sites in HS and prevent subsequent HS-

binding protein interaction or cause release of HS-bound

growth factors. In the latter case, it would be expected that

at least transient HS-binding growth factor dissociation

must occur to provide access to the 6-O-sulfate residues.

Destruction of HS-binding growth factor binding sites

would be expected to increase growth factor diffusion and

reduce local concentrations of these proteins. A wide

variety of cell types express Sulfs in developing and adult

tissues as well as various tumors [73–77]. In some cases,

Sulfs enhance tumor progression while in others tumor

progression is inhibited [75, 76]. These seemingly contra-

dictory observations may reflect differences in tumor types

or responses to individual HS-binding growth factors. For

example, growth factors that can activate their cognate

receptors in the absence of HS, e.g., BMPs, may be more

actively released from HS-bearing substrata by Sulfs and

enhance tumor progression. On the other hand, activity of

growth factors that require formation of HS-containing

complexes with their cognate receptors, e.g., FGFs, would

be reduced by Sulf action. No Sulf inhibitors, either natu-

rally occurring or synthetic, have been reported although

these would be very useful tools to study the biology of

these enzymes and also in therapeutic applications.

Genetics

Perlecan

Null mutations of the Pln gene in mice (also known as

Hspg2) are not compatible with life and result in severe

developmental abnormalities affecting primarily heart,

brain, and cartilage functions [78, 79]. Between embryonic

stages E10 and E12, absence of the Pln protein was found

to compromise basement membrane integrity and induced

either cell–cell detachment in the contracting heart muscle

wall or ectopic brain tissue invasions of the cephalic

mesenchyme [78, 80]. Although death caused by hemor-

rhages and exencephalies was the main consequence of

these anatomical defects, a small proportion of Pln-null

mouse embryos developed further and died perinatally

because of narrow thorax and respiratory distress. These

mice displayed skeletal defects including craniofacial

malformations (flat face, cleft palate) and disproportionate

dwarfism due to severe chondrodysplasia in the cartilage

growth plate of long bones.

Patients diagnosed with dysegmental dysplasia of the

Silverman–Handmaker syndrome (DDSH, MIM 224410)

exhibit PLN loss-of-function mutations and present life-

threatening symptoms equivalent to the defects observed in

Pln-deficient mice. In contrast to loss-of-function studies,

over-expression of Pln core protein in multiple tissues

including brain and heart did not result in obvious devel-

opmental defects [81]. Recently, knock-in mouse models

for the non-lethal autosomal recessive Schwartz–Jampel

type I syndrome (SJS, MIM 255800) in which reduced

amounts of perlecan protein are expressed have been cre-

ated [82, 83]. Like in these hypomorphic mutants, the

majority of the HSPG2 mutations (deletions/insertions,

missense, nonsense, splice site mutations) found in SJS

patients cause aberrant transcription and/or instability of

Pln mRNAs. Thus, most of these mutations result in a

common disease phenotype consisting of short stature

associated with enhanced joint dysplasia and neuromyo-

tonia associated with deficiency in acetylcholinesterase at

the neuromuscular junction [80, 83–85].

Pln mouse mutants, lacking the three glycoaminoglycan

attachment sites in the N-terminal domain I of Pln, display

severe structural defects of the lens capsule leading to lens

degeneration [86]. Also, this mutation promoted smooth

muscle cell proliferation and intimal hyperplasia of artery

walls indicative of a role for Pln HS chains in the modu-

lation of atherosclerosis [87, 88]. Interestingly, reduced

perlecan expression was associated with the presence of

atherosclerotic lesions in human arteries [89]. In addition,

although no significant abnormalities were observed in the

glomerular basement membrane of the kidney, suscepti-

bility to protein overload was observed in these mouse

mutants suggesting a function for Pln HS chains in glo-

merular filtration [5].

Agrin

The targeted disruption of the Agrin gene at exons

encoding for the neuron-specific isoform (z-agrin) pro-

duced null mutants for z-agrin as well as severe

hypomorphs for all other forms of agrin, and provoked

death at birth due to respiratory distress. This mutation

resulted in defective synapse organization at the neuro-

muscular junction by impairing both pre- and post-synaptic

differentiation. Anomalies included severe defects in ace-

tylcholine receptors clustering and nerve branching [90].
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The generation of isoform specific mutants for nerve-

derived and muscle-derived agrin demonstrated that only

neural z-agrin is required to induce post-synaptic differ-

entiation and that its absence can also indirectly affect pre-

synaptic differentiation through inhibition of proper retro-

grade signals [91].

Recently, rescue of perinatal death in agrin-deficient

mice was achieved by transgenic expression of neural

isoform of chick agrin and uncovered a reduction in skel-

etal growth [92]. In another recent study, the conditional

disruption of agrin in kidney cells did not compromise the

glomerular basement membrane architecture and function

even when challenged with a protein excess. Thus, unlike

Pln, agrin is thought to be dispensable for proper glomer-

ular filtration [93].

Collagen (XVIII)

Absence of collagen XVIII in Col18a1-null mice resulted

in severe ocular defects affecting vasculogenesis of the

retina and integrity of basement membranes located in

both the anterior and posterior portion of the eye [94, 95].

After derivation onto a defined genetic background, this

mutation was also linked to the increase in width of

various type of basement membranes such as those found

in brain choroid plexuses and kidney proximal tubules.

Such defects were shown to be responsible for accumu-

lation of cerebrospinal fluid in the brain and altered

filtration capacity in the kidney, respectively [96]. The

phenotypes observed in Col18a1-null mice are consistent

with symptoms observed in patients with mutations in the

COL18A1 gene and diagnosed with the recessive Knob-

loch type I syndrome (MIM 267750) [97, 98]. In addition,

high serum levels of the endostatin fragment in Down

syndrome patients carrying an additional copy of the

COL18A1 gene was associated with prevention of solid

tumors, and nucleotide polymorphisms in this fragment

were linked to the development of different type of can-

cers [99–101].

Although collagen XV and XVIII are similar molecules,

compound Col15a1 and Col18a1 knock-out mice did not

display any new phenotype, suggesting that no compen-

sation mechanism takes place in single mutants and that

they exert their scaffolding activity between fibrillar col-

lagens and basement membranes at distinct anatomical

sites [102].

Membrane spanning HSPGs

Syndecan-1

Syndecan-1 (Sdc1) knock-out mice do not display major

developmental anomalies. Nonetheless, Bernfield’s group

demonstrated that hyperplasia occurring in the Wnt-1

transgenic model of mammary tumorigenesis was greatly

inhibited on a Sdc1-null background [103]. These experi-

ments established that Sdc1 is a modulator of Wnt

signaling. Recently, the tumor protective effect of Sdc1

deficiency was confirmed by evaluating the potential of

multiple organs including liver and lung to develop

carcinogen-induced tumors [104]. Another group demon-

strated that considerable resistance to microbial lung

infection was observed in Sdc1-/- newborn mice and was

attributed to the lack of Sdc1 shedding and the absence of

HS chains on epithelial cell surfaces [105]. Interestingly,

both knock-out and over-expression of Sdc1 induced

defects in wound healing processes [106, 107].

Other syndecans

Although syndecan-2 (Sdc2) null mice have not been

reported, recent siRNA studies revealed that Sdc2 plays an

important role in angiogenesis [108]. Mice lacking the

syndecan-3 (Sdc3) protein have mild defects in synapto-

genesis as revealed by impaired hippocampal functioning

and locomotion [109, 110]. In addition to neural migration

defects in the brain, Sdc3-null mice show partial resistance

to obsesity under high-fat diet [111]. Furthermore, Sdc3-/-

skeletal muscles are dystrophic and display hyperplastic

nuclei in both myoblasts and satellite cells [110]. Synd-

ecan-4 (sdc4) null mice exhibit fewer muscular defects that

are limited to satellite cell function. On the other hand,

absence of Sdc4 triggered degeneration of placental vessels

in Sdc4-/- embryos and delayed repair after wounding

[112, 113]. Nonetheless, except for some deficiencies

exacerbated by stress/injury, syndecan knock-outs have

been shown to be fertile and viable. This implies that

overlapping functions exist between members of the

syndecan family (reviewed in [114]).

Glypican-3

The Glypican-3 gene (GPC3) is mutated in patients diag-

nosed with Simpson-Golabi-Behmel type 1 syndrome

(SGBS, MIM# 312870), a rare X-linked disease charac-

terized by skeletal anomalies and overgrowth of various

tissues and organs including bone during both pre- and

postnatal life [115]. Gpc3-deficient mice exhibit most of

the clinical features of SGBS patients [116]. More recently,

altered hematopoiesis that result in decreased osteoclast

differentiation was found to be responsible for delayed

endochondral ossification in Gpc3-null mice [117]. In

contrast to Gpc-3, absence of glypican-2 did not result in

any obvious phenotypic defect [118]. To date, no mouse

models are available for the other four glypican family

members.
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Heparan sulfate biosynthesis and processing enzymes

EXT1 and 2

Patients diagnosed with the hereditary multiple exostoses

(HME) disease carry a mutation in one of the EXT genes

(EXT1–3), develop benign cartilage-capped bony out-

growth from long bones, and often display short stature.

Although disruption of one allele of the Ext1 gene only

induces reduction of HS chain production without exosto-

ses formation, Ext1-deficient embryos completely lack HS

chains and die at gastrulation (E8.5) before cartilage for-

mation takes place [119]. The cause of embryonic lethality

involves regulation of HS-binding growth factor activity

and is not primarily due to alteration in the structure of

basement membrane as seen for knock-outs of core pro-

teins such as agrin and perlecan. Conditional genetic

disruption of EXT1 specifically in brain resulted in defects

in brain development associated with abnormal midline

axon guidance [120].

In contrast to Ext1 heterozygotes, disruption of one

allele of Ext2 gene resulted in a significant development of

exostoses as well as various defects in cartilage differen-

tiation at distinct histological sites [121]. Over-expression

of Ext 2 resulted in up-regulation of HS production,

enhanced expression of Ext1, and increased formation of

bone trabeculae [122]. Together, Ext2 transgenic and

halploinsufficiency studies indicate that Ext2 is an essential

component of the Golgi-located glycosyltransferase

Ext1/Ext2 complex [123]. A recent study demonstrated that

levels of Ext1 and Ext2 can affect the expression of a

specific N-sulfotransferase isoform (NDST1) and global

HS sulfation levels, possibly through competitive interac-

tions in a HS biosynthetic complex called GAGosome

[124].

Glucosaminyl N-deacetylase/N-sulfotransferases

and C5-epimerase

Out of the four genes encoding glucosaminyl N-deacetyl-

ase/N-sulfotransferases (NDSTs) only three knock-outs

have been reported. Mouse embryos carrying null muta-

tions in the Ndst1 gene exhibited dramatic reduction in N-

sulfation of HS in a wide range of tissues and died at birth

from respiratory failure [125]. In addition, these newborn

displayed severe developmental defects of forebrain-

derived structures and developed cerebral hypoplasia, eye

and facial defects [126]. Interestingly, absence of Ndst1

negatively regulated O-sulfation and epimerization reac-

tions indicating a regulatory role in subsequent HS

modifications and specific binding of HS-binding growth

factors. Interestingly, C5-epimerase (Hsepi-/-) knock-out

resulted in HS structural changes similar to the alterations

seen in Ndst1-null mice [127]. Like for NDST1 knock-out,

C5-epimerase targeted disruption resulted in perinatal

lethality due to lung defects [128]. In addition, phenotypic

analysis of Hsepi-null newborns revealed renal agenesis

and skeletal malformations [128].

Targeted inactivation of the Ndst2 gene did not result in

HS structure changes in most tissues, but induced a severe

lack of granules in connective tissue-type mast cells lead-

ing to reduction in histamine and to the absence of sulfated

heparin and proteases production [129]. This mast cell

phenotype showed some similarities with the phenotype

induced by the absence of the SG core protein in mast cells.

However, targeting of the Ndst2 gene in mice remained

limited to connective-tissue-type mast cells that primarily

synthesize highly sulfated HS chains whereas SG defi-

ciency induced additional defects in other cell types. These

differences are likely due to the presence of both HS and

chondroitin sulfate chains on SG core protein. Recent

studies demonstrated that only subtle hematological and

behavioral abnormalities were observed in Ndst3-null mice

[130].

Lastly, compound knock-out mutations in Ndst1 and

Ndst2 genes result in early embryonic lethality, and double

null embryonic stem cells lacked N-sulfate but synthesized

HS with 6-O-sulfate and N-unsubstituted glucosamine

residues [131, 132]. These data indicated that, in the

absence of Ndst1 and Ndst2, the N-deacetylating activity

can be accomplished by other Ndst isozymes such as Ndst3

and that 6-O-sulfation can be partially carried out without

prior N-sulfation. Further studies showed that, in fact, only

one copy of the Ndst1 allele is required, as Ndst1?/-/

Ndst2-/- mice developed normally to term [133]. Studies

using these mouse models determined that biosynthesis of

N-sulfated HS chains is crucial for the generation of

binding sites for key ligands (e.g., FGF, hedgehog, Wnt)

involved in important regulatory pathways during devel-

opment [134, 135].

O-Sulfotransferase

Mice deficient in HS 2-O-sulfotransferase (Hs2st) display

severe bilateral kidney morphogenetic defects and died as

neonates due to a complete failure of kidney function

[136]. Additionally, Hs2st-/- mice showed eye and skel-

eton abnormalities but did not exhibit lung defects as seen

in Ndst1-/- neonates. Thus, distinct HS sulfation patterns

are important for the development of specific organs.

Although HS chains of Hs2st-/- mice lack 2-O-sulfate

groups, compensatory increases in N- and 6-O-sulfation are

believed to be responsible for normal affinity and signaling

response to HS-binding growth factors [137].

Out of the three genes encoding HS 6-O-sulfotransfe-

rases, Hs6st1 and Hs6st2 have been knocked-out in mice.
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Absence of Hs6st1 has been associated with bilateral

abnormal retinal innervation [138]. In addition, the

majority of Hs6st1-deficient mice died between gestational

stage E15.5 and birth due to severe growth retardation

linked to aberrant placental angiogenesis [139]. In contrast,

Hs6st2-/- develop normally, survive, and are fertile [140].

Double knock-out studies demonstrated that Hs6st1-/-/

Hs6st2-/- mice displayed very little 6-O-sulfates on their

HS chains and died earlier than Hs6st1-/- embryos. In

these mutants, compensatory mechanisms also led to a

significant increase in Hs2st activity [140]. Differential

affinity and signaling properties of HS-binding growth

factors in 2-O- and 6-O-sulfated depleted backgrounds

when compared to wild-type indicated that both 2-O- and

6-O-sulfates are likely to regulate signaling by inducing

different interactions between ligands and their receptors.

Genetic disruption of the HS 3-O-sulfotransferase-1

(Hs3st1) gene encoding for the isozyme controlling the

synthesis of anticoagulant heparin species did not result in

a coagulopathic phenotype possibly because 3-O-sulfates

modification are rare and can be accomplished by seven

distinct 3-O-sulfotransferase isoforms [141].

Secreted sulfatases

Due to redundancy between the two sulfatase (Sulf) pro-

teins that remove 6-O-sulfate residues from HS, neither

Sulf 1 nor Sulf2 genes resulted in major developmental

defects [74, 142]. In contrast, 50% of Sulf1-/-/Sulf2-/-

double mutants died around birth, and among the survivors

only 20% became adults and displayed a short stature

phenotype in conjunction with renal and skeletal defects

[142]. This double mutant phenotype has been proposed to

be the result of the hyper-activation of the FGF signaling

pathway. Interestingly, double Sulf1-/-/Sulf2-/- mice

displayed a similar, but less severe, phenotype than that

observed in Hs2st-deficient mice (see above) and exhibited

HS chains with increased 6-O-sulfates and decreased 2-O-

sulfates levels [137, 143].

Because only double Sulf1-/-/Sulf2-/- mutants exhibit

significant postnatal defects, Sulf 1 and Sulf 2 are believed to

cooperate functionally [143]. However, the relatively mild

developmental defect observed in Sulf1-/-/Sulf2-/- mice is

in contradiction with previous studies reporting that over-

expression of Sulfs in cell culture can modulate the activity

of HS-binding growth factors important for embryonic

patterning, and suggests that these two enzymes are rather

involved in the fine-tuning of HS selectivity [144, 145].

Heparanase

Homozygous transgenic mice over-expressing human

heparanase (HPSE, an endo-b-D-glucuronisade cleaving

HS chains at only a few sites) under the control of the

chicken b-actin promoter resulted in accelerated tissue

remodeling exemplified by a significant increase in

embryonic implantation sites, overbranching and widen-

ing of ducts in mammary glands, and accelerated hair

regrowth and vascularization [146]. Additionally, over-

expression of HPSE in osteoblasts and osteocytes induced

a significant increase in bone apposition rates indicating

that HS chains of proteoglycans are inhibitors of osteo-

blast activity and bone formation [147]. More recently,

transgenic over-expression of HPSE was also shown to

correlate with increased HS sulfation and increased

interaction of HS-binding growth factors with their cog-

nate receptor [148].

Summary

Molecular biology and molecular genetics have revealed a

wealth of information on the structures of HSPGs, the

enzymes that assemble HS chains and the essential func-

tions these gene products play in a diverse array of

biological processes. HSPG core proteins are generally

large, modular and encoded by complex genes. We know

little about whether these genes are alternatively spliced or

to what extent these proteins are proteolytically modified in

ways that generate novel functions, although a few pro-

vocative examples of this are available. We also have much

to learn as to how HSPGs function in large extracellular

complexes which may change in composition under dif-

ferent physiological states. Consequently, significantly

more needs to be done to understand the biology of this

important class of molecules.
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