
VISIONS & REFLECTIONS (MINIREVIEW)

New insights into mineralogenic effects of vanadate

Vincent Laizé Æ Daniel M. Tiago Æ Manuel Aureliano Æ
M. Leonor Cancela

Received: 15 June 2009 / Revised: 4 August 2009 / Accepted: 18 August 2009 / Published online: 4 September 2009
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Introduction

Vanadium is a transition metal that occurs naturally in a

variety of minerals and exhibits an exceptional complex

chemistry in solution, e.g., several oxidation states ranging

from ?2 to ?5, and formation of vanadium oligomers such

as decameric vanadate (?5) species [1–4]. Besides its

metallurgical role in steel alloys, vanadium is also an ultra

trace element known to participate in many biological

processes and considered to be essential for living organ-

isms [5, 6]. It accumulates in a variety of organisms

ranging from microbes to vertebrates, where it modulates

the activity of an array of key enzymes or participates as a

cofactor in the active centre of others [1, 2, 5–9]. In

mammals, vanadium compounds can mimic insulin action

and may prevent chemical carcinogenesis, most probably

through the inhibition of cellular tyrosine phosphatases and

subsequent activation of signalling pathways, suggesting

their use as pharmacological tools to treat human diabetes

mellitus and cancer, respectively [10–14]. Anti-tumoral

action of vanadium is, however, controversial as several

studies have proposed that vanadium could act as a mito-

gen, tumor promoter and co-carcinogen (see [15] and

references therein). Other studies have reported an osteo-

genic role for vanadium compounds and suggest that

vanadium could also have a therapeutic application in

bone-related diseases, such as osteoporosis [16–18]. Dec-

ades of research have thus provided evidence for

vanadium’s physiological and pharmacological properties,

supporting the claim that it may represent a promising

therapeutic agent for diseases targeting billions of human

beings and affecting a wide range of pathological condi-

tions. However, the development of vanadium-based

pharmaceuticals will probably take some time since vari-

ous issues related to vanadium toxicity, speciation and

multiple targeting will need to be solved before advancing

to clinical trials. Despite being used for decades by

researchers as an inhibitor of protein tyrosine phosphatases,

it is still not totally clear which vanadium species induce or

which signalling pathways transduce physiological and

pharmacological effects. Vanadium chemistry is complex,

and different species or complexes may induce different

pathways [5], affecting different biological processes. This

work intends to review what is presently known about the

bone-related role of vanadium in mammals and present

recent in vitro data on the mineralogenic effect of vanadate

in fish, which have become promising model organisms for

vertebrate bone-related studies.

Physiological role of vanadium in bone development

The role of vanadium in bone development was first

established in studies aiming at demonstrating its essenti-

ality in diets, the primary source of vanadium in animals.

Although most dietary vanadium is rapidly excreted in the

urine and faeces, some retention occurs in various tissues

or organs, principally in the bone, kidney, spleen and liver

[19–22]. Studies in sheep, chicken and rodents have shown

that bone is the main site of vanadium deposition [20, 23–

29], and this is dependent on dietary intake, the chemical

form of vanadium and, to some extent, the species [23, 24].

It has been proposed that the retention of dietary vanadium

in bone may occur through the substitution of phosphate by

vanadate within the hydroxyapatite lattice [19, 30], which
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could serve either as a detoxification mechanism or to build

up bone crystals [30]. Other studies have shown that ani-

mals (principally chicken, goat, sheep, mouse and rat) fed a

diet enriched or deficient in vanadium exhibited retarded

skeletal development and severe bone deformities that

could ultimately lead to death [31, 32]. These results sug-

gest a major physiological role for dietary vanadium in

bone development, further confirmed by data showing

delayed ossification and skeleton malformation in mice

exposed in utero to vanadium (see [33] and references

therein). On the basis of in vivo data showing that dietary

supplements of vanadium can (1) reverse symptoms of

osteoporosis in streptozotocin-induced diabetic (STZD)

rats [34, 35], (2) increase bone mineral density, minerali-

sation and formation in diabetic and non-diabetic rats [36],

and (3) stimulate the activity of alkaline phosphatase, a

marker for bone formation, in weanling rats [37], vanadium

has been presented as a promising therapeutic agent to fight

impaired bone formation in human diseases such as oste-

openia and osteoporosis [38]. Although still under

investigation, this bone-related pharmacological role of

vanadium has been further evidenced by in vitro studies

demonstrating its osteogenic properties (see below).

Pathways involved in vanadium intracellular signalling

In vitro cell systems capable of mineralising their extra-

cellular matrix are suitable models to study the cellular

mechanisms affecting mineralisation in a way resembling

the in vivo processes. Mammalian and avian in vitro bone-

derived cell systems have been used to identify cellular

mechanisms and signalling pathways involved in the bone-

related effects of vanadium compounds. It was shown, in

particular, that vanadate, vanadyl (?4) and various vana-

dium complexes regulate osteoblast-like cell proliferation

and differentiation [16, 39–43]. In general, low concen-

trations have a stimulatory effect, while higher amounts

inhibit cell proliferation and alkaline phosphatase (ALP)

activity, a marker commonly used to assess osteoblast

differentiation. Vanadate was also shown to stimulate the

synthesis of collagen, the main component of osteoblast

extracellular matrix [39, 44]. Data on the effects of vana-

dium on signalling mechanisms in osteoblasts are sparse.

A possible mechanism to explain vanadium effects on

osteoblast proliferation and differentiation involves the

inhibition of protein tyrosine phosphatases, which regulate

the phosphorylation state of signalling molecules such as

the mitogen-activated protein kinases (MAPK). This inhi-

bition could result from the structural and chemical

resemblance between vanadate and phosphate and the

consequent effect on phosphate-metabolising enzymes

[45–48]. Activation of the MAPK signalling pathway by

vanadium compounds and subsequent regulation of osteo-

blast-specific gene expression by the extracellular signal-

regulated kinase (ERK) has been reported in MC3T3-E1

osteoblast-like cells [16, 49], and the phosphatidylinositol-3-

kinase (PI-3K) signalling pathway was shown to also

partially transduce the vanadium effect on osteoblasts [16].

The activation of both MAPK and PI-3K pathways by

vanadium compounds probably explain the insulin-mimetic

action of vanadium [41, 43]. Indeed, both insulin and

insulin-like growth factors (IGFs) achieve their biological

effects through the activation of MAPK and PI-3K sig-

nalling pathways [50, 51], in particular the regulation

of osteoblast proliferation and differentiation [52–55].

Surprisingly, the characterisation of bone-related effects of

vanadium compounds and respective cellular mechanisms

is exclusively restricted, in mammals, to the osteoblastic

lineage; no in vitro data are available on the vanadium

effect in osteoclast (bone resorption) and chondrocyte

(endochondral ossification) lineages in mammals.

New in vitro data on bone-related effects of vanadium

Anthropogenic activities have led to an overall enrichment

of vanadium in the marine environment (see [56] and

references therein), exposing marine organisms to con-

centrations that could prevent their normal development.

Because they might be particularly affected by an increase

of vanadium in their environment and because they rep-

resent a suitable model to study vertebrate skeletal

development, in particular mechanisms associated with

bone formation and mineralisation, teleost fish have been

recently used, as an alternative to classical model verte-

brates, to investigate the biological role of vanadium [57,

58]. Toxicity levels have been determined and shown to

largely depend on the mode of administration, concentra-

tion, time upon exposure and vanadate species [57, 58]. As

reported for other vertebrates, vanadium accumulates upon

exposure in various fish organs and tissues, in particular in

bone [59], but to the best of our knowledge no in vivo

studies demonstrating an effect of vanadium on fish bone

development have been published so far. On the contrary,

recent in vitro data clearly indicated that in fish, as in

mammals, vanadium affects both proliferation and miner-

alisation of bone-derived cell lines.

Two continuous cell lines—VSa13 and VSa16—have

been recently developed from the calcified vertebra of the

gilthead seabream (Sparus aurata L.), an important marine

teleost fish for aquaculture and an emergent animal model

to study vertebrate skeletal development [60]. Although

representing different bone cell types—VSa13 cells have

been associated with the chondrocyte lineage, while VSa16

cells would represent pre-osteoblasts—both cell lines are
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capable of mineralising their extracellular matrix under

appropriate culture conditions [60]. These two cell lines,

which represent the only bone-derived cell lines of fish

origin so far developed, have been used in various studies

aiming at unravelling mechanisms of mineralisation in fish,

in particular those regulated by vanadium compounds

[61–63]. Vanadium was shown to accumulate in fish bone-

derived cells upon exposure to micromolar concentrations

(5–7.5 lM total vanadium) of monomeric and decameric

vanadate species [63] and to affect cellular proliferation

and extracellular matrix (ECM) mineralisation [62]. While

vanadate only stimulated chondrocyte proliferation, it

strongly impaired ECM mineralisation of both chondro-

cytes and osteoblasts (Fig. 1). Similar proliferative and

anti-mineralogenic effects were observed upon exposure to

nanomolar concentrations of IGF-1 or insulin (Fig. 1),

suggesting that vanadium compounds can mimic insulin-

like activity in fish bone-derived cell lines. Similar effects

were shown to be promoted by insulin and IGF-1 in

osteoblast-like MC3T3-E1 cells [64] and chondrocyte-like

ATDC5 cells [65, 66], suggesting that mechanisms asso-

ciated with insulin-like action on the differentiation of

bone-derived cell lines have been conserved throughout

evolution and confirm the suitability of VSa13 and VSa16

cell lines to investigate vanadate insulin-like activity in

bone. ECM mineralisation was differentially impaired in

chondrocyte (*88%) and in osteoblast (*65%) upon

vanadate treatment, demonstrating a bone cell type speci-

ficity [62]. Cellular mechanisms and signalling pathways

involved in proliferative and anti-mineralogenic effects of

vanadate in fish chondrocyte and osteoblast cells were

investigated using specific inhibitors of the two main

pathways previously associated with insulin-like effect in

mammalian cell systems: PD98059, a specific inhibitor of

the MAPK pathway, and wortmannin, a specific inhibitor of

the PI-3K pathway. These results suggest that, under basal

culture conditions, PI-3K and MAPK pathways are not

activated during proliferation of VSa13 and VSa16 cells,

but actively participate in cell differentiation and/or ECM

mineralisation. Proliferative effects promoted by IGF-1 and

vanadate in VSa13 cells and IGF-1 in VSa16 cells were

reverted by PD98059 demonstrating the activation of

MAPK pathway in both cell lines (Fig. 2; [62] and

unpublished results), as previously reported for both factors

in mammalian osteoblast [16, 49, 67, 68] and for IGF-1 in

chondrocyte [65] lineages, further supporting the idea of

conservation of growth-related insulin-like mechanisms

throughout evolution and across cell types. Similarly, the

MAPK pathway was also involved in anti-mineralogenic

effect of insulin and vanadate in VSa13 cells, and IGF-1 and

vanadate in VSa16 cells (Fig. 3; [62] and unpublished

results), in agreement with recent data showing ERK inhi-

bition of cell differentiation and/or ECM mineralisation in

mammalian osteoblast [64] and chondrocyte [65, 66]
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Fig. 1 Effect of vanadate, insulin and IGF-1 on VSa13 and VSa16

cell proliferation (a) and ECM mineralisation (b). Cell proliferation

was evaluated after 8 days using MTS assay. Cells were seeded in 96-

well plates at 1.5 9 103 cell/well then treated either with 10 nM

insulin, 10 nM IGF-1, 7.5 lM vanadate or left untreated. Mineral

deposition was revealed by von Kossa staining and evaluated by

densitometry analysis. Cells were seeded in 24-well plates, grown to

confluence then treated for mineralisation [60]. Mineralising cultures

were subsequently treated with 10 nM insulin, 10 nM IGF-1, 5 lM

vanadate or left untreated. Values are the mean of at least three

independent experiments. Asterisks indicate values statistically

different from their respective control (P \ 0.05; one way ANOVA)
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Fig. 2 Putative mechanisms of action for vanadate proliferative

effects in vertebrate bone-derived cell lines. Black circled 5 and 13
indicate pathways related to chondrocyte-like ATDC5 and VSa13 cell

lines, respectively. Grey circled 3, 6, 16 and 63 indicate pathways

related to osteoblast-like MC3T3-E1, UMR106, VSa16 and MG-63

cell lines, respectively. Black and dashed arrows indicate activated

and putatively activated pathways, respectively. V indicates vanadate.

Raf, MEK and ERK are intermediates in the MAPK pathway
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lineages. Interestingly, the PI-3K pathway was also

involved in the anti-mineralogenic effect of insulin and

vanadate in VSa13 cells, and the activation of PI-

3K\Ras\ERK pathway, as seen in mammalian MC3T3-E1

cells [64], was therefore proposed. This pathway was

apparently not involved in the effects promoted by IGF-1

and vanadate in VSa16 cells. Incomplete reversion of the

vanadate anti-mineralogenic effect by both PD98059 and

wortmannin in fish chondrocytes suggested that other cel-

lular mechanisms might be involved. ALP, by cleaving

pyrophosphate, an inhibitor of ECM mineralisation [69],

and collagen, an essential structural component of ECM

[70], were considered as possible vanadium targets. While

involvement of collagen was ruled out, enzymatic activity

of ALP was decreased upon vanadate treatment and thus

proposed to participate in its anti-mineralogenic effect as

previously reported in mammals [8, 16, 17, 71]. Interest-

ingly, none of these effects were promoted by insulin,

suggesting that vanadate action was independent of insulin

receptor or insulin signalling activation. In light of these

results, an alternative mechanism was proposed for vana-

date action on VSa13 cells ECM mineralisation, based on

specific inhibition of ALP (Fig. 3), probably through sub-

stitution of phosphate intermediates during catalysis, as

reviewed elsewhere [72].

Conclusions/perspectives

Interest in vanadium has been growing because of its sig-

nificant physiological role in mammals and its promising

pharmacological properties, in particular those related to

diabetes, cancer and osteoporosis. Research on vanadium,

however, is hampered by its complex chemistry and toxic

effects at low concentrations. Fish have been recently

recognised as a suitable alternative to mammalian systems

to study vertebrate skeletal development, in particular for

those mechanisms related to bone formation and tissue

mineralisation. In addition, given the similarity observed in

cellular responses between mammalian osteoblast and

chondrocyte cell lines and the recently developed fish

bone-derived cell lines VSa13 and VSa16, fish appears to

be an adequate model organism for both in vivo and in

vitro approaches to study vanadate-related mechanisms of

action involved in bone and cartilage formation/mainte-

nance. The recent data summarised in this review provide

clear evidence for the evolutionary conservation of mech-

anisms involved in vanadate-mediated/related pathways

between fish and mammals and further support the use of

fish to study vanadate-related bone mechanisms.
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