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Abstract The paradoxical effects of ovarian hormones in

both the promotion and prevention of breast cancer have

been debated for over 30 years. Genetic studies have

demonstrated that ovarian hormones act through NF-jB to

stimulate proliferation and ductal elongation, whereas the

p53 tumor suppressor protein plays a central role in ren-

dering the mammary epithelium resistant to tumorigenesis.

Transcriptional profiles now suggest that ovarian hormones

stimulate a constellation of genes that interact with NF-jB

and p53 to arbitrate the competing demands for prolifera-

tion and surveillance. Genes that participate in chromatin

remodeling are among the acute transcriptional responses

to estrogens and progestins. These genes are proposed to

initiate epigenetic programs that influence the balance

between proliferation and surveillance, and render the

breast epithelium resistant to tumors.
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The paradoxical effects of ovarian hormones

Hormonal exposures are prominent among the factors

determining risk of breast cancer. Associations between

early menarche and late menopause as well as hormone

replacement therapies suggest that lifetime exposures to

ovarian steroids (estrogens and progestins) are associated

with increases in the relative risk of breast cancer of 1.2–

1.5 [1]. Elevated levels of circulating estrogens are also

associated with increasing risk in a dose-dependent fashion

among pre-menopausal women [2]. While estrogens can

have direct genotoxic effects by alkylating DNA [3],

excessive signaling through the estrogen receptor appears

to be the primary mechanism for breast carcinogenesis as

modest increases in expression of estrogen receptor alpha

(ERa) in transgenic mice resulted in mammary hyperpla-

sias [4]. Levels of estrogen and progesterone receptors vary

among strains of mice, influencing mammary susceptibility

[5, 6], and polymorphisms in the gene encoding ERa in

humans (designated ESR1) have been linked to increased

breast cancer risk [7–9]. Therefore, excessive or inappro-

priate signaling through estrogen and progesterone

receptors are key factors determining the risk of breast

cancer.

However, ovarian hormones pose a paradox as estrogens

and progestins also mediate the protection from breast

cancer afforded by parity. A full-term pregnancy early in

reproductive life reduces breast cancer incidence by up to

50% [10, 11]. Estrogen and progesterone are sufficient to

mimic the effect of pregnancy in reducing the incidence of

carcinogen-induced mammary tumors [12–14]. Thus,

estrogens alone as well as in combination with progestins

are able to engage pathways that are potent inhibitors of

breast cancer.

Activity of the p53 tumor suppressor and breast cancer

risk

Tumor suppressor genes underlying heritable breast can-

cers identify pathways that may mediate the protection

D. J. Jerry (&) � K. A. Dunphy � M. J. Hagen

Paige Laboratory, Department of Veterinary and Animal

Sciences, University of Massachusetts, 161 Holdsworth Way,

Amherst, MA 01003-9286, USA

e-mail: jjerry@vasci.umass.edu

D. J. Jerry � K. A. Dunphy � M. J. Hagen

Pioneer Valley Life Sciences Institute, Springfield, MA, USA

Cell. Mol. Life Sci. (2010) 67:1017–1023

DOI 10.1007/s00018-009-0244-7 Cellular and Molecular Life Sciences



afforded by parity. The p53 pathway is a prominent can-

didate as heritable mutations in TP53 are associated with

Li-Fraumeni syndrome, and breast cancer is the most

common tumor type among women carrying heterozygous

mutations [15, 16]. Mutation of TP53 is common in spo-

radic breast cancers [17] and appears to be a necessary

collaborating alteration in breast cancers associated with

heritable mutations in BRCA1 [18, 19]. CHK2 and HDM2

(the human ortholog of Mdm2 in mice) are regulators of

p53 activity, and polymorphisms in these genes were

identified as breast cancer risk alleles [20, 21]. Together,

these genetic studies suggested that p53 activity in the

mammary epithelium may be limiting and that increased

activity of p53 could confer resistance to tumors. Indeed,

the apoptotic activity of p53 is reduced in the mammary

epithelium of BALB/c-Trp53?/- mice, predisposing them

to spontaneous tumors. Conversely, the activity of p53 was

increased in parous mice and delayed the onset of mam-

mary tumors in BALB/c-Trp53?/- mice [22], while in the

absence of p53 parity failed to reduce mammary tumors

[23, 24]. Thus, sufficiency of p53 activity represents a

vulnerable link in the barriers to tumorigenesis in the breast

epithelium.

A balancing act

While it is clear that stimulation of mammary tissues with

estrogen and progesterone promotes proliferation, p53-

mediated apoptosis is also increased [25]. How do these

hormones induce opposing actions? Transcriptional pro-

files of mouse mammary tissues after treatment with

estrogen and progesterone provide clues to the basis for the

apparent paradox [26]. Using protein–protein interaction

databases, we found that interactions with p53 and c-Rel

were significantly greater than expect by chance (Fig. 1),

suggesting that these are major targets regulated by the

hormone treatments. The identification of c-Rel, a subunit

of NF-jB, is satisfying because NF-jB is an essential

mediator for mammary gland development [27, 28].

Deletion of IKKa (required for activation of NF-jB) in

mice phenocopies ERa knockouts [29, 30]. Therefore,

NF-jB is presumed to mediate the proliferative effects of

estrogens. Although estrogen and progesterone did not alter

p53 expression or its basal activity [25], these hormones

induced a constellation of genes that potentiates the

responsiveness of p53 to genotoxic stimuli [31, 32]. Thus,

it appears that the proliferative effects of estrogen and

progesterone are coordinated with an increase in genome

surveillance.

A subset of the gene products induced by estrogens and

progestins interacts with both p53 and NF-jB, and thus

is ideally situated to arbitrate the decision between

proliferative responses mediated by NF-jB and the sur-

veillance activity of p53 (Fig. 1). Of these, EGR1 is

especially intriguing as it acts to both temper transactiva-

tion mediated by NF-jB as well as promote the

transcriptional activity of p53 [26, 33, 34]. In addition to

being increased by estrogen and progesterone, DNA dam-

age activates CArG elements in the EGR1 promoter,

resulting in further increases in expression. Proper function

of EGR1 is essential for p53-dependent apoptosis in

response to irradiation in mouse embryo fibroblasts (MEFs)

[35]. In addition to interactions with p53, transcriptional

studies of EGR1-deficient MEFs demonstrated interactions

with TGFb signaling. Furthermore, estrogen and proges-

terone increase active TGFb1 in the mammary epithelium

[36, 37], which collaborates with p53 to restrain prolifer-

ation and potentiate radiation-induced apoptosis [25, 37,

38].

In addition to the acute changes, the mammary epithe-

lium retains a ‘‘memory’’ of hormonal exposures that

potentiates p53-dependent apoptosis even after the hor-

mones are withdrawn [22]. Chromatin remodeling enzymes

are prominent among the genes induced by estrogen and

progesterone, suggesting that epigenetic mechanisms may

participate. CARM1 and PRMT1 are histone methylases

that bind to p53 and enhance transcriptional activation of

p53 target genes [39]. Egr1 also participates directly in

methylation of target genes [40] and regulates epigenetic

patterning of social behaviors [41]. TGFb signaling is a

target of Egr1 [35] and is among the pathways that have

been shown to be increased persistently in parous mam-

mary tissues compared to nulliparous [42]. TGFb signaling

may be critical as p53 collaborates with Smads to form

complexes with mSin3A that contribute to gene silencing

[43]. While p53 and TGFb signaling can silence genes,

ING1 binds specifically with tri-methylated histone 3

(H3K4me3) on active chromatin [44] and recruit p53 to

enhance transcriptional activation of target genes [45].

Therefore, prolonged exposure to estrogen and progester-

one during pregnancy stimulates chromatin remodeling

proteins that together with p53 orchestrate remodeling of

the epigenetic landscape in mammary epithelia to favor a

range of protective measures that include p53-mediated

apoptosis.

A tale of two receptors

Although circulating levels of estrogen and progesterone

are increased during pregnancy, 17b-estradiol appears to be

more potent in rendering the mammary epithelium resistant

to tumors. Estrogenic compounds have anti-tumor activities

in humans [46, 47], and estrogen alone was sufficient to

prevent mammary tumors in rodents [48]. Furthermore, the
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effect of 17b-estradiol was *threefold more potent than

progesterone in potentiating p53-dependent responses in

mice [25]. Two estrogen receptors (ERa and ERb) mediate

the actions of estrogens and are encoded by separate genes

designated ESR1 and ESR2, respectively. Both ERa and

ERb share a common structure with major divergence

localized to the N-terminal transactivation domain. While

ERa and ERb have similar binding affinities for 17b-

estradiol (Kd of 0.1 and 0.4 Nm, respectively), ERb showed

a greater affinity for phytoestrogens such as genestein [49].

Both estrogen receptors transcriptionally activate consensus

estrogen-responsive elements in response to physiologic

estrogens and phytoestrogens [50]. In cells that express

both receptors, heterodimers also efficiently transactivate

reporter genes [51]. However, ERa and ERb also bind AP1

sites, but yield opposing actions with ERa mediating tran-

scriptional activation, whereas ERb is inhibitory [52].

Therefore, the effects of ERa and ERb on gene expression

depend on the context of promoter elements.

The luminal epithelia of the mammary gland express

both ERa and ERb, and thus heterodimers may predom-

inate. In contrast, the basal epithelial cells express solely

Fig. 1 Balancing the responses

to estrogens and progestins.

Genes differentially expressed

after acute exposure to

17b-estradiol and progesterone

(4 days) were identified

previously [26]. Among these

genes, first-neighbor

interactions with p53 and

NF-kB were significantly over-

represented. Chromatin

remodeling enzymes together

with p53 may target epigenetic

alterations responsible for the

persistent increase in p53

activity in parous mammary

epithelium. The colors indicate

the relative levels of mRNA

expression in the E ? P-treated

compared to the vehicle-treated

controls (see legend). The

interaction database was

obtained from NCBI, and the

final model is adapted from the

visualization using Cytoscape
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ERb. Expression of the two estrogen receptors also differs

between nulliparous and parous rodents. During preg-

nancy, the levels of ERb are increased among multiparous

rats compared to nulliparous. This increase is associ-

ated with a 50% decrease in BrdU incorporation in the

mammary epithelium of parous mice compared to the

nulliparous mice [53], suggesting opposing effects of ERa
and ERb.

Attempts to understand the functions of these receptors

using cell-based assays have yielded contradictory results

with respect to their actions on p53. Using MCF7 cells,

exogenous ERa bound the C-terminus of p53 and inhibited

transactivation of a PCNA-luciferase reporter [54], while

experiments with HeLa cells demonstrated that exogenous

ERa bound the N-terminus of p53, sparing it from degra-

dation by HDM2 and enhanced transactivation of a

Cdkn1a/p21-luciferase reporter [55]. With respect to reg-

ulation of endogenous ESR1, p53 was shown to both inhibit

[56] as well as maintain ERa levels in MCF7 cells [57]. In

contrast to these cancer-derived cell lines, introducing

exogenous ERa into MCF10A cells resulted in transcrip-

tional activation of a reporter gene, but failed to induce

proliferation [58]. Similarly, in normal breast epithelial

cells immortalized with telomerase (76N-Tert), treatment

with estrogen and progesterone inhibited cell proliferation

and was associated with an increase in transactivation by

p53 [59]. The inconsistency of the results among experi-

ments may reflect variations in the complement of

co-activators among cell lines, which strongly influence the

activities of ERa and p53 [60, 61].

A more consistent picture emerges from experiments

varying ERb levels. Transient transfection of ERb
enhanced radiation-induced expression of p21 [62]. Simi-

larly, expression of ERb inhibited proliferation of MCF7

cells and blocked tumor formation as xenografts [63, 64].

Expression of ERb also inhibited tumor growth in T47D

cells, which express a missense mutant of p53 [65, 66].

Thus, ERb may have p53-independent anti-proliferative

activities. Conditional expression of ERb in MCF7 cells

increased expression of pro-apoptotic target genes [67].

Although ERa and ERb show similar potency in transac-

tivation of reporter genes and appear to bind to similar

target sequences identified by chromatin immunoprecipi-

tation [68, 69], co-expression of ERb along with ERa
resulted in dramatic alterations in transcriptional profiles in

breast cancer cell lines [68, 70–73], supporting distinct

actions and targets for these receptors. It is notable that

EGR1 was increased by threefold in MCF7 cells when ERb
was present [70], which is similar to the induction noted in

mouse mammary gland after stimulation with E ? P [26].

Therefore, the opposing activities of ERa and ERb appear

to be in an equilibrium that determines the cellular

response.

Future implications

Although the mechanisms by which ovarian hormones act

to both promote and prevent breast cancer remain incom-

plete, NF-jB and p53 are likely to be major targets. A

division of labor between estrogen receptor subtypes is also

suggested, with ERa being essential for proliferation, while

ERb favors genome surveillance via p53. EGR1 offers an

attractive target for arbitrating the acute response to

genotoxic stress. While the acute responses to estrogen and

progesterone remain significant, the effects on epigenetic

programs are likely to be more profound in determining the

balance among responses and the long-term reduction in

the risk of breast cancer. Consequently, rather than simply

blocking the actions of estrogen and progesterone, one can

envision therapies that harness the effects of these hor-

mones to alter the epigenetic profile so as to shift the

equilibrium to favor surveillance and a durable resistance

to carcinogenesis.
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