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Abstract Although platelets are best known as primary

mediators of hemostasis, this function intimately associates

them with inflammatory processes, and it has been increas-

ingly recognized that platelets play an active role in both

innate and adaptive immunity. For example, platelet adhe-

sive interactions with leukocytes and endothelial cells via

P-selectin can lead to several pro-inflammatory events,

including leukocyte rolling and activation, production of

cytokine cascades, and recruitment of the leukocytes to sites

of tissue damage. Superimposed on this, platelets express

immunologically-related molecules such as CD40L and

Toll-like receptors that have been shown to functionally

modulate innate immunity. Furthermore, platelets them-

selves can interact with microorganisms, and several viruses

have been shown to cross-react immunologically with

platelet antigens. This review discusses the central role that

platelets play in inflammation, linking them with varied

pathological conditions, such as atherosclerosis, sepsis, and

immune thrombocytopenic purpura, and suggests that

platelets also act as primary mediators of our innate defences.
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Innate and adaptive immunity

The innate immune system is composed of physical, chemi-

cal, and cellular components which act together to mediate

the first line of defense against invading microorganisms.

These components are intimately linked with inflammatory

processes that ultimately lead to the removal of most of the

infectious organisms encountered by a host. The innate

immune response activates quickly (within seconds) after

exposure to foreign infectious agents and is antigen nonspe-

cific in that there is no memory associated with the immunity

[1–3]. These characteristics distinguish the innate immune

system from the adaptive immune response, that is mediated

exclusively by B cells and T cells, is slower to activate, and is

exquisitely antigen specific, generating memory with sub-

sequent exposure of the stimulating antigen [1–3]. Table 1

lists the various participants in innate immunity.

Relationship between the innate and adaptive immune

systems

For many years, the innate and the adaptive immune sys-

tems were regarded as separate entities, and innate immune
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responses were considered to be of secondary importance

in the hierarchy of immune functions [4–6]. Janeway’s

seminal experiments showed, however, that the adaptive

immune system was essentially in the ‘‘off’’ mode and only

responded when it received the appropriate signals from

innate immunity [4–6]. He suggested that cells of the

innate immune system could distinguish between ‘‘non-

infectious self’’ and ‘‘infectious non-self’’ by utilizing

groups of germline-encoded receptors (e.g., Toll-like

receptors, TLR) that recognize conserved structures present

in many different microorganisms [4]. For example, TLR

are expressed on antigen presenting cells (APC) such as

macrophages and dendritic cells and recognize pathogen-

associated molecular patterns (PAMPs) such as lipopoly-

saccharide (LPS), peptidoglycan, lipoteichoic acids,

bacterial RNA, and mucans. This recognition of microbial

structures is thought to lead to activation and maturation of

the APC to process and present the microbial antigens to

host T cells to initiate adaptive immunity [6–8]. Sub-

sequently, Matzinger coined the term ‘‘danger’’ and

suggested that the adaptive immune system does not nec-

essarily respond to foreignness but rather to endogenous

signals induced by tissue damage and innate immunity [9].

Convincing evidence has since emerged to show that the

innate immune system may be the ultimate controller of

adaptive immune responses. For example, APC and natural

killer (NK) cells of the innate immune system can signif-

icantly influence the type of adaptive immune response,

by controlling the differentiation of naive T helper (Th0)

lymphocytes into effector cells of a particular type

(e.g., Th1 or Th2 cells) [10–12]. NK cells also play a key

role in bridging innate and adaptive immunity through, for

example, the modulation of cytokine networks [10–12].

These cells constitute a critical innate immune response

against viruses, parasites, intracellular bacteria, and tumor

cells [6, 7]. NK cells have, for example, been shown to

enhance the adaptive IgG response against antigenic

stimulation by secreting cytokines such as interferon (IFN)

[10–12]. Therefore, an understanding of the basis of

NK-cell control of adaptive immunity may have a signifi-

cant impact on immunobiology and medicine.

Recent evidence suggests that platelets themselves may

bridge the innate and adaptive immune systems by

expressing immunostimulatory molecules such as CD154

and thereby help stimulate adaptive immunity such as

antiviral CD8? T cell induction [13]. In addition, in 2004,

it was discovered that platelets themselves express TLR2,

4, and 9 [14, 15], and since then, many reports have

confirmed this observation [16–32]. It appears that at least

one function of platelet TLR4 expression is to mediate

LPS-induced thrombocytopenia and tumor necrosis factor

(TNFa) production by leukocytes [19, 20]. These findings

suggest that platelets themselves may actively mediate

innate immune mechanisms. Perhaps more importantly,

they suggest that platelets act as sentinels in the circulation

that quickly bind pathogens for presentation and activation

of the reticuloendothelial system (RES) [20, 24, 31].

Evolutionary links

The innate immune system is found in all classes of plant

and animal life; it is thought to constitute an evolutionary

older defense strategy and is the dominant immune system

Table 1 Characteristics of innate immunity

Structure Characteristic Function

External surface barriers (skin and mucosa) Keratin

Sebum

Hydrochloric acid

Lysozyme

Physically excluding infectious agents from entrance

Initial chemical attack of infections

Internal innate defense (cellular) Phagocytes

Neutrophils

Macrophages

Eosinophils

NK cells

Phagocytosis

Secretion of inflammatory cytokines

Lysis of virally infected cells

Internal innate defense (soluble) Complement Bacteriocidal

Cytokines

Eicosinoids

Kinins

Histamine

Defensins

Anti-microbial proteins

Mediators of inflammation

Fever
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in plants, fungi, invertebrates, and primitive multicellular

organisms. For example, arthropod hemolymph contains

nucleated circulating cells called hemocytes [33].

Hemocytes look very much like vertebrate macrophages,

can mediate phagocytosis, express TLR, and efficiently

form a cellular capsule around infectious organisms and

secrete antimicrobial peptides [33, 34]. The encapsulation

response is a primordial innate immune reaction that occurs

against a wide range of pathogens and parasites and ulti-

mately results in the formation of multiple layers of dead

melanized hemocytes [35], which isolates the infection

from the hemocoel and allows killing by such processes as

asphyxiation or cytotoxic compound production [36].

Interestingly, hemocytes are not only responsible for

arthropod immunity but are also intimately linked with

wound healing and have the ability to aggregate and

coagulate hemolymph at sites of tissue damage or exo-

skeletal breach [34–36]. In this context, hemocytes were

termed explosive corpuscles which exocytose several pro-

teins at sites of tissue injury that catalyze coagulogen, the

main clotting protein in the hemolymph, to effect

coagulation and the formation of a clot. Clotting can occur

by three basic processes including adhesion of hemocytes

to form a cellular plug, hemocyte agglutination, and

coagulation of hemolymph or the rapid coagulation of

hemolymph [33]. These hematologically analogous

responses may be the evolutionary origins of platelet

function, and it is possible that at some point during evo-

lution the immune function and wound healing function of

hemocytes diverged into more specialized cells such as

vertebrate phagocytes and platelets. This may be a reason

why platelets have several functions that appear related to

immunity, and perhaps these vestigial functions of platelets

are, in fact, still active.

Platelets and inflammation

In addition to their critical role in hemostasis and throm-

bosis, platelets contribute to inflammation, including

immune-mediated inflammation and the development of

atherosclerosis. Inflammation, which leads to an imbalance

between pro-coagulant and anti-coagulant properties of the

endothelium, is characterized by multiple interactions

between leukocytes, endothelial cells (ECs), and platelets.

For example, P-selectin is involved in a number of physi-

ological processes, including platelet aggregation, and

platelet–endothelial and platelet–leukocyte interactions.

P-selectin is a transmembrane protein of the selectin family

of leukocyte adhesion receptors that is synthesized by

megakaryocytes and ECs and stored in their a-granules and

Weibel–Palade bodies, respectively [37, 38]. Upon platelet

and EC stimulation, granule exocytosis translocates

P-selectin to the plasma membrane to mediate such pro-

cesses as leukocyte rolling, one of the first steps in the cell

adhesion cascade [39, 40]. Dole et al. [41] have shown that

infusion of activated platelets causes Weibel–Palade body

release leading to P-selectin-mediated leukocyte rolling,

suggesting that platelet P-selectin is also crucial in the

process of inflammation. The rolling leukocytes subse-

quently become activated by chemokines present on the

endothelial surface such as monocyte chemoattractant

protein I (MCP-I) and RANTES [42, 43]. The importance

of this P-selectin-mediated event is apparent when targeted

disruption of the P- and E-selectin gene in mice markedly

inhibits leukocyte rolling and delays recruitment of

monocytes into sites of inflammation, enhancing suscepti-

bility to infection [44–46]. The expressed P-selectin

molecules are subsequently proteolytically cleaved off the

plasma membrane by currently unknown enzymes called

sheddase(s) [41, 47].

Through interaction with sulfatides [48] and the glyco-

protein (GP) Ib complex [49], P-selectin may also

contribute to the stabilization of platelet aggregates. For

example, at the site of vascular injury, particularly at high

shear stress, the binding of platelet GPIb complex to von

Willebrand factor (VWF) on the injured vessel wall initi-

ates platelet tethering and subsequent adhesion. Platelet

aggregation is then mediated by interaction between

platelet b3 integrin and fibrinogen (Fg), although Fg-

independent platelet aggregation can also occur [50, 51].

While Fg, VWF, and P-selectin are all important molecules

supporting hemostasis and thrombosis, and are all involved

in inflammation, their mutual impact on these processes

remains poorly understood.

Atherosclerosis

Atherosclerosis is a typical example of a chronic inflam-

matory process [52]. Platelet interactions with leukocytes

and ECs represent an important link between inflammation

and atherogenesis and include platelet activation, adhesion

of platelets to ECs, and platelet release of potent inflam-

matory and mitogenic substances, which alter the

chemotactic, adhesive, and proteolytic properties of ECs,

supporting adhesion and migration of monocytes to the

sites of inflammation. For example, absence of P-selectin

in atherosclerosis-prone LDLR-deficient or apoE-deficient

mice significantly delays atherosclerotic lesion formation

[53, 54]. Burger and Wagner [55] have shown that platelet

P-selectin contributes to atherosclerotic lesion formation

by mediating rosetting of monocytes and neutrophils with

circulating activated platelets [56], and this increases

monocyte adhesion to EC and may facilitate macrophage

accumulation in the vessel wall [57]. In addition, leukocyte

Platelets and immunity 501



rolling, adhesion, and transmigration is supported by

platelets adherent to the subendothelial matrix through the

interaction of P-selectin and leukocyte PSGL-1 [39, 40].

Leukocyte rolling, via platelet activating factor and the

leukocyte integrin Mac-1, subsequently mediates firm

leukocyte adhesion and binding to fibrinogen bound to

platelet aIIbb3 [58]. During adhesion to endothelium,

activated platelets release pro-inflammatory molecules and

cytokines, such as interleukin (IL)-1b [59] and CD40L

[60], that also stimulate the ECs. Activated platelets also

secrete the chemokine CCL5 (RANTES) and platelet factor

4, which are deposited in a P-selectin-dependent manner on

microvasculature, aortic endothelium, and monocytes [43].

These pro-inflammatory cytokines activate monocyte

integrins and increase monocyte recruitment to the ath-

erosclerotic lesion [61]. Once recruited, platelets contain

many molecules that enhance leukocyte chemoattraction

[platelet activating factor, macrophage inflammatory pro-

tein (MIP)-1a, and cationic protein], stimulate smooth

muscle cell and fibroblast proliferation (via TGFb, platelet-

derived growth factor and serotonin), and promote collagen

synthesis. The large amount of soluble CD40L shed by

activated platelets [62] leads to CD40L/CD40 interaction,

which also plays an important role in atherosclerosis.

Platelets and their cytokines therefore contribute directly to

atherosclerosis progression and maturation [63]. Addi-

tionally, CD36, a GP expressed on platelets, has been

implicated in hemostasis, thrombosis, inflammation, lipid

metabolism, and atherogenesis [64, 65]. There have been

several excellent recent reviews, e.g., by Gawaz et al.

[66, 67], Davi and Patrono [68], and others [26, 69], of the

increasing evidence, using different experimental approa-

ches, supporting the essential role of platelets in the initial

stages of atherosclerosis, and showing that thrombosis and

inflammation are intricately linked.

Sepsis

The occurrence of thrombocytopenia in critically ill

patients has long been known to be associated with

increased mortality [70]. Activation of both leukocytes and

platelets is commonly observed in sepsis. There is

increasing evidence that activation of these cells contrib-

utes to the development of disseminated intravascular

coagulation (DIC) and multiple organ failure, as blood flow

and consequent oxygen delivery is reduced and activation

of both pro- and anti-inflammatory cytokine networks are

induced [71, 74]. CD62P is increased on platelets from

septic versus non-septic patients [75, 76] and activated

platelets release platelet microparticles (MP) that express

functional surface receptors that allow them to adhere to

leukocytes [76]. However, the relative contribution of MP

compared with intact platelets in mediating enhanced

platelet–neutrophil adhesion in sepsis is not known. Inter-

estingly, Gawaz et al. [72] observed less platelet–

neutrophil adhesion in patients with multiorgan failure than

in septic patients without organ failure; it may be that in

septic shock platelet–neutrophil conjugates are sequestered

in the microcirculation, thereby contributing to the devel-

opment of organ failure [73]. Nonetheless, although both

platelets and MP are able to enhance leukocyte adhesion to

ECs, the role of platelet–leukocyte adhesion in sepsis and

the development of multiorgan failure remains to be

clarified.

While activated platelets secrete key components of the

coagulation and inflammatory cascades and are involved in

the regulation of vascular tone, there are few studies on

platelet function in sepsis. It appears that in sepsis aggre-

gation of circulating platelets is reduced, but platelet

receptors are present in normal amounts [77]. The effects

of bacterial products on platelet function have been

inconsistent and appear to vary according to species, timing

of the study, and pathogenesis of the sepsis [78]. For

example, LPS has been shown to increase platelet aggre-

gation in various animal models [79, 80], yet bacterial

products seem to decrease human platelet aggregation in

vitro [81, 82]. It has, however, become increasingly

apparent that platelets play a complex role in sepsis. When

activated, they release many substances capable of modu-

lating not only their own function but also that of cells

around them. Interfering with platelet function may prove

to be valuable in the treatment of sepsis, but further study is

needed to better define the precise mechanisms and effects

of platelet activation in sepsis.

In addition, platelets are known to mediate phagocytic-

like functions and can internalize both bacteria and viruses

[83, 84] as well as latex beads [85, 86]. This phenomenon

has been interpreted as either a passive passage of the

particles through the canalicular system or as a spreading

of the platelets over the particle [87]. These characteristics

of platelets might suggest a role in the protection and

defense of the organism. For example, rabbit platelets

contain microbicidal substances such as the bactericidal

peptide PMP within their granules [88], and molecules

similar to PMP called thrombocidins have also been shown

in the granules of human platelets [88]. On the other hand,

the binding of infectious agents by platelets may contribute

to the transport and spread of the infection.

The engulfment of foreign particles by platelets may be

compared to phagocytosis. To do so, like neutrophils,

platelets can extend pseudopodia filled with microfilaments

and devoid of granules and mitochondria [89]. Even partial

digestion of ingested bacteria within platelet lysosomes has

been demonstrated [90], although others have argued that

engulfed bacteria are within intracellular compartments
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connected with the extracellular milieu and thus antibac-

terial pH changes could not occur [87]. Taken together, it

appears that platelets do have the ability of engulfing

infectious organisms and this may aid in host defense.

Platelet–neutrophil interactions during sepsis

Septicemia is associated with significant activation of

neutrophils, primarily within the capillaries of the lungs

and the sinusoids of the liver, leading eventually to lung

and liver dysfunction and/or failure [91]. Bacterial products

such as LPS activate neutrophils, making them structurally

more rigid, and it has been suggested that this leads to their

trapping in the lungs [92]. This trapping mechanism may

be a strategy that infectious agents have developed to

inappropriately activate and sequester neutrophils to tissues

remote to the infection [24, 31]. On the other hand, it may

be that the migration of neutrophils to the lungs during

sepsis is an active mechanism of host defense. Subsequent

to neutrophil migration to the lungs, platelets also begin to

accumulate in these tissues of septic hosts [19, 31].

Experimentally, when neutrophils are depleted prior to the

induction of endotoxemia, platelets lose their ability to

migrate to lungs and liver suggesting that the neutrophils

are essential for the platelet recruitment [19, 31]. The

mechanism of this recruitment is not known but could be

due to several possibilities such as platelets directly inter-

acting with neutrophils or binding to vascular sites made

pro-adhesive by the neutrophils. With respect to the for-

mer, it is known that aggregation of platelets with

neutrophils can occur in vitro following stimulation with

platelet agonists such as thrombin or ADP [56, 93, 94];

related to this, septic patients have increased platelet acti-

vation and neutrophil/EC adherence [71, 95], and this has

also been observed in murine studies of sepsis [19].

Interestingly, Clark et al. [24] observed that platelets

exposed to LPS bound avidly to immobilized neutrophils

and the plasma from septic patients also induced significant

platelet–neutrophil interaction [24, 31]. Much of the

platelet binding to neutrophils could be inhibited by a

TLR4 antagonist, suggesting that platelets can be activated

by TLR4 ligands in the septic milieu [24, 31].

Platelet activation of neutrophils

Platelets and neutrophils have the potential to trap micro-

bial pathogens independently of each other [83, 96],

but together platelet–neutrophil interactions can induce

hyperactivation of neutrophils to produce increased pro-

inflammatory molecules [96]. Clark et al. [24] recently

demonstrated a novel mechanism of platelet–neutrophil

interaction that leads to enhanced bacterial trapping. This

trapping event was initiated by the activated platelets

adhering to immobilized neutrophils and markedly acti-

vating them [24]. In addition to neutrophil degranulation,

the platelet binding stimulated neutrophils to release their

DNA which contributed to the trapping of bacteria. These

DNA structures were similar to neutrophil extracellular

traps (NETs) [97] and could extend far downstream from

the platelet–neutrophil aggregates. The formation of neu-

trophil NETs was enhanced and occurred rapidly if the

platelets were first stimulated with LPS [24]. Elegant in

vivo imaging revealed that the liver sinusoids and lung

capillaries where platelets and neutrophils bound during

sepsis were the primary sites of NETs formation and bac-

terial trapping [24]. Although NETs are beneficial in

enhancing bacterial trapping, NETs may form at the

expense of injury to the host. It appears that when

LPS-activated neutrophils bind endothelium, little damage

occurs, but if the bound neutrophils encounter LPS-bearing

platelets, they become significantly activated and release

their NETs and reactive oxygen species that damage the

underlying endothelium [24]. Depletion of either neutro-

phils or platelets reduced the endothelial damage,

suggesting that the neutrophil is dependent on platelets for

activation and NET formation and inadvertent pulmonary

damage [24]. These mechanisms are intriguing because

they may be related to other pathologies, e.g., transfusion-

related acute lung injury (TRALI); bacteria present either

in blood products or the recipients of blood products may

initiate this lung pathology.

CD40 and CD40L (CD154)

The immune modulator pair, CD40 and CD40L, has been

proposed to play a central role in thrombotic diseases. Once

expressed, platelet CD40L can interact with membrane

bound CD40 on ECs, triggering an inflammatory reaction

leading to local or systemic release of ICAM, VCAM, and

MCP-1 [42, 60, 98]. Upon platelet activation and thrombus

formation, CD40–CD40L interaction among platelets may

lead to shedding of CD40L, producing its soluble form,

sCD40L. Whether sCD40L is capable of inciting an

inflammatory reaction or is inactivated upon cleavage is still

a matter of debate [99–103]. It is also not yet fully clarified

whether platelet–platelet interaction of CD40 and CD40L

abrogates thrombus formation and inflammation by cleav-

age of CD40L, or whether further thrombus activation is

achieved due to pro-thrombogenic effects of CD40 ligation

with sCD40L [99–103]. On exposure to CD40-expressing

vascular cells (including ECs), sCD40L induces the

expression of adhesion molecules, e.g., E-selectin and

P-selectin, and the release of inflammatory cytokines,
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e.g., IL-6 and tissue factor [102–105]. Although the inter-

action between CD40 and CD40L was originally described

in immune cells [106], the majority of sCD40L is derived

from activated platelets and may reflect platelet activation

[99]. Furthermore, vascular endothelial growth factor

(VEGF), which may originate from platelets [107–109], can

act as a pro-inflammatory cytokine by inducing the expres-

sion of adhesion molecules that bind leukocytes to ECs, as

well as increasing tissue factor expression and procoagulant

activity. Experimental data link VEGF levels to abnormal

angiogenesis and thrombogenesis and suggest a link

between the CD40–CD40L system and VEGF-mediated

angiogenesis [107, 108]. The role of the CD40–CD40L axis

in patients with atherothrombotic diseases has generated

great interest, as this molecule may play a pivotal link

among platelets, angiogenesis, coagulation, the endothe-

lium, and ultimately thrombosis.

Elzey et al. [13, 110] have pointed out the importance of

platelet-mediated modulation of adaptive immunity and

indicated that platelet CD40L represents a means of com-

munication between innate and adaptive immune

compartments. Such studies extend platelet function to

modulation of local inflammatory events through release of

chemokines, cytokines, and immunomodulatory ligands,

including CD40L, and have shown that platelets, via CD40L,

induce dendritic cell (DC) maturation, which is central to

development of adaptive immunity to invading pathogens

[13]; the DC are also the most potent APC and may thus also

be important in immune mediated platelet destruction.

There has been other recent recognition of the role

platelets may play in the immune response; they can

facilitate lymphocyte homing [111] and B cell differenti-

ation and antibody class switching due to the large platelet

CD40L content [13]. Although the physiological role of

large amounts of transforming growth factor (TGF)-b
(a potent immunosuppressive factor) in platelets [112] is

currently unclear, platelets may also contribute to immune

regulation via different granule sorting/release pathways

[113, 114]. Furthermore, P-selectin promotes the Th-1-like

immune response [115], potentially relevant in immune-

related inflammation.

TREM-1

The triggering receptor expressed on myeloid cells

(TREM)-1 plays an important role in the innate immune

response related to severe infections and sepsis. TREM-1 is

a member of the v-type immunoglobulin super family and is

expressed on neutrophils and monocytes [116]. The

expression of TREM-1 is increased upon stimulation with

microbial products and this activates neutrophil effector

functions such as respiratory burst, phagocytosis, release of

IL-8, and myeloperoxidase in synergy with TLR ligands

such as LPS or bacterial lipopeptides [117–120]. Inhibition

of TREM-1-associated activation improves the outcome in

rodent models for pneumonia and sepsis. The identity of the

natural TREM-1 ligands are, however, so far unknown.

Recently, however, Haselmayer et al. [121] demonstrated

that the natural ligand for TREM-1 is present on human

platelets and that recombinant soluble TREM-1 can spe-

cifically bind to human platelets. Furthermore, it was

demonstrated that co-incubation of neutrophils with plate-

lets in the presence of LPS enhanced the neutrophil

respiratory burst and release of IL-8 [121]. These results

indicate that, during interactions between neutrophils and

platelets during innate immunity, the inflammatory response

may be mediated by TREM-1 and is platelet-derived, and

thus these interactions may act as targets for the treatment of

overwhelming immune responses during sepsis.

Figure 1 summarizes the pro- and anti-inflammatory

molecules and cytokines associated with platelets.

Platelet Toll-like receptors (TLR)

Pathogens are first encountered by TLR on professional

phagocytes such as neutrophils, macrophages, and den-

dritic cells [4–8]. TLR are germline-encoded proteins and

bind a variety of infectious molecular structures, and are

critical for stimulating innate immune mechanisms [4–8].

The ligands of TLR have been extensively studied, and

Fig. 1 Linking platelets to immunity by phenotype. Platelets

store/express and secrete many immunomodulatory molecules and

that can significantly affect innate immune mechanisms. Some are

constitutively expressed whiles others are expressed or secreted upon

platelet activation while still others are acquired by either adsorption

from the plasma or perhaps by platelet contact with activated

leukocytes during inflammation and subsequent membrane redistri-

bution. Also included are MHC class I molecules and the two major

platelet-specific glycoproteins, CD41 and CD42, to indicate the major

antigenic proteins recognized by host adaptive immunity
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they range from secretory components of pathogens to

nucleic acids. Conserved motifs on infectious pathogens

that are not found in higher organisms play essential roles

in the biology of these pathogens, and these motifs are not

subject to mutations; they are termed pathogen-associated

molecular patterns (PAMP) and their receptors are called

pattern recognition receptors (PRR). Interestingly, TLRs

are also displayed by cell types not known to be involved in

the recognition of exogenous pathogens such as microbes

in the environment. In 2004, it was discovered that both

murine and human platelets express TLR 1, 2, 4, and 9

[14, 15]. It was suggested that platelet TLR may be key

molecules acting as a bridge between the inflammation

resulting from an infectious process and from vascular

arteriosclerotic pathologies [14, 15]. Since then, many

papers have not only confirmed the existence of TLR on

platelets but have also determined that platelet TLR are

functional, in that they are responsible for mediating

LPS-induced thrombocytopenia and TNFa production in

vivo [16–32]. This latter observation suggested that it may

be platelets that are primarily responsible for reactivity

against bacterial products, and it was speculated that

platelets acted as circulating sentinels that bind infectious

agents and present them to the RES [20, 24, 31]. It may be

this presentation event that is responsible for innate

immune system activation. Table 2 summarizes the current

literature with respect to platelet TLR and their functions.

Platelets, infections and the initiation of autoimmunity

Immune thrombocytopenic purpura (ITP) is a bleeding

disorder caused by autoantibodies that opsonize platelets

and enhance their destruction by FcR-mediated phagocy-

tosis within the spleen [122, 123]. Although both acute and

chronic forms can be distinguished, acute ITP primarily

affects children and often occurs after a viral or bacterial

infection [122, 123]. Furthermore, viral-specific antibodies

with cross-reactivity against platelets have been identified

in children with acute ITP [124, 125] and in patients with

HIV-related ITP [125, 126] suggesting infections may play

a role in ITP pathogenesis. On the other hand, in some

patients with chronic ITP, infections are associated with an

exacerbation of thrombocytopenia, and this has also been

demonstrated in a mouse model [127]. Alternatively,

eradication of the gram negative bacterium H. pylori in

patients with ITP increases platelet counts, although this

has not been observed in all studies [128–131]. It is pos-

sible that, in susceptible individuals, infectious agents in

the presence of anti-platelet antibodies affect platelet–

monocyte interactions and alter platelet destruction. Rela-

ted to this, Semple et al. [25] recently demonstrated that if

autoantibody-opsonized platelets were exposed to LPS,

there was a significant and synergistic enhancement of Fc-

dependent platelet phagocytosis by human monocytes.

Thus, LPS in conjunction with IgG antiplatelet autoanti-

bodies from patients with ITP can significantly enhance

platelet phagocytosis [25]. The mechanism of how platelet-

bound LPS together with autoantibody opsonization syn-

ergizes to enhance platelet phagocytosis is unknown, but

since the increase was Fc-dependent, it may suggest that

the interaction of TLR- and FcR-mediated signaling path-

ways could be responsible. It may be that the combination

of LPS and autoantibody presented by platelets to the RES

utilize shared components that synergistically increase

signaling events and maximally stimulate macrophage

phagocytosis. Taken together, these results suggest infec-

tious agents in combination with antiplatelet antibodies

could affect platelet destruction in vivo and may be at least

one explanation of why thrombocytopenia worsens in some

patients with ITP during infections and, alternatively,

resolves in other patients with ITP who are treated with

bacterial eradication therapy.

Platelet alloimmunity

In addition to modulating innate immunity, evidence is

mounting that the alloimmune response against transfused

platelets is also critically linked to innate immune stimula-

tion. It appears that transfused platelets stimulate an early

innate NK cell-derived IFNc response that activates induc-

ible nitric oxide synthase (iNOS) within recipient

macrophages and generates NO, which is essential for the

subsequent production of anti-donor platelet antibodies

[132–136]. In addition, how NO is metabolized within the

APC determines whether allogeneic platelet-derived anti-

gens will stimulate IgG anti-donor immunity or suppress it.

For example, if NO is converted to peroxynitrite (ONOO-),

platelet protein antigens can be primarily nitrated, particu-

larly on tyrosine residues (tyr-NO2), or S-nitrosylated, on

cysteine residues (cys-SNO) [137]. Platelet nitration does

not destroy B cell (antibody)-recognizing epitopes but pre-

vents the platelets from stimulating an IgG anti-donor

response when transfused into allogeneic recipients [137].

This lack of immunity to platelets appears to be due to an

inability of recipient APC to engulf nitrated platelets

(whether they are IgG opsonized or not). This suggests that if

platelets are first phagocytosed by APC and nitrated within

the phagolysosomes, their mobility within the cell will be

severely limited and thus they may ‘‘starve’’ immune-stim-

ulatory antigen processing pathways [137]. On the other

hand, NO is essential for platelet MHC antigens to become

immunogenic [132–134], but the mechanisms relating to

how NO can also stimulate immunity are at present

unknown. Interestingly, protein nitration and nitrosylation
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has been shown to regulate several enzyme systems and

signaling cascades related to membrane movements that

could ultimately affect antigen processing and presentation

[138–143], and it may be that these types of reactions are

responsible for stimulating platelet immunity. Thus, it

appears that the ability to respond immunologically to

platelets lies in the balance of ONOO-production (suppres-

sion) and other NO-dependent (stimulation) processes

within the APC. What is striking, however, is that, like

Janeway’s tenets, platelet MHC adaptive antibody produc-

tion is dependent on early (24–72 h post-transfusion) innate

immune activation. Thus, in order to respond immunologi-

cally to allogeneic platelets, stimulation of the host’s innate

immune system is an absolute requirement.

Transfusion-related acute lung injury (TRALI)

TRALI denotes non-cardiogenic pulmonary edema in con-

junction with transfusion of plasma-containing blood

products [144, 145]. TRALI is potentially life-threatening

and has recently been ranked as the leading cause of trans-

fusion-related fatalities [146–149]. The recent discovery of

TLR on platelets, as well as the capacity of platelets to lib-

erate sCD40L, have led to investigation of a relationship

between platelet immunomodulatory molecules and their

ability to mediate (TRALI). Recently, Khan et al. [150] have

demonstrated that CD40L released from platelets during

storage may be responsible for modulating TRALI. In

addition, it appears that the binding of platelet TLR can

modulate the release of sCD40L [151–153]. It is possible

that there is a relationship between platelets, their ability to

bind bacteria and the release of sCD40L in mediating

TRALI but more research is required to confirm this.

Conclusions

Platelets, primary actors in hemostasis and thrombin gen-

eration, like leukocytes, maintain multiple functions of

innate defense mechanisms. These cellular fragments

express and secrete many pro-inflammatory molecules that

Table 2 Summary of recent phenotypic and/or functional studies and reviews related to TLR, bacterial LPS and platelets

TLR Speciesa Study

typeb
Functional effect Reference

H M B C

1,6 Y P Platelet TLR expression [14]

2 Y P Platelet, megakaryocyte, coronary thrombi expression [15]

5 Y P Platelet proteomic analysis [16]

2,4,9 Y P Platelet intracellular and membrane expression [17]

4 Y P/F Platelet TLR2/4 agonists do not modulate platelet activation [18]

2,4 Y P/F Platelet TLR4-LPS-induced thrombocytopenia via lung sequestration [19]

2,4,9 Y Y P/F Platelet TLR4-LPS-induced thrombocytopenia and TNF-a production [20]

4 Y F Platelet TLR4 polymorphism associated with reduced TXA2 synthesis [21]

2,4 Y F Platelet TLR4-LPS-medated release of soluble CD40L/cytokines [151–153]

4 Y Y P/F Platelet TLR4-LPS leads to platelet consumption in HUS [22]

4 Y F Platelet production affected by LPS via megakaryocyte TLR4 [23]

4 Y Y F Platelet TLR4-LPS activates lung neutrophils to secrete NETS [24]

4 Y F Platelet LPS/autoantibody synergism of phagocytosis [25]

4 Y F Platelet LPS/antibody enhances thrombocytopenia in vivo [28]

4 Y P/F Platelet TLR4 signals through MAP kinase and NF-kB [29]

4 Y F Platelets binding gram –ve bacteria directly induce

apoptosis/activation of EC

[31, 32]

2 Y F Platelets TLR2-induced thromboinflammatory effect

via Phosphoinositide 3-Kinase

[154]

4 Y P/F Lipopolysaccharide stimulates platelet activation

via TLR4/MyD88 signalling

[155]

4 Y F TLR4 ligands induce platelet secretion of immunomodulatory

molecules

[153]

Reviews [26, 27, 30,

155–157]

a H Human, M murine, B bovine, C chicken
b P Phenotypic, F functional
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serve to initiate and modulate innate immune functions.

Exciting recent studies on platelet TLRs and their functions

have opened new understanding of the role of platelets in

infectious processes and stimuated recent investigations in

platelet alloimmunity and autoimmunity.
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100. Prasad KSS, André P, He M, Bao M, Manganello J, Phillips DR

(2003) Soluble CD40 ligand induces b3 integrin tyrosine

phosphorylation and triggers platelet activation by outside-in

signaling. Proc Natl Acad Sci USA 100:12367–12371

101. Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ

(2003) CD40 is constitutively expressed on platelets and pro-

vides a novel mechanism for platelet activation. Circ Res

92:1041–1048
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