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Abstract Down syndrome (DS) is associated with a

variety of symptoms, such as incapacitating mental retar-

dation and neurodegeneration (i.e., Alzheimer’s disease),

that prevent patients from leading fully independent lives.

These phenotypes are a direct consequence of the over-

expression of chromosome 21 genes, which are present in

duplicate due to non-disjunction of chromosome 21.

Accumulating data suggest that the chromosome 21 gene

product, dual-specificity tyrosine-(Y)-phosphorylation

regulated kinase 1A (Dyrk1A), participates in the patho-

genic mechanisms underlying the mental and other

physical symptoms of DS. In this review, we summarize

the evidence supporting a role for Dyrk1A in DS, espe-

cially DS pathogenesis. Recently, several natural and

synthetic compounds have been identified as Dyrk1A

inhibitors. Understanding the function and regulation of

Dyrk1A may lead to the development of novel therapeutic

agents aimed at treating DS.
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Introduction

Down syndrome (DS) is one of the most common genetic

defects, with an incidence of 1 in every *700 births. This

condition arises from a complete or partial duplication of

human chromosome 21 (trisomy 21) [1]. The resulting

imbalance in gene expression causes more than 20 neural

and non-neural symptoms, including a distinct facial

appearance, hypotonia, congenital heart defects, mental

retardation, early onset Alzheimer’s disease (AD), sus-

ceptibility to leukemia, gastrointestinal malformations, and

immune system defects [2]. To date, more than 530 genes

(176 conserved, 355 non-conserved) have been identified

on chromosome 21, making identification of the genes

responsible for specific DS phenotypes a daunting task [3].

Studies of rare cases of partial trisomy 21 suggest that a

defined chromosome 21 region called the Down syndrome

critical region (DSCR, 21q22.1-22.3) may cause the typical

features of DS [4–6]. Among more than 30 presumed genes

located on the DSCR, the dual-specificity tyrosine-(Y)-

regulated kinase 1A gene (Dyrk1A) is associated with some

DS characteristics, mental retardation, and motor defects

[7–9], as well as with neurodegenerative diseases such as

AD [10–12], Parkinson’s disease (PD), and Huntington’s

disease (HD) [13–15].

Dyrk1A kinase in DS: regulation and function

Drosophila melanogaster minibrain protein kinase, a

homolog of Dyrk1A, is essential for normal postembryonic

neurogenesis [16]. Mutant flies expressing lower levels of

minibrain exhibit a marked size reduction in the optic lobes

and central brain, as well as visual, olfactory and motor

defects. The human orthologue may have similar functions
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that are important to DS phenotypes. This has prompted

several research laboratories to isolate mammalian coun-

terparts (i.e., human, rat, and mouse Dyrk1A) that are

highly conserved ([99% identity) across all 763 residues

[17–19]. The Dyrk family consists of five mammalian

members (Dyrk1A, Dyrk1B, Dyrk2, Dyrk3, and Dyrk4).

Among them, Dyrk1A is the only member located on

chromosome 21 [20]. Dyrk1A is a proline-directed protein

kinase that contains multiple domains, including a nuclear

localization signal at the N-terminus, a kinase domain, a

PEST domain for protein degradation, a 13-consecutive-

histidine repeat, and an S/T-rich region that has an

unknown function (Fig. 1). Outside the kinase domain,

Dyrk1 does not share significant sequence homology with

other family members.

As its name implies, Dyrk1A has dual substrate specific-

ities. Dyrk1A undergoes self-activation through

autophosphorylation at Tyr 321, which is situated in the

kinase domain [18]. Autophosphorylation at Tyr 321 is

thought to occur during protein synthesis and through the

intramolecular formation of a transitory intermediate, pro-

ducing a constitutively active form of Dyrk1A [21]. Dyrk1A

also phosphorylates target substrates at Ser or Thr residue.

Dyrk1A has been shown to phosphorylate or interact with

more than two dozen proteins, which are associated with

multiple pathways. Even though Dyrk1A has a nuclear

localization signal and 13-histidine repeat for nuclear speckle

targeting [18, 22], it has also been detected in the soma and

dendrites of neurons [23]. Therefore, it is not surprising that

Dyrk1A substrates comprise both nuclear and cytosolic

proteins, including transcriptional factors (CREB, NFAT,

STAT3, FKHR, Gli1), splicing factors (cyclin L2, SF2, SF3),

a translation factor (eIF2Be), synaptic proteins (dynamin I,

amphiphysin I, synaptojanin I), and miscellaneous proteins

(glycogen synthase, caspase-9, Notch). This substrate diver-

sity points to pleiotropic roles for Dyrk1A [24–28] (Fig. 2).

In particular, the involvement of Dyrk1A in the regulation of

NFAT pathway plays a role in the cell cycle control and

synaptic function [29, 30], and the 1.5-fold increase of

Dyrk1A gene in mice reduced NFAT transcriptional activity

and caused dysregulated vertebrate development, including

vascular defects and failed heart valve development [29].

Alterations in Dyrk1A expression are frequently

associated with DS phenotypes. Dyrk1A mRNA is over-

expressed in DS fetal brains and Ts65Dn mice, a well-

established murine model for DS [31]. Dyrk1A is elevated

approximately 1.5-fold in a gene dosage-dependent manner

in DS patients [32]. Clues as to the cellular function of

Dyrk1A may be provided by Dyrk1A expression patterns

under normal conditions. Dyrk1A is expressed ubiqui-

tously, although not evenly, in fetal and adult tissues as

well as in non-neuronal tissues and the central nervous

system. Particularly strong expression has been noted in the

cerebellum, olfactory bulb, and hippocampus [17, 19]. In

the mouse brain, Dyrk1A is present in preneurogenic pro-

genitors as early as embryonic day (E) 8.5, indicating that

Dyrk1A participates in early development [23]. The strong

Dyrk1A expression seen in mice at embryonic stages and at

birth gradually decreases until lower expression levels

stabilize at around 3 weeks (Song, unpublished observa-

tion). Since over- or underexpression of constitutively

active Dyrk1A in transgenic mice produces phenotypes

seen in DS, the cellular function of Dyrk1A is presumed to

be sensitive to its expression and/or degradation. Dyrk1A

expression can be enhanced by treatment with b-amyloid

(Ab) or overexpression of the transcription factor E2F1

[33, 34]. On the other hand, it can be repressed by the AP4-

geminin complex [35]. In addition, Dyrk1A activity can be

increased by binding of 14-3-3 [36].

Animal models with altered Dyrk1A expression

Several murine models for DS with segmental trisomy of

mouse chromosome 16 (MMU16), which corresponds to

Fig. 1 Domain structure of Dyrk1A and other Dyrk family members.

NLS Nuclear localization signal, KINASE kinase domain, PEST (Pro,

Glu, Ser, Thr)-rich domain, His 13-consecutive-histidine repeat, S/T
(Ser, Thr)-rich region

Fig. 2 Substrates and multiple putative roles of Dyrk1A in gene

transcription, mRNA splicing, synapse function, and neurodegeneration
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human chromosome 21, have been developed by chromo-

some engineering. There are three representative DS model

mice bearing the Dyrk1A gene: Ts65Dn, Ts1Cje, and

Ts1Rhr. Ts65Dn mice contain an extra segment of a distal

*17 Mb region (*104 genes) of MMU16 [37], while

Ts1Cje mice have an extra distal *8.3 Mb region (*81

genes) [38]. These two models display a number of

developmental and neuropathological characteristics simi-

lar to DS patients, including learning and behavior

abnormalities [37, 38], altered synaptic plasticity [39, 40],

and changes in dendritic spines of hippocampus and cortex

[41, 42]. Recently, Ts1Rhr mice, which contain an even

smaller trisomic segment of MMU16 (*33 genes), were

reported to exhibit cognitive and behavior abnormalities

and changes in spine density and morphology [43],

although they seemed to have normal hippocampal func-

tion [44]. Thus, the specific genes on DSCR are suspected

of DS pathogenesis. Moreover, the gene dosage effect in

DS was further supported by the finding that the pathologic

features of DS model mice were restored back to normal

when the critical region genes are returned to their normal

dosage [44].

Pertaining to Dyrk1A, its knock-out mice are embryonic

lethal (E14.5), and heterozygous Dyrk1A mice (Dyrk1A

?/-) exhibit decreased neonatal viability, developmental

delay, and altered neocortical pyramidal cells. Thus,

Dyrk1A has vital and sensitive gene dosage effects [45, 46].

Also consistent with a role for Dyrk1A in neurodevelop-

ment, microcephaly has been reported in two unrelated

patients with Dyrk1A truncation [47]. Mouse models

overexpressing Dyrk1A have also been produced. Mice

carry the human Dyrk1A genomic DNA in a bacterial or

yeast artificial chromosome, or they carry extra copies of

murine Dyrk1A cDNA [7–9]. These transgenic animals

exhibit hippocampal-dependent spatial learning and mem-

ory deficit in the Morris water maze, developmental delay,

and motor deficits, strongly implicating Dyrk1A overex-

pression in several DS phenotypes.

Role of Dyrk1A in the pathogenesis of other diseases

In addition to participating in DS, Dyrk1A appears to be

involved in the pathogenesis of several neurodegenerative

diseases such as AD, PD, and HD (Fig. 2). Owing to

improvements in living conditions and advances in medical

care, DS patients are expected to live up to the end of their

sixth decade and in some cases, beyond this age. However,

adults with DS typically undergo premature aging and

exhibit a rapid decline in memory ability. They are also

particularly vulnerable to AD [10–12]. Nearly all DS

patients develop AD-like dementia several decades earlier

than does the general population. By the age of 40, these

patients have the neuropathological lesions seen in AD as

well as dementia [48, 49]. The pathogenic DS brains have

AD hallmarks including amyloid plaques and neurofibril-

lary tangles (i.e., insoluble deposits consisting of Ab and

abnormally hyperphosphorylated Tau, respectively).

Dyrk1A phosphorylates Thr 668 of amyloid precursor

protein. This may increase Ab production, which in turn

enhances Dyrk1A expression [34, 50, 51]. Dyrk1A can also

phosphorylate several critical Tau residues in tangles, and

it is present in tangles and the sarkosyl insoluble fraction of

AD brains [50, 52–54]. Taken together, these findings

suggest that the overexpression of Dyrk1A in DS may play

a role in accelerating AD pathogenesis. Additional evi-

dence suggests that Dyrk1A participates in not only AD,

but also PD. Dyrk1A phosphorylation of a-synuclein, a key

Lewy body component, enhances the a-synuclein positive

inclusion that leads to neuronal cell death [14]. Involve-

ment of Dyrk1A in AD and PD has been further

corroborated by the finding that the GTPase septin 4

present in AD tangles and PD inclusions can be phos-

phorylated by Dyrk1A [15]. We have previously found

that Dyrk1A phosphorylation of huntingtin-interacting

protein-1 modulates differentiation and death in hippo-

campal neuroprogenitor cells, suggesting that Dyrk1A

participates in HD pathogenesis [13]. In addition, Dyrk1A

affects neuronal proliferation by phosphorylating p53

during embryonic brain development (Park and Chung,

submitted).

Therapeutic approaches

Mental retardation affects 1–2% of the general population,

and a large percentage of affected individuals suffer from

chromosomal abnormalities. Mental retardation caused by

DS contributes to about 30% of these cases, making DS the

most common cause of mental retardation [55, 56]. For DS

patients, mental retardation is the greatest obstacle pre-

venting normal, independent living. Therapeutic agents

aimed at treating DS phenotypes by targeting the respon-

sible protein(s) have yet to be developed due to the lack of

characterization of the responsible gene(s). Several AD

drugs (e.g., acetylcholine esterase inhibitors) have been

used to enhance the cognitive function of adult DS patients

since DS has neuropathological similarities with AD [57].

However, the results are controversial, ranging from a

significant improvement in dementia scores to adverse

effects or no improvement at all [58, 59]. A similar con-

troversy exists with regard to efficacy and the treatment of

DS children with Piracetam, a nootropic agent known

to enhance cognitive performance [60]. Recent attempts to

ameliorate the abnormalities of learning and behavior in

Ts65Dn mice revealed that non-competitive or competitive

Dyrk1A and Down syndrome 3237



antagonists of GABAA receptor (picrotoxin, bilobalide,

pentylenetetrazole) and NMDA receptor (MK-801,

memantine) can rescue them from the defects [61, 62].

Recently, a number of researchers have investigated

whether Dyrk1A-associated learning and memory deficits

can be alleviated by modulating Dyrk1A expression or

activity. Several approaches such as the use of natural

products, synthetic inhibitors, or shRNA have been inves-

tigated. For example, treatment of Dyrk1A transgenic

mice with epigallocatechin-3-gallate, a major polyphenolic

constituent of green tea, rescues alterations in brain volume

and ameliorates cognitive deficits [63]. In addition, har-

mine, which is found in the Middle Eastern plant (i.e.,

Peganum hamarla) and the South American vine (i.e.,

Banisteriopsis caapi), inhibits the kinase activity of

Dyrk1A at nanomolar range [64]. Injection of adeno-

associated virus vector that encodes inhibitory Dyrk1A

shRNA into the striata of Dyrk1A transgenic mice restores

motor coordination, attenuates hyperactivity, and improves

sensorimotor gating [65]. Several synthetic Dyrk1A

inhibitors have also been isolated, although their in vivo

efficacy has yet to be tested [66, 67].

Closing remarks

Overexpression of genes present on an additional copy of

chromosome 21 causes multiple phenotypes seen in DS.

Among DS symptoms, mental retardation and early onset

AD hinder the normal daily lives of DS patients during

early and middle age. The chromosome 21 gene product,

Dyrk1A protein kinase, is overexpressed in DS patients and

has recently attracted considerable attention due to its

association with several DS phenotypes, including mental

retardation and AD. The finding that Dyrk1A has more

than two dozen substrates in multiple pathways suggests

that Dyrk1A participates in multiple DS symptoms as well

as neurodegenerative PD and HD. Studies by our labora-

tory and others show that Dyrk1A functions as a negative

regulator of cardiomyocyte hypertrophy [68], and that it

participates in bone homeostasis (Lee et al., manuscript in

revision) and abnormal immune responses via NFAT

phosphorylation (Song et al., unpublished observation).

This suggests that Dyrk1A overexpression is responsible

for other DS phenotypes such as congenital heart defects,

short stature, and immune system defects.

Nonetheless, multiple genes could be involved in the

genesis of DS, and there are several examples indicating

other genes alone or together in the DSCR could contribute

to DS pathogenesis. For example, the 1.5-fold increase of

the DSCR1 gene caused the similar consequences to that

observed in Dyrk1A transgenic mice by inhibiting calci-

neurin and eventually increasing NFAT phosphorylation

[29]. DSCR1 transgenic mice also displayed suppression of

tumor growth, one of the typical features seen in DS

patients, and this suppression was further enhanced by

combinatorial overexpression of Dyrk1A [69]. Although

trials have been conducted to test the efficacy of AD drugs

in treating DS symptoms, novel therapeutic agents are not

yet available to DS patients. The development of thera-

peutic agents that effectively repress Dyrk1A expression or

activity is in its infancy. Nevertheless, the results of initial

attempts to treat Dyrk1A transgenic mice using this

approach are encouraging and suggest that it holds promise

for the treatment of DS phenotypes and other neurode-

generative diseases. Knowledge of the mechanisms

triggered by Dyrk1A overexpression will bring us closer to

understanding DS and developing effective therapies for

this condition.
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