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Abstract. Protein kinase CK2 is a serine/threonine
kinase with a multitude of protein substrates. The
enzyme is ubiquitously expressed in mammalian cells,
where it functions in a variety of cellular processes,
including cell cycle progression, apoptosis, transcrip-
tion, and viral infection. While the importance of CK2
in the mammalian life cycle is undisputed, the
regulatory mechanisms coordinating its numerous
functions remain elusive. In this review, we focus on
the various roles of CK2 in the mammalian cell, with

particular attention on its functions through the stages
of the cell cycle and during the decision to undergo cell
death. We highlight how these roles are controlled in
part through direct transcriptional regulation by CK2,
and how the constitutive activity of CK2 can be
hijacked in the case of viral infection. Finally, we
discuss possible ways in which these functions are
integrated to allow the cell to respond appropriately in
the presence of multiple signals. (Part of a Multi-
author Review)
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Introduction

Protein phosphorylation has long been recognized as
an important post-translational modification regulat-
ing cellular processes [1]. Emphasizing the impor-
tance of this modification is the existence of 518
distinct protein kinases in the genome [2], and the
estimate that one third of cellular proteins are
phosphorylated [3], often at several distinct sites [4].
Proper regulation of phosphorylation events is crucial
to the proper function of cellular signalling pathways,
and loss of regulation in these pathways underlies
many human diseases, including cancer [5]. Conse-
quently, the enzymes that regulate protein phosphor-
ylation in cells, namely protein kinases and phospha-
tases, have emerged as promising therapeutic targets
[6]. Protein kinase CK2 [7], a small family of protein
serine/threonine kinases that is overexpressed in

multiple forms of cancer and has oncogenic properties
in mice and cultured fibroblasts [8], represents one of
the protein kinase families that has attracted attention
as potential targets for therapy. In this review, we will
outline a variety of the diverse and often intercon-
nected roles of CK2 that underlie its participation in
disease processes, including cell cycle progression,
induction of apoptosis, transcription, and its involve-
ment as a target in viral infection. We also discuss the
perspective whereby CK2 may be viewed as a
regulatory linker, acting to consolidate often conflict-
ing signals from various stimuli into the appropriate
cellular response.

The CK2 Family

Originally discovered in 1954 [9], CK2 is a family of
enzymes that in humans consists of two catalytic
subunits, termed CK2a and CK2a’, and one regula-
tory subunit, CK2b. Despite being the products of* Corresponding author.
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different genes [10, 11], the catalytic subunits share a
high amount of sequence similarity [12], differing only
in their C-termini [13]. CK2b has no extensive
homology to any other known proteins [14], making
its role difficult to decipher. Typically, CK2 is found in
mammalian cells as a tetramer, consisting of two
regulatory subunits and two catalytic subunits [15, 16].
CK2 has been distinguished by its ability to phosphor-
ylate serine and threonine residues proximal to acidic
amino acids with a minimal consensus sequence of S/
T-X-X-Acidic [17], as well as its unique ability to use
either ATP or GTP as a phosphate donor [18].
CK2 is ubiquitously expressed in a variety of cell types
and tissues, and is considered to be constitutively
active, as it is not subject to the strict on/off regulation
of other kinases, such as MAP kinases and Cyclin-
dependent kinases (Cdks). However, there exist
several, more subtle mechanisms by which CK2
activity can be regulated or focused on one or more
substrates while excluding other substrates, including
localization, phosphorylation, and protein-protein
interactions [19, 20].

CK2 in the cell cycle

CK2 has been implicated in every stage of cell cycle
progression, and catalyzes the phosphorylation of
several proteins crucial to the successful production of
daughter cells. In yeast, genetic studies have shown
requirements for CK2 for progression through the G1/
S and G2/M transitions [21]. In mammalian cells,
antisense oligonucleotides against CK2 subunits, mi-
croinjection of CK2 antibodies, and inhibitors of CK2
can all inhibit cell cycle progression, suggesting that
mammalian cells require CK2 for G0/G1, G1/S, and
G2/M transitions [22 – 24]. Studies outlining the
interactions and effects of CK2 activity on cell cycle
proteins have further confirmed the importance of
CK2 throughout the cell cycle. Cell cycle progression
is largely mediated by the controlled activation and
deactivation of Cdks, including Cdk4/Cyclin D at the
G1/S transition, and Cdk1/Cyclin B at the G2/M
transition [25]. These kinases are activated at the
appropriate times in part by the activity of the Cdk-
activating kinase (CAK), an enzyme consisting of the
Cdk7, Cyclin H, and MAT1 (m�nage � trois 1) [26].
This master regulator of cell cycle progression is itself
regulated by CK2. In this respect, the CK2a subunit
forms a complex with and phosphorylates Cyclin H at
serine 315 [27, 28]. This phosphorylation event has no
effect on CAK complex formation, but is critical for
full CAK activity [28].

G1/S

The signal to begin DNA replication and prepare for
cell division is transduced from extracellular growth
signals through the G1 Cdks, leading to hyperphos-
phorylation of pRB and transcription of vital cell cycle
genes due to release of E2F transcription factor
inhibition [29]. Once the initial stimulus for growth
has been transduced to the G1 Cdks, CK2 has
additional roles in regulating the initiation of DNA
replication and preparation for division. In general,
the role CK2 plays in the G1/S phase of the cell cycle
serves not to encourage cell growth but to monitor it,
both as an integral part of the DNA damage check-
point, where it regulates p53 and p53 regulatory
proteins [30 –36], and by interacting with and phos-
phorylating regulatory proteins involved in G1/S
checkpoint signalling, including Cdk-inhibitory pro-
teins [37– 39].
Perhaps one of the most well-studied roles for CK2 in
G1/S is its regulation of the tumour suppressor protein
p53, a transcription factor involved in DNA damage
signalling that can elicit both cell cycle arrest and
induction of apoptosis [29]. p53 is phosphorylated by
CK2 at serine 392 in response to UV radiation-
induced DNA damage, resulting in increased DNA
binding and transcriptional activation [30, 40]. In
response to DNA damage caused by UV light, CK2
forms an interaction with the FACT complex (con-
sisting of SSRP1 and hSPT16), resulting in increased
CK2 activity towards p53 [31, 40]. SSRP1 is also a
substrate of CK2, and phosphorylation decreases
SSRP1 binding to DNA, halting transcription in the
event of DNA damage [32]. In undamaged cells, p53 is
constantly produced and degraded, and the degrada-
tion of p53 is induced by MDM-2 (murine double
minute clone 2), which targets p53 for processing by
the 26S proteasome. In the presence of cellular stress,
the interaction between MDM-2 and p53 is disrupted,
leading to stabilization of p53, which can then elicit a
cellular response [29]. MDM-2 is also a substrate of
CK2, which phosphorylates it at serines 260 [35], 267
[36], and 269 [33, 35].Phosphorylation at serine 269
has been shown to decrease MDM-2 binding to pRB,
and phosphorylation-site mutants cause altered
growth when expressed in cells [34]. CK2 phosphor-
ylation at serine 267 leads to reduced ability to direct
p53 degradation [36]. Treatment of cells with the CK2
inhibitor TBB (4,5,6,7-tetrabromo-2-azabenzimida-
zole) leads to induction of p53 and its transcriptional
target genes [35], providing additional evidence of the
importance of CK2 regulation of p53 signalling.
Another mechanism by which CK2 regulates G1/S
signalling is through interaction and phosphorylation
of Cdk inhibitory proteins. p21WAF1/CIP1, a potent
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inhibitor of Cdks whose expression is induced by p53
activation [29], binds to CK2b [37]. CK2 can phos-
phorylate p21WAF1/CIP1 in a CK2b-dependent manner,
indicating that CK2b acts to target the catalytic
subunits to this substrate [38]. p27KIP1, another Cdk
inhibitor, is also phosphorylated by CK2 in a CK2b-
dependent manner [39]. The effects of CK2 phos-
phorylation of these substrates has not been deter-
mined, but suggests that CK2 can regulate progression
through G1/S though multiple mechanisms.

G2/M

The onset of mitosis is associated with a wave of
regulatory phosphorylation, and CK2 itself is one of
the affected proteins. CK2b is phosphorylated in a cell
cycle-dependent manner by the main mitotic cyclin-
dependent kinase, Cdk1, at serine 209 [41]. The
function of this phosphorylation event remains un-
known. The CK2a catalytic subunit is also phosphory-
lated in a cell cycle-dependent manner by Cdk1, at
four residues in its unique C-terminus (threonines 344
and 360 and serines 362 and 370) [42, 43] (Fig. 1A).
The presence of these sites indicates independent
regulation of the CK2 catalytic subunits in the cell
cycle, and a specialized role for CK2a (or a2b2

tetrameric forms) in mitosis. Since these phosphor-
ylation sites do not directly affect CK2 activity, it is
hypothesized that they may contribute to subtle
regulation of CK2, by forming binding sites for
interacting proteins and/or targeting CK2 towards
favourable substrates or away from unfavourable
substrates in the context of mitotic progression.
Through the development of phosphospecific anti-
bodies against the four CK2a phosphorylation sites,
we have shown that phosphorylation of CK2a occurs
mainly during prophase and metaphase. Furthermore,
disruption of these phosphorylation sites leads to
centrosomal amplification, abrogation of the spindle
assembly checkpoint (SAC), and induction of mitotic
catastrophe [150]. On the basis of these observations,
we theorize that proper temporal regulation of CK2a

phosphorylation is required to avoid these defects
(Fig. 1B). The requirement for proper mitotic regu-
lation of CK2 through phosphorylation suggests a
crucial role in mitotic progression.
Several lines of evidence point to specific roles for
CK2 in the G2/M transition and mitosis. CK2 coloc-
alizes with the mitotic spindle and centrosomes [44,
45], and many proteins involved in mitosis are
interacting partners and/or substrates of CK2, includ-
ing b-Tubulin[46], Cdc25B [47],Tau [48], Condensin
[49], PP2A [50], and Microtubule-associated proteins

Figure 1. CK2 phosphorylation in mitosis. (A) Schematic representation of CK2a and CK2b with mitotic phosphorylation sites (threonines
344 and 360, serines 362 and 370 in CK2a, serine 209 in CK2b) highlighted. (B) Model for temporal regulation of CK2a phosphorylation
based on experiments using phosphorylation site mutants. (C) Model for CK2 mitotic phosphorylation sites as docking sites for mitosis-
specific protein-protein interactions. After phosphorylation of CK2 by Cdk1, the CK2a C-terminal phosphorylation sites may be bound by
the prolyl isomerase Pin1. Complex formation between Pin1, Topoisomerase II, and phosphorylated CK2a results in decreased mitotic
phosphorylation of Topoisomerase II by CK2 [67]. The mitotic kinase Plk1 can also bind to the C-terminal CK2a phosphorylation sites
[61]; however, no function has been elucidated for this interaction. Phosphorylation-dependent interacting proteins have not as yet been
identified for CK2b.
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1A and 1B [48]. Through sequential phosphorylation
of Wee1 with Plk1 and Cdk1, CK2 phosphorylation
leads to the degradation of Wee1 and onset of mitosis
[51]. Attenuation of CK2 activity or knockdown of
CK2 subunits has been shown to abrogate the SAC
after nocodazole treatment, in concert with the p38
MAPK [52]. The regulatory CK2b subunit also
appears to have mitotic roles that are independent
of the catalytic CK2 subunits [53]. CK2b interacts with
and increases the catalytic activity of Checkpoint
Kinase 1 (Chk1), independently of the CK2 catalytic
subunits [54]. Through its interaction with Chk1,
CK2b has been demonstrated to control the degrada-
tion of the cell cycle regulatory CDC25A phosphatase
[55]. Furthermore, knockdown of CK2b leads to
stabilization of Wee1, promoting increased phosphor-
ylation of Cdk1 that leads to inhibition of the onset of
mitosis [53]. Large-scale RNAi (RNA interference)
screens have also highlighted a role for CK2 in cell
division. For example, a screen in Drosophila mela-
nogaster showed that knockdown of the CkIIa gene
led to mitotic abnormalities, including centrosomal
defects and lagging chromatids upon separation in
anaphase [56]. As in the G1/S DNA damage check-
point, CK2 plays a role in p53-mediated DNA damage
signalling in G2. While many proteins instrumental to
the G2/M DNA damage checkpoint are substrates
and/or interactors of CK2, including the checkpoint
kinases Chk1 [54] and Chk2 [57], Topoisomerase II
[58, 59], BRCA1 [60], and Plk1 [61], the role of CK2 in
execution of the G2/M DNA damage response
remains unknown.
Many cell cycle regulatory proteins are phosphory-
lated by CK2, including Topoisomerase II [58, 59],
Cdc34 [62], Cdk1 [63], and Six1 [64]; however, the
precise details of these phosphorylation events remain
largely unknown. CK2 phosphorylation of Topoiso-
merase II was initially detected in mammalian cells
using the mitosis-specific MPM-2 (mitosis protein
monoclonal-2) and 3F3/2 phosphospecific antibodies,
which recognize the CK2 sites at serine 1469 and
threonine 1342, respectively [58, 59]. Intriguingly,
CK2 can regenerate a number of other MPM-2
reactive phosphoepitopes lost following phosphatase
treatment, indicating that there are additional mitotic
substrates of CK2, and that the MPM-2 antibody may
be instrumental in detecting them [58].
In addition to mitosis-specific substrates, CK2 also
forms protein-protein interactions in a mitosis-specif-
ic manner, using the four mitotic phosphorylation sites
located in the CK2a C-terminal (Fig. 1C). One of the
most intriguing CK2 interactors in mitosis is Pin1, a
peptidyl-prolyl isomerase which catalyzes the cis-
trans isomerization of proline residues adjacent to
phosphorylated serine or threonine [65]. Due to the

similarities between its isomerization consensus se-
quence and the phosphorylation consensus sequence
of Cdk1, Pin1 binds to several important mitotic
phosphoproteins, and is believed to have a central role
in the regulation of mitosis (reviewed in [66]). Studies
in our laboratory have shown that Pin1 binds specif-
ically to CK2a on its phosphorylated C-terminal tail.
Furthermore, this interaction leads to decreased CK2-
catalyzed phosphorylation of Topoisomerase IIa [67].
It is currently unknown whether Pin1 merely binds to
the CK2a mitotic phosphorylation sites or actually
catalyzes isomerization of the adjacent prolines, but
what is clear is that protein-protein interactions
between Pin1 and phosphorylated CK2a can regulate
CK2 activity. Recently, a proteomic screen of Plk1
Polo-Box Domain (PBD) interactors in mitosis iden-
tified CK2a as a cell cycle-specific, phosphorylation-
specific interactor of Plk1 [61]. Intriguingly, threonine
344, one of the four mitotic phosphorylation sites
located on the CK2a C terminal, fits the consensus
sequence for PBD binding [68]. Plk1 is an important
kinase regulating multiple facets of mitotic progres-
sion (reviewed in[69]), and determining the role of this
interaction in mitotic progression could shed new light
on the role of CK2 in mitosis. As noted earlier, CK2b is
also phosphorylated by Cdk1 in mitosis, but phos-
phorylation-dependent interactions have not yet been
identified (Fig. 2C).
The emergence of proteomic studies of mitotic
phosphorylation and interaction events have yielded
some new targets for CK2. Proteomic investigations
have confirmed previous localization studies by
identifying CK2 as a component of both the centro-
somes [70] and spindle midbody [71]. Phosphopro-

Figure 2. CK2 phosphorylation of caspase substrates can rescue
from caspase cleavage. In the absence of CK2 phosphorylation,
caspases are free to access the aspartic acid cleavage site and cleave
substrate proteins, leading to apoptosis. However, CK2 phosphor-
ylation of adjacent serine (or threonine) residues effectively block
caspase binding to a substrate, blocking cleavage and allowing for
cell survival.
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teomic screens have identified additional proteins
presumed to be mitotic substrates of CK2, including
Septin-2, INCENP, and MAP7 [72]. While proteomics
has identified novel candidate proteins that may
interact with CK2 in mitosis, to date proteomics
approaches to identify phosphorylation-specific tar-
gets and interactors of CK2a have had limited success.
This may be at least in part due to the sequence of the
CK2a C-terminal tail, as a lack of lysine residues
leaves the C-terminal fragment too large to ionize
efficiently after typical trypsin digestion. For this
reason, large mitotic proteomic screens have been of
limited value to the study of CK2a phosphorylation.
How CK2 affects mitotic progression, and particularly
how this is affected by phosphorylation of the CK2a

and CK2b subunits, will be crucial to understanding
cell cycle regulation in mammalian cells.

CK2 in the induction of apoptosis

It has long been known that CK2 has an important
survival role in mammalian cells. CK2 is required for
viability in genetically tractable organisms such as
Saccharomyces cerevisiae [73], Schizosaccharomyces
pombe [74], and Dictystelium discoideum [75]. Ex-
pression of kinase-inactive CK2 in yeast does not
rescue the loss of viability, indicating that CK2
catalytic activity, and not simply the presence of
CK2, is required for viability [21, 76]. In mouse
knockout models, knockout of the regulatory CK2b

gene is lethal, even at the single-cell level [77].
Interestingly, while knockout mice lacking expression
of CK2a are embryonic lethal at day 10.5 [78], CK2a’
knockout mice are viable, albeit showing defects in
spermatogenesis due to a predisposition to apoptosis
in the germ cells [79]. Taken together, this indicates
that CK2a can compensate for the loss of CK2a’ in
most cases, but CK2a’ cannot compensate for loss of
CK2a. Interestingly, overexpression of a kinase-dead
mutant of CK2a’ in human cancer cells leads to loss of
viability [80], indicating that CK2a’ may have a
specialized role in maintaining viability not seen
with CK2a. Studies using RNAi strategies to knock-
down CK2 subunits have had varying degrees of
success; however, some have shown that loss of CK2 in
this manner leads to decreases in viability [81, 82].
Recently, the role of CK2 in the decision processes
leading to apoptosis has become an exciting area of
research, as the evidence that CK2 is an important
prosurvival enzyme increases. Overexpression of CK2
is protective against drug-induced apoptosis [83], and
cell lines that show resistance to apoptosis-inducing
drugs often overexpress CK2 [84]. CK2 is thought to
directly regulate both receptor-mediated apoptosis

[85] and intracellular apoptosis initiated by DNA
damage [86]. Additionally, inhibition of CK2 can
sensitize cancer cells against both types of apoptosis
[87, 88], indicating that chemical inhibition of CK2
may be a promising cancer therapeutic. Interestingly,
chemical inhibition of CK2 also enhances the ability of
natural killer (NK) cells to kill cancer cells in vivo [89].
Many proteins involved in apoptotic signalling are
direct substrates of CK2, while others are affected at
the level of expression. Survivin, an inhibitor of
apoptosis protein (IAP), is upregulated by increased
CK2 expression [90]. In contrast, Bid, a pro-apoptotic
member of the Bcl-2 family of proteins, binds tightly
to and is phosphorylated by the CK2a subunit in
particular [91]. Phosphorylated Bid is less susceptible
to Caspase 8 cleavage, inhibiting Bid-mediated acti-
vation of the mitochondrial apoptotic machinery [92].
This particular form of regulation has increasingly
been observed, and may represent a general anti-
apoptotic role for CK2, in which phosphorylation by
CK2 leads to protection from caspase cleavage [8]. By
phosphorylating proteins at residues close to or
contained within caspase cleavage sites, proteins are
protected from caspase cleavage and apoptosis is
avoided [93]. Because of the similarities between the
CK2 consensus sequence for phosphorylation (S/T-X-
X-Acidic) and the consensus sequences for caspase
cleavage, which center around an acidic aspartic acid
residue, CK2 is well suited to act in this manner [8]
(Fig. 2). Other caspase substrates regulated in this
manner by CK2 include Max [94], haematopoietic
lineage cell-specific protein 1(HS-1) [95], Presenilin-2
[96], Connexin 45.6 [97], and PTEN [98]. In addition
to regulating caspase activity by phosphorylating
substrates, CK2 can also directly regulate the activity
of the caspases themselves. In mice, caspase 9 is
protected from caspase 8 cleavage by CK2 phosphor-
ylation, and loss of the phosphorylation site leads to
induction of apoptosis [99]. By phosphorylating
caspase 2, CK2 inhibits caspase 2 dimerization, there-
fore preventing its activation [100]. The caspase-
inhibiting protein ARC (apoptosis repressor with
caspase recruitment domain) requires phosphoryla-
tion by CK2 to effectively inhibit caspase 8 activation
[101]. Collectively, it is clear that CK2 has multiple,
overlapping roles in induction of apoptosis, which
almost certainly contribute to its importance in
cellular signalling and oncogenic activity.

Transcriptional control by CK2

Cellular decisions to grow and survive are often
mediated through control of transcription, and CK2 is
emerging as an important regulator of transcription.
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Not surprisingly, the effects of CK2 activity on the
transcription of tRNA, rRNA, and mRNA involve
multiple levels of regulation and a plethora of
substrates. At the level of the basal components of
the transcriptional machinery, CK2 can directly reg-
ulate the activity of human RNA polymerases I [102,
103], II [104], and III [105]. Despite the varying
mechanisms used to initiate and continue transcrip-
tion by each of these polymerases, the role of CK2 in
each system is remarkably similar, and suggests that
CK2 may act as a general regulator of all cellular
transcription. Transcriptional activation is regulated
at the general level in response to cell stimuli, in that
cells receiving proliferative signals increase transcrip-
tion, whereas cells which are subjected to metabolic
stresses or DNA damage decrease transcription. As a
kinase involved in signalling pathways governing cell
growth and survival and directly involved in stress
signalling, CK2 is well-placed to be the �messenger�
that relays the current condition of the cell to the
transcriptional machinery.
CK2 copurifies with RNA Polymerase I (RNAP I),
which transcribes ribosomal RNA (rRNA) subunits,
and is present at rRNA promoters [102, 103, 106]. In
particular, this interaction takes place between CK2
and the initiation-competent RNAP Ib, and targets
CK2 activity towards the transcriptional activator
UBF (upstream binding factor), selectivity factor 1
(SF1) subunit TAFI100, and RNAP Ib-associated
Topoisomerase IIa [102]. Phosphorylation of UBF
by CK2 stabilizes its association with SL1 at the
promoter, leading to increased transcription [102,
103], while phosphorylation of TAFI100 decreases the
association of SL1 and UBF at the promoter, leading
to decreased transcription. CK2 inhibition limits
transcription to one round, indicating a role for CK2
in reinitiation of transcription [102]. In addition, CK2
phosphorylates transcription initiation factor TIF-IA,
releasing it from RNAP I. This release may be
required for transcriptional elongation. TIF-IA reas-
sociates with RNAP I after dephosphorylation by
FCP1 (TFIIF-associating CTD phosphatase), suggest-
ing that interplay between CK2 phosphorylation and
FCP1 dephosphorylation is necessary for multiple
rounds of rRNA transcription by RNAP I [107].
RNA Polymerase III (RNAP III), which transcribes
transfer RNA (tRNA) as well as some rRNA compo-
nents, is also directly regulated by CK2. CK2 binds to
and activates the TBP subunit of the RNAP III
general transcription factor TFIIIB [108]. Chemical
and peptide inhibitors of CK2, as well as antisense
oligonucleotides and expression of kinase-dead mu-
tants of CK2, can block RNAP III transcription in
human cell extracts, and this is because CK2 inhibition
compromises the ability of TFIIIB to bind another

RNAP III general transcription factor, TFIIIC2,
which normally recruits TFIIIB to the promoter
[105]. CK2 is a required component of reconstituted
minimal RNAP III complexes. While CK2 phosphor-
ylation of TFIIIB is required for RNAP III tran-
scription, CK2 can also inhibit RNAP III transcrip-
tion, through the phosphorylation of additional
TFIIIB subunits Brf1 and Bdp1 [109]. Interestingly,
the different effects of CK2 on RNAP III transcription
seem to be cell cycle-specific. CK2 phosphorylates
Bdf1 in mitosis, leading to decreased RNAP III
transcription, and inhibition of CK2 in mitosis restores
transcriptional activity, while inhibition of CK2 in S
phase inhibits transcription [110]. These results show
that CK2 is a critical component of RNAP III-
mediated transcription, and has both positive and
negative regulatory roles on the transcriptional ma-
chinery.
The most well studied transcriptional machinery
involves RNA Polymerase II, responsible for tran-
scribing mRNA, and the role of CK2 in regulating
RNAP II transcription displays some overlap with its
regulation of RNAP I. CK2 phosphorylates RNAP II
on the C terminal domain (CTD) of the largest subunit
[104, 111]. As with phosphorylation of TIF-IA in the
context of RNAP I transcription, this phosphorylation
event is reversible and involves dephosphorylation of
the CTD by FCP1. This cycle of phosphorylation and
dephosphorylation is required for the recycling of
RNAP II and reinitiation of transcription. CK2 also
phosphorylates FCP1 itself, resulting in stimulation of
FCP1 phosphatase activity and enhanced binding of
FCP1 to TFIIF [112]. In this way, CK2 regulates both
RNAP II directly as well as FCP1, the reciprocal
phosphatase required for removal of CK2-added
phosphates. In addition to phosphorylation of the
RNAP II CTD, CK2 also phosphorylates a variety of
RNAP II general transcription factors, including
TFIIA, TFIIE, and TFIIF. The result of these phos-
phorylation events is increased formation of initiation
complexes at the promoters of genes and increased
transcript formation [104].
Extending past the effects of CK2 regulation on the
general transcriptional machinery, several transcrip-
tion factors are themselves substrates of CK2. In fact,
of the 307 putative substrates listed by Meggio and
Pinna in 2003, 60 were transcription factors [113].
Transcription factors regulated by CK2 phosphoryla-
tion and/or interaction include NFkB (nuclear factor-
kappa B) [114], STAT1 (signal transducer and activa-
tor of transcription 1) [115], CREB (cAMP-response
element binding protein) [116], IRF-1 and -2 (inter-
feron regulatory factor-1 and -2) [117], ATF1 (activat-
ing transcription factor 1) [116], SRF (serum response
factor) [118], Max [119], and the protooncogenes c-
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Jun [116, 120], c-Fos [116], c-Myc [119], and c-Myb
[119]. The end results of these phosphorylation events
can involve activation or repression of transcription,
depending on the factor. Due to its direct and indirect
effects on transcription, CK2 gains another level of
control over pathways invoking many cellular proc-
esses, including proliferation and death, by regulating
the cell at the level of transcription.

CK2 in viral infection

Infection with various viral agents can lead to dereg-
ulation of a cell�s normal growth and survival path-
ways, often leading to disease. An intriguing conse-
quence of the seemingly constitutive activity of CK2 is
that several viruses have evolved to use it as a source
of phosphorylation for various proteins involved in
the viral life cycle, including Epstein-Barr Virus
(EBV) [121 – 123], Herpes Simplex Viruses (HSV)
[124, 125], Hepatitis B and C Viruses (HBV, HCV)
[126 – 128], Human Immunodeficiency Virus (HIV)
[129], Human Cytomegalovirus (CMV) [130] and
Human Papilloma Virus (HPV) [131]. In fact, in a
2003 review of CK2 substrates, Meggio and Pinna
listed over 40 different viral proteins shown to be CK2
substrates [113]. Phosphorylation of viral proteins by
CK2 can have many effects, including enhanced
nuclear localization [130], modulation of DNA bind-
ing [132], regulation of viral enzyme activity [122,
129], targeting of viral proteins for degradation by the
26S proteasome [127], and replication and transcrip-
tion of the viral genome [133]. For example, HIV-1,
the causative agent of Acquired Immunodeficiency
Syndrome (AIDS), exploits CK2 to phosphorylate
several proteins involved in viral infection and repli-
cation. The HIV-1 Rev transactivator is phosphory-
lated by CK2, an event which seems to downregulate
Rev activity [129]. However, the interaction between
CK2 and Rev actually stimulates CK2 activity towards
a number of other HIV-1-encoded genes, including
gp120, reverse transcriptase subunits p66 and p51,
gp41, and the p27 and p17 caspid proteins [134].
Phosphorylation by CK2 results in increased enzy-
matic activity of both the HIV-1 reverse transcriptase
and protease, and inhibition of CK2 reverses activa-
tion [135, 136]. In a macaque model, mutation of CK2
phosphorylation sites in the SHIV (simian/human
immunodeficiency virus) to glycine resulted in de-
creased T cell loss, indicating that CK2 phosphoryla-
tion may contribute to the pathogenicity of HIV-1
[137]. Interestingly, several drugs investigated as HIV
inhibitors have been demonstrated to selectively
inhibit CK2 [138].

Perhaps one of the best elucidated relationships
between CK2 activity and viral infection involves
HSV Type 1. Kinase activity detected in preparations
of purified HSV-1 virions has been attributed to CK2,
with HSV-1 proteins including VP12 and VP23 phos-
phorylated by CK2 [139]. CK2 also phosphorylates the
structural protein VP16 at serine 375, and mutation of
this site to alanine abrogates formation of a complex
between VP16 and the cellular factors Oct-1 and HCF,
abolishing transactivation of viral immediate-early
genes [140]. One of these immediate-early genes,
ICP27 (also called IE63), is phosphorylated by CK2
at serines 16 and 18 [141], and copurifies with CK2 and
heterologous nuclear ribonucleoprotein K (hnRNP K)
[125].This complex was later found to include p32, a
cellular protein involved in mRNA splicing, which is
also phosphorylated by CK2 in the ICP27 complex
[142]. Like HIV-1, HSV-1 seems to be capable of
modulating CK2 activity, as HSV-1 infection stimulates
CK2 activity early after viral infection, relocates the
CK2 holoenzyme from the nucleus to the cytoplasm,
and targets CK2 towards the phosphorylation of
hnRNP K, a protein not normally phosphorylated by
CK2. These changes are dependent on ICP27 expres-
sion, and are believed to facilitate the HSV-1 lytic cycle
[143]. There are many other examples of viruses which
seem to hijack CK2 activity to ensure their own
survival. The involvement of CK2 in the life cycles of
these viruses suggests that it may be a useful target for
antiviral drugs, however in order to successfully achieve
this, much more needs to be known about the specific
regulatory events acting on CK2.

CK2: A �regulatory linker� between cellular
processes?

One of the confounding factors of the study of CK2
lies in its multiple roles and plethora of substrates
involved in a variety of cellular processes. The major
roadblock in understanding its function (and conse-
quently, its promise as a therapeutic target) lies in
determining which functions are essential and which
are more complementary, and reconciling the fre-
quently conflicting functions of CK2 and how these
various signals are interpreted by the cell to lead to the
appropriate response. For example, CK2 is required
for viability, as pharmacological inhibition, RNAi, and
overexpression of catalytically-inactive CK2 subunits
all lead to decreased viability [80 – 82, 87, 88]. How-
ever, it remains unknown exactly which functions of
CK2 are required to maintain viability. Is it through
proper cell cycle regulation, through prosurvival
signalling, or possibly through transcriptional con-
trol? Similarly, while CK2 is overexpressed in many
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forms of human cancer [8], it is unknown which
functions of CK2 are altered by its increased expres-
sion, leading to oncogenesis. An alternative explan-
ation to the existence of one main role for CK2 is that
deregulation of the proper interplay between these
functions may be the cause of defects seen with
aberrant CK2 expression. In the human genome, CK2
consensus sequences are abundant, and phosphoryla-
tion by CK2 has been estimated to represent up to one
quarter of the eukaryotic phosphoproteome [113]. In
evolutionary terms, most proteins have developed
very specific, tightly regulated functions, including
numerous other protein kinases. The very existence of
a protein kinase with ubiquitous expression, constit-
utive activity, and high number of substrates points to
there being a specific reason for its existence. It has
been suggested that unlike the linear, vertical role that
most protein kinases play in signal transduction
pathways, CK2 may display a more �lateral� means
of pathway intervention, allowing for a global level of
control which may serve to consolidate the actions of
different pathways [113] (Fig. 3). If CK2 is to be
viewed as a master regulator of cellular functions, its
overexpression in cancer and oncogenic properties
may be due solely to a cellular advantage gained from
neutralizing control over which CK2 activities are
heeded and which are ignored in response to other,
more urgent responses. There are several examples of
crosstalk between seemingly distinct CK2 functions.
Through its involvement in cell cycle progression and
apoptosis, CK2 has emerged as a possible link
between the two processes, and may mediate cellular
decisions to either continue proliferation or self-
destruct. The roles of CK2 in the cell cycle, partic-
ularly in G1/S, typically involve DNA damage check-
point signalling, including its effects on p53 transcrip-
tional activation. Not only could CK2 accentuate

damage signals through modulating p53 activity, but
as an enzyme intricately and directly involved in the
induction of apoptosis, it may act both as the stimulus
and the effector in the pathways determining the
decision to die. In this effect, the relationship between
p53 and CK2 could be crucial for proper monitoring of
genomic integrity in proliferating cells. While p53 is
frequently mutated or otherwise functionally inactive
in cancer (reviewed in [144]), CK2 is often overex-
pressed (reviewed in [8]), leading to twofold dereg-
ulation of these signalling pathways. Perhaps not
surprisingly, CK2 overexpression combined with loss
of p53 acts synergistically in the development of
thymic lymphomas in mice [145]. This link between
cell cycle control and induction of apoptosis may also
occur during mitosis. Recent work in our laboratory
has shown that by disrupting the temporal regulation
of CK2a phosphorylation during mitosis, cells can be
stopped from dividing by induction of mitotic catas-
trophe (St-Denis et al. , submitted manuscript), a type
of mitotic cell death involving activation of the
apoptotic machinery [146]. Presumably, this shift
would involve a decrease in mitotic signalling and an
increase in apoptotic signalling. How this switch
actually occurs is unknown, and this information is
crucial to our understanding of CK2 regulation and
induction of mitotic catastrophe in general.
Recently, the traditional view of cell cycle progression
has been challenged [147], with the notion that
transcriptional oscillation throughout the cell cycle
may serve to cause cell cycle progression even in the
absence of activating Cdks [148]. In some respects this
is not surprising, as transcription has long been known
to be modulated thoughout the cell cycle. Indeed,
some proteins crucial for progression through the cell
cycle also have roles in transcriptional control, such as
CAK, which phosphorylates RNA Polymerase II and

Figure 3. CK2 as a lateral signal
between cellular processes. Over-
view of pathways involving CK2
activity that are described in the
text. Red arrows signify links
between cellular processes
which can be communicated
through various CK2 functions.
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various transcription factors as well as Cdks [26].
Similarly, CK2 may very well act as a linker between
cell cycle control and transcription, given its many
functions in both areas.
The exploitation of CK2 activity by viruses can have
far-reaching effects on CK2 regulation, and represents
another example of how CK2 can act as a lateral
signalling molecule between different cellular func-
tions. Viruses have been shown to stimulate the
activity of CK2 [134, 143]. In particular, stimulation
of CK2 leading to increased RNAP II CTD phosphor-
ylation can lead to increased transcription of viral
genomes [149]. Viruses that are mutated to no longer
activate CK2 show decreased proliferation and apop-
tosis, suggesting that viruses may enhance the anti-
apoptotic and proliferative roles of CK2 [143].

Conclusion

Through the work of multiple groups into multiple
aspects of CK2 activity, it is clear that the proper
regulation of CK2 is crucial throughout the life cycle
of the mammalian cell, from cell division to produce a
nascent daughter cell, throughout the life of that cell,
and ultimately in the decision to undergo apoptosis. In
addition to direct effects on the pathways controlling
these functions, CK2 also influences the life cycle of
the cell through regulation of transcription. In the
event of viral infection, CK2 activity is adopted to
enable viral infection and replication, altering the
normal life cycle of the cell. The plethora of research
into the various cellular roles of CK2 has also shed
light on the intricate regulatory mechanisms control-
ling phosphorylation of its substrates. While much
needs to be learned before the underlying function of
CK2 in the cell is completely understood, we suggest
that CK2 may act as a regulatory node which
coordinates various signals into an appropriate cellu-
lar response. Increased understanding of the actions of
CK2 and how they are regulated will aid in evaluating
the prospect of exploiting CK2 as a therapeutic target.

Note added in Proof: Reference 150 has been added during the
proof procedure.
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