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Abstract Dopamine is an important neurotransmitter that

regulates several key functions in the brain, such as motor

output, motivation and reward, learning and memory, and

endocrine regulation. Dopamine does not mediate fast

synaptic transmission, but rather modulates it by triggering

slow-acting effects through the activation of dopamine

receptors, which belong to the G-protein-coupled receptor

superfamily. Besides activating different effectors through

G-protein coupling, dopamine receptors also signal through

interaction with a variety of proteins, collectively termed

dopamine receptor-interacting proteins. We focus on the

dopamine D4 receptor, which contains an important poly-

morphism in its third intracellular loop. This polymorphism

has been the subject of numerous studies investigating

links with several brain disorders, such as attention-deficit

hyperactivity disorder and schizophrenia. We provide an

overview of the structure, signalling properties and regu-

lation of dopamine D4 receptors, and briefly discuss their

physiological and pathophysiological role in the brain.
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Dopaminergic neurons in the brain

Dopamine is a neurotransmitter that belongs to the group

of catecholamines. These contain a nucleus of catechol

(benzene ring with two adjacent hydroxyl groups) and a

side chain of ethylamine or one of its derivatives. Dopa-

mine is synthesized from the amino acid tyrosine in a

two-step enzymatic process (Fig. 1). The first, rate-limit-

ing, reaction involves the conversion of tyrosine into L-3,

4-dihydroxyphenylalanine (also referred to as L-DOPA or

levodopa), catalysed by tyrosine hydroxylase (TH). The

second step is carried out by aromatic L-amino acid

decarboxylase (AADC), and produces dopamine by

decarboxylation of DOPA. Interestingly, exogenously

applied levodopa has been used for a long time to alleviate

the symptoms of Parkinson’s disease on the basis of its

conversion to dopamine (reviewed in references [1] and

[2]). In other neurons, or in the adrenal medulla, dopamine

can further be transformed into noradrenaline/nor-

epinephrine and adrenaline/epinephrine.

Although dopaminergic neurons are rare (\1/100,000

brain neurons), they regulate several important aspects of

basic brain function. They are necessary for diverse tasks of

the brain regions they innervate, such as motor output,

motivation, memory and endocrine regulation. Dopamine

also plays an important role in the brain reward system, that

controls and stimulates the learning of many behaviours [3].

Dysregulation of dopaminergic signalling is linked to sev-

eral pathological conditions, such as Parkinson’s disease,

schizophrenia, and attention-deficit hyperactivity disorder

(ADHD). Artificial increase in dopamine transmission
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seems to be the common mechanism of action of drugs of

abuse that lead to addiction. Therefore, understanding how

dopamine works is an important subject of neuroscience

research.

Brain areas that synthesize dopamine have projections that

give rise to four axonal pathways, namely nigrostriatal,

mesolimbic, mesocortical and tuberoinfundibular (reviewed

in reference [1]). The nigrostriatal pathway is formed by

projections that arise from dopamine-synthesizing neurons of

the midbrain nucleus, the substantia nigra compacta, which

innervates the dorsal striatum (caudate putamen). This

pathway is involved in unconditioned and conditioned

(learned) behaviour [4–6]. Degeneration of nigrostriatal

neurons causes Parkinson’s disease. The mesolimbic path-

way originates from the midbrain ventral tegmental area and

innervates the olfactory tubercle, the ventral striatum

(nucleus accumbens) and parts of the limbic system. This

pathway is involved in sensitivity to rewarding stimuli and

reward-based, associative (pavlovian) learning [7], and

averse stimuli. It is also implicated in the psychomotor effects

generated by drugs of abuse including cocaine and alcohol

[8, 9]. The mesocortical pathway arises from the ventral

tegmental area and innervates different regions of the frontal

cortex and both D1 and D2 receptors are involved in learning

and memory [10–13]. Finally, the tuberoinfundibular path-

way arises from cells of the periventricular and arcuate nuclei

of the hypothalamus. Projections reach the median eminence

of the hypothalamus, where they release dopamine in the

hypothalamic-hypophyseal portal system. Consequently,

dopamine is transported to the anterior pituitary, where it has

an inhibitory effect on prolactin release by lactotrophs.

Dopamine is not a simple excitatory or inhibitory neu-

rotransmitter, but rather a neuromodulator that alters the

responses of target neurons to other neurotransmitters, and

that can alter synaptic plasticity. In this regard, dopamine (as

do other monoamines) does not ‘mediate’ fast synaptic

transmission, but ‘modulates’ it by triggering slow-acting

effects through signalling cascades. This complex feature of

dopamine makes it difficult to study its physiological role,

although recent progress in many neuroscience areas has

helped elucidate the function of dopamine and neuropsy-

chiatric illnesses.

Dopamine exerts its effects in the brain through different

types of dopamine receptors (D1–D5). In this article we focus

on the D4 receptor. Due to its potential role in mediating the

effects of atypical antipsychotics, the D4 receptor has been

the subject of a vast number of studies during the past two

decades. Despite these efforts, the specific function of this

receptor in the brain, and particularly the role of its

remarkable VNTR polymorphism, remain far from being

understood. However, since the link of seven repeat alleles

with ADHD was recently confirmed [14], and since it has

become clear that these variants have been subject to positive

selection during recent evolution, elucidating the role of this

polymorphism, as well as the regulation and signalling

properties of the D4 receptor, is even more challenging. This

review gives a comprehensive overview of the general

properties of the D4 receptor and many of the molecular

studies that have been performed since its discovery. We also

include the most recent data indicating that this receptor

shows specific signalling properties and regulation mecha-

nisms that differ from those of other dopamine receptor

subtypes. We stress the importance of D4 receptor-interact-

ing proteins (DRIPs) that place this receptor in multiprotein

complexes, allowing specific regulation, fast, coordinated

and pleiotropic signalling and extensive crosstalk.

Dopamine D4 receptor

Characterization, structure and the VNTR

polymorphism

Biochemical studies (almost four decades ago) showed

that dopamine is able to stimulate adenylyl cyclase (AC),

Fig. 1 Synthesis of dopamine. In the first rate-determining step,

tyrosine is converted into L-DOPA by the enzyme TH, in the presence

of tetrahydrobiopterin as a cofactor. In the second step, L-DOPA is

converted into dopamine by the enzyme AADC
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thereby suggesting the existence of dopamine receptors

[15]. Further research demonstrated that these receptors

belong to the GPCR superfamily and the homology cloning

approach rapidly resulted in the identification of five

dopamine receptor types [16, 17]. Further structural, bio-

chemical and pharmacological studies demonstrated the

existence of two categories of dopamine receptors. D1 and

D5 receptors (previously sometimes denoted as D1A and

D1B, respectively) are classified as D1-like, whereas D2,

D3 and D4 receptors are characterized as D2-like.

The genomic organization of dopamine receptors indi-

cates that they are derived from the divergence of two gene

families. In contrast to D1-like receptor genes, those

encoding D2-like receptors are interrupted by introns,

which allow the generation of receptor variants. Both the

human D4 receptor gene and rat or mouse homologous

genes contain four exons [17–19]. The D4 receptor gene,

located on chromosome 11 (11p15.5), contains a tran-

scription initiation site at 400–500 bp upstream, whereas

promoter sequences are located further upstream of the

transcription initiation site [20]. The D4 gene contains

quite a large number of polymorphisms in its coding

sequence. The most extensive polymorphism is found in

exon 3 in a region that codes for the third intracellular loop

(IC3) of the receptor [19]. This polymorphism consists of a

variable number of tandem repeats (VNTR), in which a

48-bp sequence exists as a 2- to 11-fold repeat giving rise

to polymorphic D4 receptor variants, denoted as D4.2 to

D4.11 [18, 21]. Thus, the length of the polymorphism

varies from two (2916 amino acids) to eleven (11916

amino acids) repeats. Several of the repeat units vary in

sequence from each other. At least 18 different repeat units

(different nucleotide sequence) have been described and

found in various positions [19, 22, 23]. Interestingly, a

similar VNTR is also present in various nonhuman primate

species, but is not seen in rodents [19, 24].

The allele frequencies of the different human polymor-

phic receptor gene variants are very heterologous [23, 25].

The four-repeat alleles have been found to be the most

frequent (global frequency 64%), followed by the seven-

repeat alleles (21%) and the two-repeat alleles (8%).

However, it became evident that there are considerable

differences in allele frequencies among the different

populations. For example, D4.7 alleles only appear

occasionally (\1%) in several Asian populations, whereas

the D4.2 allele is more frequent (up to 18%) in Asia than

globally (8%). Interestingly, there is evidence that the

seven-repeat alleles are at least five to ten times younger

than the common four-repeat allele, but nevertheless have

increased in frequency in human populations by positive

selection [21].

Analysis of the dopamine receptor structure has revealed

considerable homology between members of the same

family. The D2 and D3 receptors share 75% identity in

their transmembrane (TM) domain, and the D2 and D4

receptors 53% [26]. The N-terminal end has a similar

length in all receptor subtypes and contains a variable

number of consensus N-glycosylation sites. Biochemical

and pharmacological studies show that the D4 receptor is

able to undergo N-linked glycosylation on a single con-

served site (Asn 3), and that this glycosylation is not

involved in ligand binding or receptor trafficking to the

plasma membrane [27–29] (see Fig. 2). Regarding the

C-terminal end of the receptors, differences are more

obvious between the two subfamilies, as the C-terminal tail

is about seven times longer for D1-like receptors than for

D2-like receptors. They all contain a cysteine residue

(conserved in GPCRs) that has been demonstrated to be

palmitoylated to anchor the cytoplasmic tail of several

GPCRs, such as b-adrenergic receptors and rhodopsin, to

the membrane [30–33]. Two other cysteine residues,

located in extracellular loops 2 and 3 of all dopamine

receptors (and GPCRs), are also of interest, as they have

been suggested to form an intramolecular disulphide bridge

to stabilize the receptor structure [34, 35]. Finally, D2-like

receptors have a long IC3, whereas D1-like receptors contain

a short IC3, a common feature for Gi- and Gs-coupled

receptors, respectively. Other studies revealed that, besides

an important role for the IC3, also the IC2 of dopamine

receptors is involved in G-protein coupling [36–39].

Signalling by D4 receptors

Before discussing several dopamine receptor-induced sig-

nalling pathways, it should be mentioned that in studies

using heterologous expression of dopamine receptors in

several cellular systems (e.g. HEK293T, CHO, etc.), the

receptors may be expressed in an environment that could

contain different G-proteins, effectors and other molecules

from those found in vivo. As a result, heterologous

expression systems sometimes lead to apparently conflict-

ing results. Nevertheless, these systems have the advantage

of allowing the study of a single type of receptor, and are of

great help in unravelling different signalling properties of

dopamine receptors. On the other hand, the historical lack

of truly selective agonists (see below) which discriminate

between the various receptor subtypes, and specific and

sensitive antibodies against the D4 receptor, has added

another level of difficulty for studies on D4 receptor sig-

nalling in brain cells.

Multiple G-protein coupling

As demonstrated for many GPCRs, each dopamine receptor

subtype is able to interact with more than one G-protein,

allowing a multiplicity of signalling responses [38].
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Furthermore, interaction with multiple G-proteins allows

receptors to elicit effects which can act to enhance and

subsequently suppress the original receptor response, and

to activate distinct signalling pathways. For example, if the

initial receptor-mediated response is Gs-coupled, this

response could be attenuated by a switch in receptor cou-

pling specificity to the inhibitory Gi-protein, leading to

termination of the initial signal, even in the persistent

presence of agonist. Such a system enables the receptor to

modulate its own functional response, in a feedback-type

inhibition.

Adenylyl cyclase and cAMP

Many studies have demonstrated that activation of AC

(which catalyses the formation of cAMP from ATP),

resulting in cAMP production, is a general property of D1-

like receptors, through Gs or Golf proteins in several brain

tissues [40], whereas inhibition of AC (inhibition of cAMP

production) through Gi/o-proteins characterizes D2-like

receptors [41]. Regarding the VNTR polymorphism in the

IC3 of the D4 receptor, studies have suggested that this

repeat region might be important in coupling to AC and

even to G-proteins [42, 43]. Comparison of various D4

polymorphic variants has shown that the D4.7 receptor has

a two- to threefold lower potency for dopamine-mediated

coupling to AC than the D4.2 and D4.4 receptors [44].

However, the D4.10 receptor was even two- to threefold

more potent in AC coupling than the D4.2 receptor [45].

cAMP, in turn, is an important and ubiquitous second

messenger for many signalling pathways and can influence

various effectors, such as protein kinase A (PKA) and

DARPP-32 [46]. As DARPP-32 is an intermediate in many

signalling pathways, activated by various neurotransmit-

ters, it plays a role in integrating their actions in neurons,

and provides a link to other effectors and transcription

factors (reviewed in reference [47]). Further downstream,

activation of the D4 receptor has been demonstrated to

activate NFjB, an important transcription factor that plays

a role in inflammation [48], to induce Kruppel-like factor-2

(KLF2), a critical regulator of quiescence in T-lympho-

cytes [49] and c-Fos expression [50], which upon
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Fig. 2 Schematic illustration of the D4.2 receptor and its interacting

proteins. Residues that are important for dopamine binding are

indicated in red. The N-linked glycosylation site is located on the

extracellular N-terminal end of the receptor, at N3. The two repeats

(16 amino acids each) of the VNTR polymorphism are indicated in

the third intracellular loop (IC3) of the receptor. More information

about the role of the interacting proteins can be found in the text
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dimerization with c-jun forms the transcription factor AP-1

that activates transcription of genes involved in prolifera-

tion, differentiation, defence against invasion and cell

damage.

Calcium

Dopamine D4 receptors have been reported to influence

intracellular calcium levels through a variety of different

mechanisms, depending on the cell type, e.g. (1) inhibition

of calcium current in GH4C1 cells [38] and in AtT20 cells

[25], due to signalling to plasma membrane-expressed

calcium channels, and (2) stimulation of calcium current in

HEK293 cells [25], mediated by IP3 receptors in the

endoplasmic reticulum membrane. More complex mecha-

nisms have been described in which the D4 receptor

transactivates the platelet-derived growth factor (PDGF) b
receptor in CA1 hippocampal neurons, leading to PLCc
activation and subsequent IP3-dependent Ca2? release from

the endoplasmic reticulum [36]. Calcium induction by D4

receptors can result in several downstream effects: in cul-

tured prefrontal cortical neurons, D4 activation results in

synaptic translocation and activation of CaMKII, which in

turn regulates other targets such as AMPA receptors, that

play a crucial role in glutamatergic transmission in the

brain [39, 40]. Besides influencing AMPA receptors via

calcium signalling, activation of the D4 receptor in pre-

frontal cortex (PFC) interneurons also causes a persistent

suppression of AMPA receptor-mediated synaptic trans-

mission, by regulation of actin dynamics and AMPA

receptor trafficking [41]. Although the regulation of cal-

cium levels in the cell by dopamine receptors is firmly

established, the recent identification of many calcium-

sensing DRIPs (see below; [42]) indicates that cellular

calcium can in turn modify dopamine receptor signalling

properties, indicating possible crosstalk and feedback

mechanisms and additional levels of control on dopamine

receptor function.

Potassium channels

D2-like receptors can influence different types of potas-

sium channel. Several experiments have shown that D2 and

D4 receptors interact with GIRK (G-protein-coupled

inwardly rectifying potassium channel; Kir3), an important

regulator of cellular excitability [51–53], the opening of

which reduces the firing rate of neurons. In a recent study,

dopamine was demonstrated to stimulate D4.2, D4.4 and

D4.7 receptors and modulate GIRK currents in Xenopus

through oocyte Gi/o-proteins [54]. Furthermore, dopamine

was five-fold more potent on D4.2 and D4.7 than on D4.4,

suggesting that the actions of dopamine and therapeutic

drugs on D4 receptors might vary among individuals.

However, the D4 receptor has also been reported to

influence another type of potassium channel than GIRK,

more specifically the voltage-dependent outward potassium

current, which induces cell hyperpolarization by increasing

outward potassium currents via G-proteins [55, 56].

Arachidonic acid and Na?/H? exchange

D4 receptors can also induce arachidonic acid release,

probably via G-proteins and PKC activation [28, 57, 58]

and affect the activity of Na?/H? exchangers, which reg-

ulate intracellular pH, extracellular acidification and cell

volume [59, 60].

MAPK signalling

Several studies have shown a positive effect of D2-like

receptors on mitogenesis via classical mitogen-activated

protein kinases (MAPKs, more specifically the extracellu-

lar signal-regulated kinase ERK1 and 2), whereas other

studies have shown an inhibiting effect by the same

receptors in other cell lines [61, 62]. The specific pathway

used to activate ERK upon D4 receptor stimulation

depends on the specific cell type [63, 64]. First, it was

demonstrated that D4 receptors can activate the ERK cas-

cade in CHO cells and this is dependent on transactivating

the PDGFb receptor, a receptor tyrosine kinase (RTK) [63].

Very recently it was shown that intracellular PDGFb
receptors can also be transactivated by D4 receptors [65].

Finally, it is noteworthy that no differences were observed

in the magnitude or duration of MAPK activation com-

paring D4.2, D4.4 and D4.7 receptor-mediated signalling in

CHO cells [63]. In vivo studies have shown that this

transactivation results in depression of excitatory trans-

mission, mediated by NMDA receptors [63, 66]. Although

the precise mechanisms by which the D4 receptor trans-

activates PDGFb receptors are not completely clear, these

findings indicate an important role for RTKs in the regu-

lation and communication of dopamine and glutamate

signalling in the CNS. Interestingly, D4 receptors and

reduced glutamate signalling have been implicated in

neurological disorders that affect cognition and attention,

such as schizophrenia and ADHD [67].

Effects on GABAA signalling

The PFC, which shows a high expression of D4 receptors

[74], is associated with cognitive and emotional processes,

attention, and both working and long-term memory

[68–70]. The synchronization of pyramidal neuron activity

is controlled by GABAergic interneurons, mediated by

ligand-gated ion channels, GABAA receptors [71, 72].

Previous studies have revealed that GABAA receptors are
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subject to D4 receptor regulation in PFC pyramidal neu-

rons [75] and that D4 receptor activation decreases

functional GABAA receptor levels at the plasma membrane

by decreasing its transport through actin depolymerization

[76].

Dopamine receptor-interacting proteins

Recent data support the model that GPCRs are not ran-

domly distributed in the plasma membrane, but are rather

concentrated in specialized distinct microdomains, such as

lipid rafts and caveolae. In addition to classic G-proteins,

these structures contain a variety of signalling molecules,

such as AC, PKC and many other proteins. By recruiting

different signalling components, these microdomains can

enhance the speed and specificity of GPCR signalling.

These observations have led to the concept of signalsomes

or signalplexes, that underscore the importance of multi-

protein complexes in the regulation and signalling

properties of GPCRs. In accordance with this model,

GPCRs have been demonstrated to interact with a wide

variety of intracellular proteins [77–80], forming dynamic

complexes that contribute to the fine-tuning of downstream

signalling complexes. These insights have stimulated the

search for novel receptor-interacting proteins to provide

possible clues to the regulation and signalling properties of

GPCRs. Also for dopamine receptors, more and more

DRIPs have been characterized. The finding that D1-like

and D2-like receptors interact with a different set of DRIPs

supports the theory that these interactions determine many

of the functional properties that are different between the

two subtypes [81]. Whereas most of the studies on DRIPs

are based on the D2 receptor, serving as the model receptor

for D2-like receptors, only a few DRIPs have been char-

acterized so far (Fig. 2).

The proline-rich sequences of the D4 receptor, mainly

located in the polymorphic region of the IC3, can interact

with SH3 domain-containing proteins. Strong interactions

have been detected with Grb2 and Nck [43], two adapter

proteins without any known catalytic activity but capable

of recruiting multiprotein complexes to the receptor and

influencing cell proliferation, cell movement, axon guid-

ance, organization of the actin cytoskeleton, etc. Removal

of all these putative binding sites in the receptor results in a

mutant receptor that can still bind dopamine and G-protein,

but fails to couple with AC. This receptor furthermore

shows strong constitutive internalization, suggesting that

the SH3-binding sites of the receptor are involved in the

control of receptor internalization. Another type of D4

receptor-interacting protein is GIRK (see higher), which

modulates ion passage in response to D4 stimulation.

Additionally, we have recently discovered another protein

that specifically interacts with the D4 receptor but not with

the other dopamine receptor subtypes, i.e. the BTB-Kelch

protein KLHL12, that specifically binds to the polymorphic

region of the D4 receptor and functions as a substrate-

specific adaptor in a Cul3-based E3 ubiquitin ligase com-

plex for subsequent ubiquitination of the D4 receptor [82].

This type of DRIP thus alters the structure of the D4

receptor through secondary modification. For a detailed

and recently updated list of confirmed DRIPs of all dopa-

mine receptor subtypes, and their functional implications,

we further refer to Yao et al. [83].

Dimerization/oligomerization of dopamine D4

receptors

For the dopamine receptors, D1, D2, D3 and D5, it has

been shown that they are able to associate with themselves,

as well as with other receptors to form multi-receptor

networks that may have unique functional properties.

These networks could contribute to several aspects of

dopamine receptor signalling, including cross-talk with

other receptor systems. Concerning the D4 receptor in

particular, no data have been reported yet, although we

have unpublished results indicating that this receptor could

indeed form oligomers and that dimerization plays a role in

receptor biogenesis.

Regulation

As for other GPCRs, dopamine receptor functionality is

regulated by a variety of systems, among which agonist-

induced desensitization and internalization are important.

Previous studies on dopamine receptors have revealed a

great variability of agonist-induced desensitization sub-

types. Most studies on regulation of D2-type receptors have

shown that continuous agonist application results in phos-

phorylation of the D2 receptor, leading to uncoupling of

G-proteins and subsequent arrestin recruitment and inter-

nalization. The process of internalization of these receptors

seems to be dependent on a rather common dynamin-

dependent mechanism of endocytosis [84–87].

Studies on the desensitization properties of the D4

receptor are rare and also involved in vitro experiments,

using heterologous expression systems in different cell lines,

and it is not yet completely clear how D4 expression levels

are regulated. We have shown using biochemical and

immunofluorescence microscopy in several cell lines and in

rat hippocampal primary neurons that D4 receptors neither

undergo agonist-promoted downregulation nor internaliza-

tion, in contrast to b2-adrenergic and D2 receptors [29, 88,

89]. We showed a blunted response to agonist-induced b-

arrestin1/2 recruitment and D4 receptor phosphorylation

[88]. Furthermore, tandem mass spectrometry of D4 recep-

tor peptides proved the constitutive phosphorylation of Ser
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239 and Ser 245 (Fig. 2) [88]. Experiments in HEK293T

cells also suggest that the D4 receptor is not strongly regu-

lated through desensitization mechanisms compared with

for example b2-adrenergic receptors [18, 90]. Rather than

the IC3 polymorphism, the SH3-binding domains of the

receptor would be responsible for b-arrestin2/3 recruitment.

Previously, Oldenhof et al. demonstrated that by deleting all

putative SH3-binding sites, a mutant receptor is generated

that shows strong constitutive internalization but can still

bind dopamine [43].

Another very important mechanism to control D4

receptor function is the regulation of gene expression. The

mechanisms regulating D4 receptor expression levels,

however, are far from being understood. A few in vivo

studies have been performed in the context of schizo-

phrenia and antipsychotic drug response. Some studies

have suggested the upregulation of D4 receptors in the

striatum of schizophrenic patients, although it can be

debated whether these data reflect true D4 receptor sites

[18, 91]. Furthermore, both increases and decreases in D4

mRNA in the frontal cortex of schizophrenics have been

found in different studies. Moreover, it is unclear how and

to what extent antipsychotic medication can alter D4

receptor expression. Furthermore, these changes can be

region-specific. Additionally, it is not clear to what extent

changes in mRNA levels affect the expression levels of

functional D4 receptors. Regarding biosynthesis of the

receptor, we have demonstrated that folding efficiency is

rate-limiting in biogenesis of the receptor [29] and that

antipsychotics can function as pharmacological chaperones

upregulating receptor expression by stabilizing it in the

ER [92]. Also dopamine has been shown to be a potent

chaperone upon entering the cell through dopamine

transporters.

Finally, we stress the importance of DRIPs in the reg-

ulation of dopamine receptors, as they act on different

levels of receptor activity control, from biosynthesis to

desensitization. Some proteins act as chaperones for the

proper folding or posttranslational modifications of dopa-

mine receptors and their subsequent export from the ER,

such as the ER chaperone calnexin that regulates the export

of D1 and D2 receptors to the Golgi complex. Some DRIPs

even mediate postendocytic sorting and downregulation;

for example, the protein GASP targets internalized D2

receptors to lysosomes [93], and expression of the protein

ZIP binds to D2 receptors and has been demonstrated to

promote lysosomal degradation of D2 and also D4 recep-

tors [94].

Expression profile

D1- and D2-type receptors are present in all targets of

dopamine in the CNS of vertebrates [95]. Although D1 and

D2 receptors can be expressed in the same cells, most

neurons do not simultaneously express D1 and D2 recep-

tors, or only at very different levels, suggesting that

transcription is regulated differently in the two subtypes of

receptors. For a detailed summary of tissue distribution of

the various subtypes, we refer to Callier et al. [95]. It

seems, however, that D4 receptors are much less abundant

in the brain than D2 receptors. Moreover, the distribution

of D4 receptors shows a significant overlap with that of D2

receptors, suggesting a large degree of redundancy between

the two receptor subtypes. Historically, the detection and

localization of D4 receptors have been difficult due to the

similarity of their pharmacological properties, and the

absence of true selective ligands for specific D4 receptor

binding (see also below). Furthermore, antibodies against

the D4 receptor are often found to be insufficiently selec-

tive and sensitive. However, in general, expression levels

of D4 receptors seem to be significantly lower than those of

D2 receptors. The presence of D4 receptors in the cerebral

cortex, amygdala, hippocampus and the striatum has been

demonstrated by Northern blot and RT-PCR [17, 96], in

situ hybridization [97–99] and ligand binding [100–103].

These findings were mainly confirmed by immunohisto-

chemistry, which showed localization to GABAergic

neurons in the cerebral cortex, hippocampus, substantia

nigra pars reticulata, globus pallidus, and a subset of cor-

tical pyramidal neurons [74, 100, 104–108]. D4 mRNA has

also been detected at high levels in the human retina [96].

Interestingly, the expression of D4 receptors is not exclu-

sive for the CNS. Significant expression levels have been

detected in the cardiac atrium, lymphocytes and kidney

[73, 109–111].

Pharmacology

Agonist binding probably occurs within a narrow pocket

formed by highly conserved residues in the hydrophobic

TM domains (Fig. 2). An aspartate residue in TM3 would

bind the amine group of catecholamines, whereas two

serine residues in TM5 would function as hydrogen bond

donors for the catecholamine hydroxyl groups. Finally, a

highly conserved phenylalanine residue in TM6 could

stabilize the interaction with the aromatic ring of the ligand

[112–115].

The pharmacological profile of the D4 receptor is very

comparable to that of the D2 and D3 receptors, although

specific differences have been detected (see Table 1). The

most important feature distinguishing the D4 receptor from

D2 and D3 receptors is a higher affinity for clozapine. As

clozapine is an important antipsychotic, this observation

led to the hypothesis that the D4 receptor may mediate

(some) effects of antipsychotics [116]. Raclopride, on the

other hand, exhibits much lower affinity for the D4 receptor
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than for D2 and D3 receptors. Interestingly, the D4

receptor can also be activated by (nor)epinephrine [45, 117,

118]. Although the affinity of the D4 receptor is about

tenfold lower for (nor)epinephrine than for dopamine, these

compounds may still be relevant for receptor activation

under certain conditions [18]. Finally, the pharmacological

profiles of the polymorphic variants are not significantly

different [22]. In fact, the repeat sequence can be deleted

from the receptor without changing its pharmacological

profile [22, 42]. These results strongly suggest that there is

no direct linear relationship between the length of the

polymorphism and functional (see ‘‘Signalling by D4

receptors’’) or pharmacological activity.

For all D2-like receptors the existence of a G-protein-

coupled and uncoupled states (that is a high- and a low-

affinity state) have been demonstrated [44, 58, 119].

There are specific compounds that can differentiate D2-

like receptors from D1-like receptors, such as quinpirole,

N-0437 and PHNO (agonists), and domperidone, nemo-

napride and (-)-sulpiride (antagonists). Initially, very few

specific ligands were available to sufficiently distinguish

the D4 receptor from other D2-like receptors. Over the

years, however, various D4-selective ligands have been

characterized and synthesized, mainly due to the potential

role of this receptor as an antipsychotic target (see

Table 2). For example L-745,870 is a highly D4 receptor-

selective antagonist (about 2,000-fold) that has been used

extensively both in vivo and in vitro [52, 120–122]. Some

other D4-selective compounds and their main uses and

applications are shown in Table 2. For a more general

pharmacological profile of all dopamine receptor subtypes,

we refer to Missale et al. [28], Oak et al. [18], and Vallone

et al. [123].

Physiological role of the D4 receptor in the brain

The precise subcellular localization of a receptor within a

cell is very important for the function of the receptor in the

cell, especially in highly polarized cells such as neurons.

D2 receptors are located both presynaptically (predomi-

nantly D2S), where they can inhibit dopamine release

by decreasing calcium activity, and postsynaptically (pre-

dominantly D2L), where they can activate potassium

channels [39, 124–128]. Immunohistochemical studies

have demonstrated that the D4 receptor is found mainly

(postsynaptically) in dendritic shafts and spines of mam-

malian striatum [108] and, by projecting back to the

substantia nigra, may control dopaminergic transmission.

In an accepted model for dopamine signalling states

dopamine is considered not to be a simple excitatory or

inhibitory neurotransmitter, and not to mediate fast syn-

aptic transmission in the CNS, but rather to modulate it.

Therefore, dopamine is referred to as a mediator of ‘slow

synaptic transmission’ that alters the responses of target

neurons to other neurotransmitters, thus altering synaptic

plasticity. Dopamine controls the activity of glutamate

receptors (two major subtypes are NMDA and AMPA

receptors) that mediate corticostriatal neurotransmission,

for example through binding the D4 receptor subtype.

Furthermore, dopamine regulates the activity of several

voltage-gated ion channels and transcription factors, which

in turn activate transcription of early and late genes that

are essential for the long-lasting effects of dopamine on

synaptic transmission. Very recent data also suggest that

the D2-like receptors themselves are voltage-dependent,

demonstrating that the membrane potential could influence

the potency with which dopamine is able to activate the

Table 1 Pharmacological properties of dopamine receptors (Ki values in nanomolar)

Receptor/ligand D1 D5 D2 D3 D4

Dopamine *2,500

[163]

*225

[163]

*500

[164, 165]

*20–100

[164–166]

Canine brain *28; D4.2 receptor

*180–400 [175]; D4.4 receptor

*43 [176]

Norepinephrine *50,000

[163]

*12,000

[163]

[10,000

[165]

n.d. Canine striatum *1,750

[17]

Quinpirole [10,000

[167]

[10,000

[167]

*600–1200

[164, 165]

*15–45

[164, 165, 167]

*30–45

[17, 167, 168]

Haloperidol *25–350

[127, 128, 163]

*50–175

[128, 163]

*0.4–2.5

[127, 169–171]

*2–10

[127, 128, 164, 166, 172]

*0.8–20

[128, 169, 170]

Raclopride n.d. n.d. *0.5–2.5

[169, 170]

*1–2

[169, 170]

*600

[170, 173]

Clozapine *150–500

[127, 128, 163]

*250

[128, 163]

*40–400

[127, 164, 169–171, 174]

*100–500

[17, 127, 164, 167, 168]

*1.6–55

[17, 167, 168]

n.d. no data found.
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receptor [129, 130]. These observations suggest a function

for D2-like receptor in activity-dependent regulation of

synaptic strength. It has recently been suggested that the

D4 receptor has the unique ability to carry out phospholipid

methylation that can affect the kinetics of ion channels

[131, 132]. This mechanism may be important for

modulation of neuronal firing activity, where impaired

methylation can contribute to disorders of attention.

Another tool for studying the in vivo role of dopamine

receptors is the use of genetically modified mice and,

although the deletion of one particular gene may indicate

redundancy, a hint of the functional role of the deleted gene

can be obtained. In D4 receptor mutant mice, locomotion

[28, 123, 133] and behavioural response to novelty [134,

135] are reduced. These findings are of great interest, as

previous studies suggested an association between the D4

VNTR polymorphism (the seven-repeat alleles) and nov-

elty-seeking behaviour [136, 137]. However, other studies

failed to replicate these findings and also a recently per-

formed meta-analysis did not find a link between the VNTR

of the D4 receptor and novelty seeking [138]. Nevertheless,

the same study demonstrated an association with the C-521T

polymorphism of the D4 receptor. Finally, D4 receptor

mutant mice show enhanced activity of cortical pyramidal

neurons, and experiments with D4-selective pharmacologi-

cal agents indicated that the receptor plays an inhibitory role

in frontal cortex glutamatergic activity [139], which was

confirmed in later studies showing reduced NMDA and

AMPA signalling upon D4 receptor activation (see above).

Several drugs of abuse, including cocaine, opiates,

amphetamines and alcohol, generate psychomotor effects

and activate reward mechanisms in the brain, in which the

mesolimbic dopaminergic system plays an important role

(see above). Cocaine and amphetamines, for example,

increase dopamine levels in the synaptic cleft by blocking

the activity of the dopamine transporter. It has been

demonstrated that by inhibiting dopamine receptors (via

antagonists), hyperlocomotion and the reward effects of

cocaine and amphetamines in rats and mice can be atten-

uated. On the contrary, D2-like agonists mimic the effects

of these drugs of abuse. Experiments with dopamine

receptor null mice have revealed some more interesting

observations. D4 null mice, for example, appear to become

more sensitive to the stimulation of locomotor activity

induced by ethanol, cocaine and methamphetamine. These

results are surprising in view of the hypoactive locomotor

phenotype of these mice [140]. The underlying molecular

mechanisms of the physiological response to drugs of

abuse are not completely clear. It is, however, appreciated

that different drugs increase dopamine release in the

nucleus accumbens, leading to an overstimulation of

dopamine receptors. The challenging task that lies ahead is

thus the identification of the genes whose expression is

modulated by dopamine receptors in response to drugs of

abuse.

Dopamine-related diseases

A profound overview of this topic is beyond the scope of

this review, so we only briefly mention some diseases in

which D4 receptors may play a role.

Table 2 Selective ligands for

the dopamine D4 receptor
Ligand Affinity for D4 (nM) Specific purposes, uses, applications

L-745,870 0.43–0.51 In vivo administration in rodents for functional, behavioural

and drug-dependence studies [177–179]; development of

PET radioligands [180]; in D4 receptor-overexpressing cell

systems [52, 181]; tests for antipsychotic activity [120, 182]

L-741,742 3.5 In vivo administration to mice for anxiety testing [183]

ABT 724 *45–65 In vivo administration to rats to test potential treatment of

erectile dysfunction [184, 185]

WAY 100635 16.4 D4 receptor agonist and 5HT1A antagonist; produces

discriminative stimulus effects in rats [186, 187]

PD 168077 8.7 Selective D4 agonist, proerectile effect in rats [188]; tested in

mice for memory consolidation studies [189]

PNU 96415E 3 Tested for antipsychotic potential [190]

Ro 10-5824 5.2 Selective D4 agonist, increases novel exploration in mice [191]

NGD 94-1 3 In vivo administration to monkey for cognitive and memory

tests [192]; in vitro autoradiography studies [193, 194]

NRA 0160 0.5 Tested for antipsychotic activity in animal models [195, 196]

CI 1030 4.3 Tested for antipsychotic activity in animal models [195, 196]

A-412997 7.9 D4 receptor agonist; improves cognitive performance and

stimulates motor activity in rats [197]
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ADHD is predominantly a condition of childhood, and is

characterized by symptoms such as inattention, hyperac-

tivity and distraction. ADHD is thought to affect up to 6% of

children [141], and evidence from family data and twin

studies suggests that ADHD is familial and heritable

[141–143]. It is commonly accepted that dysfunction of the

dopamine system lies at the basis of the disorder, although

norepinephrine and serotonin systems have also been sug-

gested to play a role [123]. Conventional treatment of

ADHD generally involves the administration of psycho-

stimulant compounds, such as methylphenidate (Ritalin)

or D-amphetamine. Whereas methylphenidate blocks the

reuptake of dopamine by the dopamine transporter and

releases dopamine from vesicle stores, D-amphetamine

causes dopamine release by reversal of the dopamine

transporter function. Although these drugs stimulate dopa-

minergic activity in normal individuals, they exert a calming

effect in ADHD patients [123]. A great deal of interest in the

human dopamine D4 receptor was generated by several

studies that found an association between ADHD and D4

receptor gene polymorphism, more specifically the seven-

repeat allele [144–147]. In contrast, other studies did not find

an association between D4 receptor polymorphism and

ADHD [148]. Later, a meta-analysis obtained strong evi-

dence that the seven-repeat allele confers an increased risk

for the development of ADHD, whereas the four-allele is

protective [14]. Besides its association with ADHD, the

seven-repeat allele has been associated with other complex

behaviours including Tourette’s syndrome and the person-

ality trait of novelty seeking [136, 137]. Other studies,

however, failed to confirm this association [149–151] and a

recent meta-analysis also did not support it [138]. Never-

theless, the meta-analysis revealed an association between

novelty seeking and another polymorphism, specifically

C-521T, a single nucleotide polymorphism in the promoter

region of the D4 receptor. Interestingly, the T allele is

associated with a significant reduction in transcription levels

compared with the C allele [152, 153].

The D4 receptor has also been linked with schizophrenia,

a complex neuropsychiatric disorder, associated with alter-

ations in cognitive and emotional functioning, and involves

positive symptoms (psychosis, hallucinations, delusions and

paranoia) and negative symptoms (loss of energy and

motivation, slowed speech) [116]. Although several dopa-

mine-related genes have been implicated as risk factors for

the development of schizophrenia [154], there is accumu-

lating evidence for several other candidates, including

dysbindin, neuregulin 1, dystrobrevin-binding protein 1

(DNTBP1) (reviewed in references [155] and [156]). The

observation that D2 receptors could be blocked (antago-

nized) by classical neuroleptic compounds led to the theory

that dopamine plays an essential role in the pathogenesis of

schizophrenia. A series of promising reports generated a

great deal of interest in the potential role of the D4 receptor

in schizophrenia and in the development of new therapeu-

tics: (1) elevated D4 receptor density in post-mortem brains

from schizophrenic patients [157] (although other studies

failed to confirm this finding), and (2) the antipsychotic

clozapine exhibits higher affinity for D4 receptors than for

D2 or D3 receptors [17, 19, 22]. However, it was proved that

the antipsychotic activity of clozapine cannot be merely

explained by its combined serotonin/D4 receptor antago-

nist properties. Furthermore, many searches for possible

associations between schizophrenia and the D4 gene poly-

morphism have not led to strong links [151, 158, 159], and

genetic studies too have failed to demonstrate a correlation

between D4 polymorphism and the clozapine response [160,

161]. However, a lot of evidence supports the hypothesis that

a reduction in positive symptoms following treatment with

antipsychotics is mediated through blockade of D2 recep-

tors. Finally, although exclusive blockade at the D4 receptor

may not be sufficient for antipsychotic action, it might result

in an improved symptomatic profile in combination with D2

receptor blockade [116, 162].

Conclusion

Our understanding of the biochemical and signalling

properties of the dopamine D4 receptor has advanced over

the past several years. More insight has been obtained into

receptor signalling, regulation, internalization, dimeriza-

tion, and posttranslational modifications. A major step

forward was the identification of interacting proteins that

modulate the activity of specific processes.

Many genetic studies have shown the involvement of the

VNTR polymorphism of the dopamine D4 receptor in the

development of ADHD although pharmacological studies

have not revealed a profound difference between the

polymorphic D4 receptor variants. Physiological and bio-

chemical comparison of the variants need to be further

clarified in the future and this will also lead to a better

understanding of the signalling properties of the dopamine

D4 receptor.
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