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Abstract Tryptophan synthase is a pyridoxal 50-phos-

phate-dependent a2b2 complex catalyzing the last two steps

of tryptophan biosynthesis in bacteria, plants and fungi.

Structural, dynamic and functional studies, carried out over

more than 40 years, have unveiled that: (1) a- and b-active

sites are separated by about 20 Å and communicate via the

selective stabilization of distinct conformational states,

triggered by the chemical nature of individual catalytic

intermediates and by allosteric ligands; (2) indole, formed at

a-active site, is intramolecularly channeled to the b-active

site; and (3) naturally occurring as well as genetically gen-

erated mutants have allowed to pinpoint functional and

regulatory roles for several individual amino acids. These

key features have made tryptophan synthase a text-book case

for the understanding of the interplay between chemistry and

conformational energy landscapes.
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Abbreviations

GP Glycerol phosphate

G3P D-glyceraldehyde-3-phosphate

IA trans-3-indole-30-acrylate

IAD Indoleacetyl aspartate

IAG Indoleacetyl glycine

IAV Indoleacetyl valine

IGP Indole-3-glycerol phosphate

IPP Indole 3-propanol phosphate

PLP Pyridoxal 50-phosphate

TS Tryptophan synthase

Introduction

Tryptophan synthase (TS) (EC 4.2.1.20) is an a2b2 bi-func-

tional pyridoxal 50-phosphate (PLP)-dependent enzyme that

catalyzes the last two steps in the biosynthesis of L-trypto-

phan in bacteria, plants and fungi. In the history of

enzymology and structural biology, TS has served a key role

because: (1) it was the first enzyme exhibiting two distinct

catalytic activities, and therefore endowed with two active

sites, whose spatial and functional relationship was deeply

investigated; (2) it was the first enzyme for which a product

formed at one site was demonstrated to be intramolecularly

transferred to another site, contributing to the concept of

vectorial catalysis and substrate channeling [1]; (3) it was

one of the first enzymes whose naturally occurring mutants

were exploited to pinpoint functional roles for individual

amino acids, long before the development of site-directed

mutagenesis; (4) it was the second PLP-dependent enzyme,

after aspartate aminotransferase, whose structure was

determined by X-ray crystallography; and (5) it has been

serving as a model for allosteric intersubunit regulation, in
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the absence of a quaternary transition, allowing the investi-

gation of the interplay between chemistry and dynamics

energy landscapes. Given these premises, it is not surprising

that a wealth of information on TS has been accumulated and

frequently reviewed [2–10]. The overall emerging picture

emphasizes the intimate link among structure, dynamics and

function, making this enzyme a text-book case for under-

standing how catalysis is controlled and tuned by subtle

protein conformational changes, triggered by chemical

events taking place at more than 20 Å apart.

The key features of TS that will be specifically addressed in

this review are:

• the catalytic mechanism, the role of individual active sites

residues and the effects of protons and monovalent cations;

• the intersubunit signaling mediated by conformational

transitions.

As for many other PLP-dependent enzymes, most of our

knowledge on the catalytic mechanism and conformational

changes comes from the peculiar spectroscopic properties

of the coenzyme, with distinct absorption and fluorescence

bands associated with individual reaction intermediates

[11]. This information is coupled to a series of X-ray

crystallographic studies, pioneered by Davies, Miles

and co-workers [12] and later pursued by Schlichting,

Mozzarelli, Dunn and co-workers [13], that led to a deep

understanding of structure–function relationships [13–16].

Key structural features of TS (Fig. 1) are: (1) the a and b
subunits are arranged in an abba linear mode (Fig. 1a)

[12]; (2) the a-subunit exhibits a TIM barrel conformation,

with the a-active site crystallographically localized by the

presence of allosteric ligands; (3) within the superfamily of

PLP-dependent enzymes, the b-subunit of TS belongs to

fold type II [17], and is composed of two domains, with the

active site located at their interface; (4) an intramolecular

tunnel connects the a- and b-sites, channeling the product

of the a-site, indole, to the b-site [12]; (5) monovalent

cations bind to a specific site adjacent to the b-active site

[12, 18]; (6) a flexible domain of the b-subunit composed

of residues bGly102-bGly189, and including b-helix6

(COMM domain), preferentially interacts with the flexible

structural elements a-loop2 and a-loop6 of the a-subunit

(Fig. 1b) [13, 19]; and (7) both the a- (Fig. 1c) and the

b-subunit (Fig. 2) can adopt an open conformation that is

proposed to be catalytically and allosterically inactive, and

a closed conformation, proposed to be catalytically and

allosterically active [20, 21].

Catalytic mechanism and regulatory effects

The physiological reaction of TS is the conversion of indole-

3-glycerol phosphate (IGP) and L-serine to L-tryptophan and

Fig. 1 Structure of TS from Salmonella typhimurium. a Three-

dimensional structure of TS a2b2 complex (pdb file 1K7E) [29]. The

a-subunits are colored in pink and the b-subunits in green, with dark
and light tones for the composing distinct domains. The a-active site

is localized by the bound IAG, shown in blue sticks, and the b-active

site by bound PLP, shown in red sticks. The monovalent cation bound

in the b-subunit is shown as an orange sphere. The intramolecular

channel connecting the a- and b-active sites is shown as a transparent

volume only for a single a-b dimer. b Close-up view of the a-b
subunit interface involved in the allosteric communication (pdb file

1K3U), showing interactions of a-loop6 and a-loop2 with b-helix6 of

the COMM domain [13]. IAD bound at the a-active site is shown.

Color code is the same as in panel a. c Open (red) and closed (pink)

conformation of the a-subunit in the proximity of the subunit

interface, associated to the allosteric regulation. The open conforma-

tion was obtained from molecular dynamics simulations [86] and the

closed conformation from X-ray crystallography [29]
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D-glyceraldehyde-3-phosphate (G3P). The reaction is the

combination of two half reactions occurring at the a- and

b-sites:

The a-reaction

The reaction catalyzed by the a-subunit is the reversible

retro-aldol cleavage of IGP to give indole and G3P. It is a

general acid-base catalysis. The cleavage of the C30–C3 bond

in IGP is activated by tautomerization of the indole ring to

yield an indolenine tautomer, an intermediate which has a

tetrahedral carbon at the C3 position. The tautomerization is

favored by two catalytic groups, B1-H and B2. B1-H proto-

nates the indole ring at the C3 position, while B2 abstracts the

proton on N1 of the indole ring. The bond cleavage is then

catalyzed by a second base, B3, which removes a proton from

the C30 hydroxyl group. Extensive biochemical [22, 23] and

structural [12, 13, 24] studies have been performed to identify

the catalytically important groups B1-H, B2 and B3. The

proposed mechanism of the a-reaction involves the concerted

action of aGlu49 and aAsp60. It has been speculated that

aGlu49 may perform the B1-H function by protonating the

C3 position of the indole moiety and subsequently accepting

the hydroxyl proton of the glycerophosphate moiety (B3

function), while aAsp60, identified as B2 [12, 13, 19, 22, 25],

stabilizes the developing positive charge on the indole ring

nitrogen.

Fig. 2 Three-dimensional

structure of the b-subunit active

site of TS at different stage of

catalysis. (a) Internal aldimine

(pdb file 2clf [96]; (b) external

aldimine with L-serine (pdb file

2clm [31]); (c) a-aminoacrylate

in the presence of the a-subunit

ligand a-D,L-glycerol-3-

phosphate (pdb file 2j9x [31])
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The rate-limiting step in the a-forward reaction is the

isomerization from the catalytically inactive to the acti-

vated IGP complex [20]. a-Site ligand analogs of IGP, such

as indole 3-propanol phosphate (IPP), glycerol phosphate

(GP), and indoleacetyl glycine (IAG) or indoleacetyl

aspartate (IAD), have been used in structural and mecha-

nistic studies [4, 6–9, 12, 19, 26]. The latter two

compounds belong to a new class of a-subunit ligands,

indole-3-acetyl amino acids. Some of these, such as IAG

and IAD, act as allosteric effectors and are able to perturb

the equilibrium of the catalytic intermediates formed at the

b-active site (see Scheme 1), stabilizing the a-aminoacry-

late Schiff base, whereas indoleacetyl valine (IAV),

behaves as a competitive inhibitor of a-subunit ligands.

Their dissociation constants vary between 0.3 and 1.7 mM

and are intermediate between those observed for IPP

(Ki = 5 lM [27]) and GP (Ki = 12 mM). The action of

these compounds also proves that the terminal phosphate

moiety of IPP or GP, known allosteric effectors of TS, is

not strictly required for the transmission of regulatory

signals [28]. The conformational changes induced by IAG,

IAD and IAV were determined by X-ray crystallography,

coupled to single crystal microspectrophometric studies

[29]. A series of ortho-substituted arylthioalkylphospho-

nate inhibitors of TS with an sp3-hybridized sulfur atom

were designed to mimic the putative tetrahedral transition

state at the C3 atom of the indole. These inhibitors bind in a

fashion similar to that of IPP but exhibit much higher

Scheme 1 Overview of the b-reaction catalyzed by tryptophan synthase
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affinities [30]. More recently, a new family of unreactive

a-site ligands, which contain an aryl group linked to an

O-phosphoethanolamine moiety through amide, sulfonamide,

or thiourea groups, were proven to bind to the a-site with

high specificities and affinities, mimicking the complex

between IGP and G3P and acting, as did the previously

discovered IPP or IAA, as allosteric ligands. They were

reported to slow the entry of indole analogues into the b-site

by blocking the tunnel opening at the a-site and stabilizing

the closed conformation of the b-subunit [16, 31].

The b-reaction

The reaction catalyzed by the b-subunit is the PLP-cata-

lysed condensation of indole with L-serine to form

L-tryptophan. The b-reaction is a b-replacement proceeding

via a series of intermediates, shown in Scheme 1, carrying

out a b-elimination (stage I) and a b-addition (stage II).

The internal aldimine between PLP and the e-amino group

of bLys87 (Fig. 2a) reacts with L-serine to rapidly form,

via a gem-diamine intermediate, an external aldimine

(Fig. 2b). Abstraction of the a-proton of L-serine external

aldimine yields an unstable quinonoid intermediate that

eliminates the hydroxyl moiety, or, more likely, a water

molecule, to give the meta-stable a-aminoacrylate species

(Fig. 2c). This step completes the stage I. Kinetic studies of

the wild-type, bCys170Phe, and bCys170Trp mutants with

blocked or restricted access to the tunnel have established

that indole, known not to escape into the solvent, is

transferred from the a-site to the b-site via an intramolec-

ular tunnel [1, 8, 20, 21, 32–34], where it reacts as a

nucleophile at C3 of the a-aminoacrylate in the stage II

of the b-reaction. A stepwise Michael reaction was pro-

posed [26] involving two intermediates: an indoleninium

quinonoid intermediate and the quinonoid complex of

tryptophan, obtained by deprotonation of C3 (Scheme 1).

Protonation of the latter intermediate leads to the external

aldimine of L-tryptophan. Transimination via a gem-dia-

mine results in the release of L-tryptophan and regenerates

the internal aldimine, completing the catalytic cycle.

An ordered sequential mechanism is generally favored

for the b-subunit, with L-serine binding first. This mecha-

nism is supported by the requirement that L-serine binds

before indole, since L-serine forms a binary complex within

the active site of the b-subunit, while indole does not. The

overall stereochemistry of the b-replacement reaction

proceeds with retention of configuration at the b-carbon of

the amino acid substrate. The stereochemistry of the

elimination reaction catalyzed by TS was proposed to be

syn with both the a-proton and the b-substituent leaving

from the same face to generate the a-aminoacrylate inter-

mediate [35–37]. Several L-serine related aminoacids are

substrates for the b-replacement reaction, while indole

analogues and a variety of alkanethiols can act as nucleo-

philes, such as 2,3-dihydroindole (indoline), aniline,

phenylhydrazine, hydroxylamine, hydrazine, and various

alkylated derivatives [38, 39].

Equilibrium and kinetic investigations on the mecha-

nism of the b-reaction and allosteric effects took advantage

of the fact that each of the catalytic intermediates has a

characteristic spectroscopic signature. The internal aldim-

ine exists as an equilibrium between two tautomers [40]

(Scheme 2) and exhibits a main band at 412 nm, attributed

to the ketoenamine tautomer, and a minor one at 330–

340 nm, attributed to the enolimine tautomer [11]. The

tautomeric equilibrium is pH-independent over the pH

range 6.0–10.0, indicating that the protonated Schiff base

nitrogen is favored by the active site environment [41]. The

gem-diamine, characterized by sp3 C40, likely absorbs at

320–330 nm. The external aldimine absorbs at 420 nm and

is the only highly fluorescent species. The a-aminoacrylate

absorbs predominantly at 350–360 nm with a broad low

intensity band extending between 420 and 480 nm,

whereas the quinonoid species absorb at 460–480 nm.

Modulation of the b-subunit reactivity

The conformational and catalytic properties of the b-sub-

unit within the a2b2 complex are modulated by binding of

monovalent cations [42]. The detailed structural basis of

Scheme 2 Ketoenamine-enolimine equilibrium
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these effects, associated to an alteration of the equilibrium

between alternative b-subunit conformations, is still elu-

sive, mainly because the structure of a cation-free TS has

not yet been determined. Monovalent cations bind to a site,

8 Å away from the 50-phosphate of PLP (Fig. 1a). The ion

coordination involves a set of protein residues and water

molecules that depend on the specific ions [12, 18]. For

example, Cs? is hexa-coordinated to the backbone car-

bonyl oxygen of bVal231, bGly268, bLeu304, bPhe306

and bSer308, whereas Na? is penta-coordinated to b-Gly

232, bPhe-306, bSer308 and two water molecules [18].

Monovalent cations increase the kcat of L-tryptophan syn-

thesis in the order NH4
?[Cs? [ Rb?[ Li?[K?[ Na?

[42]. The catalytic efficiency (kcat/KM) of the b-active site

in the presence of monovalent cations is 20–40 times

higher than in their absence, with sodium as the most

effective and cesium as the least effective one. The KM for

indole decreases by reducing the size of the cation, while

kcat increases as a function of ion size, with the exception

of Li?. Cations slightly affect L-serine affinity with a cal-

culated dissociation constant, at pH 7.9 and 10�C, of

91 lM in the absence of monovalent cations, and 61 and

22 lM in the presence of Na? and Cs?, respectively. K? and

more strongly Na? favor the accumulation of the external

aldimine, stabilizing a partially closed conformation of the

enzyme, while Cs? stabilizes the a-aminoacrylate in a closed

state (Figs. 2, 3) [42–44].

In addition to monovalent cations, the equilibrium

between the external aldimine and the a-aminoacrylate is

affected by pH [41, 45], temperature [41, 46], organic

solvents [47, 48], a-subunit ligands [28, 31, 41, 46] and

hydrostatic pressure (Fig. 3) [49–51]. The external aldim-

ine is the predominant species at low temperature, high

pressure and high pH (Fig. 3). a-Site ligands favor the

Fig. 3 Effects of ligands and

catalytic intermediates on the

dominant conformation of the

a- and b-subunits of TS.

Abbreviations for catalytic

intermediates of the b-reaction

(see Scheme 1) are as follows:

IA internal aldimine (open
conformation), EA external

aldimine (partially closed),

AA a-aminoacrylate (closed),

Q quinonoid species (closed).

For simplicity, only some of the

catalytic intermediates are

shown. Dashed blue lines
represent allosteric effects

(allosteric ligands are framed in

blue boxes). Substrates and

products are framed in black
boxes
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a-aminoacrylate intermediate and trigger a conformational

change in the b-site to a state with an increased affinity for

L-serine.

b-reaction kinetics and identification of catalytic

residues

The kinetics of stage I of the b-reaction (i.e., the conver-

sion of the internal aldimine to the external aldimine and to

a-aminoacrylate) has been the subject of extensive inves-

tigation via equilibrium, rapid mixing stopped-flow, and

pressure and temperature jump relaxation studies [15, 43,

44, 49–54]. Upon binding of the b-substrate and in the

absence of indole, the external aldimine transiently accu-

mulates and then decays to an equilibrium mixture of

external aldimine and a-aminoacrylate. The decay process

to give the a-aminoacrylate species consists of a domi-

nating relaxation followed by a slower phase, with small

amplitude. A third phase of smaller amplitude is generally

considered catalytically irrelevant and neglected [52–55].

The biphasic kinetics of the disappearance of the external

aldimine suggests that the enzyme possesses two routes for

formation of the a-aminoacrylate intermediate. The parallel

processes have been explained on the basis of catalytic

routes associated to the open, low-activity conformation

and the closed, high-activity conformation of the b-subunit

[43]. The slower phase might also represent a ‘‘survival’’

pathway, which allows the formation of tryptophan even in

the presence of mutations that impair conformational

transitions or of relevant catalytic residues. Production of

the a-aminoacrylate is the first step along the TS reaction

pathway to exhibit slow interconversion of open and closed

enzyme conformations (Fig. 3). Other intermediates along the

reaction pathway prior to formation of the a-aminoacrylate

likely also exist as an equilibrium between open and closed

conformations, but their interconversion is thought to be rapid

[56]. As a result, the kinetic behavior of these species is

indistinguishable from that of a single conformation. A

mechanism involving an obligatory interconversion between

two allosteric states of the internal aldimine, with low and high

affinity for the chromophoric L-tryptophan analogue, trans-

3-indole-30-acrylate (IA), was recently proposed [57].

The rate of formation of the external aldimine is

increased in the presence of sodium ions [43, 44]. Fur-

thermore, the rate of the external aldimine decay is

dependent on monovalent cations, following the order:

Cs? [ K? [ no ions [ Na? [44, 54]. The decay rate of the

external aldimine decreases as pH increases [54]. Two ionizable

residues with pKa1 * 6 and pKa2 * 9 control the formation of

a-aminoacrylate in the absence of monovalent cations or in the

presence of sodium and potassium ions. In the presence of

cesium ions, a single ionizable residue (pKa * 9) is involved in

the formation of a-aminoacrylate [54]. This behavior is mainly

attributable to effects on the fast phase of the external aldimine

decay, since the rate of the slow process is essentially unaffected

by pH and monovalent cations. a-Subunit ligands reduce the

rate of the external aldimine formation and accelerate the decay

to a-aminoacrylate, without significantly affecting the pH

profile and pKa1 and pKa2 values [31, 54].

Rapid changes in hydrostatic pressure (P-jump) and

temperature (T-jump) were used to measure the rates of the

interconversion between external aldimine and a-aminoac-

rylate and for the accurate determination of thermodynamic

parameters [49–51]. Solvation is regarded as a major

contributor to the volume change for the open/closed con-

formational equilibrium of TS. The conformational change

seems to be entropy-driven by release of bound water to the

bulk solvent. Experiments in the presence of monovalent

cations proved that the presence and nature of the ligand

significantly affect the degree of hydration of the transition

state for the interconversion between the external aldimine

and the a-aminoacrylate.

On the basis of structural [13, 19, 31] and biochemical

evidence [15, 20, 51, 58, 59], critical roles have been

postulated for bLys87 and bGlu109 in the b-reaction

(Fig. 2). bLys87 has been proposed as the active site base

involved in the abstraction of the a-proton of the external

aldimine and in the protonation of the tryptophan quino-

noid intermediate prior to release of L-tryptophan from its

external aldimine. Solution studies [58, 60], including the

determination of steady state and pre-steady state isotope

effects as a function of pH, in the absence and presence of

monovalent cations [15], as well as recent structural work

[16, 31], have provided strong evidence supporting

bGlu109 as the proton acceptor from the a-amine of

L-serine and the proton donor to the leaving hydroxide in

stage I (Fig. 2). This residue is also thought to stabilize the

charges developing on the indole nitrogen upon the formation

of the indole quinonoid, facilitating the nucleophilic attack of

indole on the a-aminoacrylate in stage II. The structure of this

catalytic intermediate, in the presence of GP, shows that

bGlu109 is ideally located to play this role (Fig. 2) [31]. In the

b-subunit, the stabilization of alternative catalytic intermedi-

ates and conformations is mediated by the interaction between

bArg141 and bAsp305 (Fig. 2) [16, 31, 61, 62, 95]. In the

internal aldimine (Fig. 2a),bAsp305 does not interact with any

residue, whereas in the external aldimine with L-serine the

carboxyl group makes a good hydrogen bond with the hydro-

xyl moiety (distance of 2.76 Å), likely stabilizing a partially

open structure (Fig. 2b). In the structure of the a-aminoacry-

late, the side chain of bAsp305 undergoes a significant change,

pointing away from the active site and forming a salt bridge

with bArg141 (Fig. 2c). This new interaction stabilizes the

closed conformation, blocking the entry of the b-site.

Single-wavelength absorption, fluorescence, and rapid-

scanning stopped-flow measurements [26, 44, 52, 53, 63–65]

Tryptophan synthase 2397



evidenced that the reaction of a-aminoacrylate with indole

(stage II of the b-reaction) is a multiphasic process that

involves the rapid appearance of a quinonoid species, which

undergoes conversion to a steady-state mixture of species

dominated by the spectra of a quinonoid species and the

L-serine and L-tryptophan external aldimines. In the absence of

monovalent cations, the fraction of enzyme sites converted

from a-aminoacrylate to the indole-bound species is very

small. Thus, the reactivity of the a-aminoacrylate species is

suppressed. In the presence of cations, the a-aminoacrylate

reacts very rapidly with indole to give a quinonoid species,

which then decays to a steady-state in which the external

aldimine of L-tryptophan accumulates. According to rapid-

scanning stopped flow kinetic studies of the condensation of

3-[2H]indole with the a-aminoacrylate intermediate [66], the

rate limiting step for the formation of the quinonoid inter-

mediate in the presence of monovalent cations is the

deprotonation of the indoleninium intermediate. Binding of

indole becomes rate limiting in the presence of the a-subunit

ligand, GP. The time courses for the decay of the quinonoid

species to the steady-state level with or without monovalent

cations are very similar in rate. In the presence of GP and in the

absence of monovalent ions, the steady-state spectrum shows

only small amounts of the external aldimine or the quinonoid

species. The GP-mediated conversion of the enzyme to a

closed conformation prevents indole and indole analogues

from reaching the b-site via the intramolecular tunnel. In the

presence of GP and cations, the steady-state spectrum shows

increased concentrations of external aldimine or the quino-

noid species [21, 39, 53, 63, 64].

The reaction of the indole analogue, indoline, with

a-aminoacrylate, forming the dihydroiso-L-tryptophan

quinonoid, is very rapid, followed by a very slow reaction

to give the tryptophan analogue dihydroiso-L-tryptophan

[33, 39, 64, 67, 68]. In the absence of monovalent cations,

indoline quinonoid accumulates in small amounts via a

monophasic reaction, whereas, in the presence of sodium

ions, its increased formation shows two clearly separated

kinetic phases. This suggests that the b-reaction enters in a

branched segment upon formation of the a-aminoacrylate,

characterized by two slowly interconverting forms, that

show remarkably different reactivities with indoline. Cs?

favors the accumulation of the quinonoid species to nearly

the same extent. Na? and Cs?, both acting within a closed

conformation, exhibit a similar effect, despite the different

influence on the equilibrium between open and closed

states [69].

Spectroscopic evidence of regulation-linked

conformational transitions

Steady state and time-resolved fluorescence and phospho-

rescence were measured for the coenzyme, the unique

tryptophan residue bTrp177, localized at the end of the

b-helix6, and for Trp replacing aAla129 at the a active site,

in the absence and presence of monovalent ions, a-subunit

ligands, indole and the b-subunit substrate analogue

L-histidine [42, 70–72]. Results demonstrated the presence

of an energy transfer between the emission of bTrp177 and

the absorption of the coenzyme, with an emission band

centered at about 500 nm. The same emission is generated

by direct excitation of the ketoenamine of the internal

aldimine at 412 nm. The energy transfer, occurring simi-

larly in other PLP-dependent enzymes, provides a signal

that can be exploited in the investigation of protein

unfolding, as demonstrated in the case of O-acetylserine

sulfhydrylase [73, 74]. Moreover, changes of phosphores-

cence emission of bTrp177, in the presence of a-subunit

ligands, indicated the occurrence of conformational chan-

ges, propagating from the a- to the b-site. In contrast, the

formation of the external aldimine of histidine at the b site

did not trigger any conformational change, as evidenced by

the absence of variation of the emission of aTrp129. These

findings were later confirmed by X-ray crystal structures of

several TS complexes (see below) and are in agreement

with observed changes of 31P NMR of the phosphate of the

coenzyme, at different stages of the catalytic pathway [75].

The presence of distinct conformations of the b-subunit

was also suggested by 15N-heteronuclear single-quantum

coherence NMR in the presence of 1-15N-L-tryptophan

[60].

Protein structure and function in the crystal

The determination of the three-dimensional structure of

TS from Salmonella typhimurium in the presence of an

a-subunit ligand, carried out by David Davies and col-

leagues at NIH, was a landmark for the enzymology of

PLP-dependent enzymes [12]. The large spatial separation

between the a- and b-sites and the intramolecular con-

necting tunnel were immediately evident (Fig. 1a). A total

of 54 structures of TS were successively determined under

different experimental conditions, in the presence of

a-subunit ligands, a-subunit transition state analogues, or

b-subunit ligands, for the wild-type and several mutants.

The goal was (1) to identify the residues responsible for the

catalytic process at the a- and b-sites, (2) to describe the

conformational changes associated to different stages of

the catalytic process, and (3) to elucidate the intersubunit

communication pathway. Parallel to the X-ray structural

determinations, the reactivity of TS in the crystal was

characterized by polarized absorption microspectropho-

tometry [42, 45, 69, 76]. These investigations led to the

identification of the experimental conditions for the

selective accumulation of distinct catalytic intermediates,

eventually suitable for the X-ray crystallographic analysis.
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In particular, for the first time, the influence of pH and

monovalent cations on the external aldimine-a-aminoacry-

late equilibrium was detected. [45]. On the basis of this

information, the structures of the external aldimine with

L-serine, the a-aminoacrylate and the quinonoid species for

wild-type TS from Salmonella typhimurium were later

determined [13, 16, 31, 77] and the binding site of mono-

valent cations was identified [18]. These studies, particularly

those carried out by Ilme Schlichting and colleagues, have

provided key indications for the proposal of a structure-

based mechanism for TS function and regulation.

Intersubunit allosteric communication

The presence of two distinct a- and b-active sites, separated

by about 20 Å, and the channeling of indole, produced at the

a-site, as a substrate of the b-reaction, require a coordinated

action (Fig. 3). Indole is formed from IGP at the a-site only

when the b-site binds L-serine and the reactive a-amino-

acrylate intermediate is accumulated. Thus, the a- and

b-subunits signal each other the chemical state of the cata-

lytic intermediate occupying the opposite active site.

A first level of communication between a- and b-sites

takes place when the a-subunits interact with the b-subunits

in the formation of the a2b2 complex. Subunit association

increases the substrate affinity and the rates of the a- and

b-reaction [5], indicating a reciprocal modulation of structural

flexibility and conformation. Association with the a-subunit

also alters the reaction and substrate specificity of the b2

subunit [5]. The a2b2 complex has much higher activity in

the b-replacement reaction than in the b-elimination reaction,

forming pyruvate and ammonia, whereas the isolated b2

subunits have approximately equal activities in b-replace-

ment and b-elimination reactions. Furthermore, L-serine is

the best substrate for the tetramer, whereas b-chloro-L-ala-

nine is the preferred substrate of the isolated b2 subunits,

likely because the chloride is such a good leaving group that

it does not need an optimized enzyme catalytic machinery.

An alteration of the reaction specificity in favor of the

b-elimination was also detected by measuring the activity of

enzyme microcrystal suspensions [78], and upon enzyme

encapsulation in wet, nanoporous silica gels [79].

A second level of intersubunit communication mediates

the fine tuning of the overall catalytic reaction in the a2b2

complex. Binding of substrates or ligands to the a-site

activates the b-site to bind L-serine [21]. The formation of

the a-aminoacrylate at the b-site leads to a ca. 30-fold

activation of the a-site to form the product indole [20, 33].

The experiments of Anderson et al. [20], Brzovic et al.

[33], Leja et al. [80], Pan and Dunn [56], and Pan et al. [9]

established that the formation of the a-aminoacrylate

intermediate triggers the activation of the a-site and that

the conversion of the L-tryptophan quinonoid species to the

external aldimine of L-tryptophan transmits a deactivation

signal to the a-site.

Accumulating evidence indicates that two distinct

pathways of intersubunit communications operate in TS.

The first one leads to the 30- to 100-fold activation of the

catalytic efficiency of a- and b-subunits in the abba
complex with respect to isolated a subunits and b2 dimers.

This pathway involves the COMM domain of the b subunit

that, via the b-helix6, interacts with a-loop2 containing the

a-active site catalytic residues (Fig. 1b) [13]. Mutations of

amino acids involved in this interface alter the catalytic

activity of a- and b-subunits without affecting the capa-

bility to transmit intersubunit signals [76, 81, 82]. The

second pathway is a direct cross-talk between active sites.

This communication is predominantly achieved via the key

interaction between aGly181 of the a-loop6 and bSer178 of

b-helix6 (Fig. 1b, c) [13, 14, 83–85]. In the absence of

a-subunit allosteric effectors, a-loop6 is disordered and not

detectable by X-ray crystallography [12]. Upon binding of

a-ligands, such as IPP, GP, IAG, IAD and indoline-G3P

adduct, a strong hydrogen bond is formed between the NH

of aGly181 and the carbonyl moiety of bSer178 of

b-helix6 [13, 83, 84], resulting in the stabilization of the

a-loop6 in a conformation that covers the a-active site

(Fig. 1b, c). In turn, aThr183 is able to interact with the

catalytic residue aAsp60 and moves the ligand towards

the other a-subunit catalytic residue aGlu49 [16], favoring

catalysis. Several mutants of aGly181, aThr183 and

bSer178 were prepared and their functional and regulatory

properties characterized [77, 83–86], indicating their rele-

vance for the allosteric regulation. Furthermore, limited

proteolysis experiments on the wild-type enzyme and

mutants of aGly181 and bSer178 were carried out indi-

cating that, in the absence of the hydrogen bond between

aX181 and bX178, a-loop6 remains in the open confor-

mation (Fig. 1c) and regulatory signals to the b-active site

are knocked out [84]. To gain insight on the position of

a-loop6 in the absence of allosteric ligands, molecular

dynamics simulations were carried out on the wild-type

enzyme and mutants [85, 86]. The simulated conformation

of the open state of a-loop6 (Fig. 1c) well explains the

results of the limited proteolysis and are in keeping with

the reduced activity of the a-active site for some of the

mutants [84, 85].

Overall, spectroscopic, kinetic and structural findings

support the notion that the regulation of TS function is

mediated by the alternative stabilization of open and closed

conformations (Figs. 2, 3). Both the a- and the b-subunit in

the absence of ligands are in the open conformation

(Fig. 3). Binding of the a-subunit substrate IGP and

a-subunit ligands acting as allosteric effectors stabilizes the

closed form of the a-subunit, mainly involving the struc-

tural rearrangement of a-loop6, and favors, in the presence
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of L-serine at the b-site, the closed form of the b-subunit, with

the preferential accumulation of the a-aminoacrylate ver-

sus the external aldimine. This event is mediated by b-helix6

of the COMM domain and formation of the bAsp305-

bArg141 salt bridge (Fig. 2c). As a result, the reaction of the

incoming indole with the aminoacrylate is favored, with for-

mation of the reactive quinonoid species. The conversion of

the quinonoid species to the L-tryptophan external aldimine

triggers the transition from the closed to the open form of the

b-subunit that, in turn via the COMM domain, destabilizes the

closed form of the a-subunit leading to a deactivated a-subunit

in an open conformation.

TS as a potential drug target

Therapeutic targets belonging to the family of PLP-

dependent enzymes were recently reviewed and novel

potential targets suggested [87]. Among them, inhibitors of

a-subunits of TS might be suitable as herbicides. In plants,

a-subunits not associated to b-subunits are involved in the

production of defence chemicals [24]. TS is over-expressed

in Phytophthora infestants during biotrophic and necro-

trophic infection phases [88]. Moreover, inhibition of TS

expressed in Chlamydia trachomatis might be useful to

counteract ocular and genital infections [89, 90], and

inhibition of TS expressed in Mycobacterium tuberculosis

and in the parasite Cryptosporidium might be a therapeutic

strategy for treating tuberculosis and cryptosporidiosis,

respectively [91]. The design of TS inhibitors has been

pursued via both in silico methods [28, 92, 93] and X-ray

crystallography [30]. In the search for TS inhibitors with

antibiotic action, it should be reminded that functional and

proteomic data, obtained for Salmonella typhimurium,

indicated a robust metabolism, likely common to other

bacteria [94]. This implies that bacteria can overcome the

block of amino acid biosynthesis by other strategies, such

as an increased uptake from the external medium. How-

ever, a decreased fitness of bacteria during infection, within

a hostile environment, might still be a worthwhile goal to

be pursued via the inhibition of TS, as well as other PLP-

enzymes involved in amino acid metabolism.

Conclusions

After serving for several decades as a paradigm molecule for

enzymologists and structural biologists, much is known on

structure, mechanism, substrate tunnelling and pathways of

intra- and inter-subunit allosteric regulation of TS. Lessons

learned from TS help to shed light on the structure–dynamics-

function relationships of other PLP-dependent enzymes and

allosteric proteins. Future perspectives encompass both new

experiments, aimed at getting a deeper understanding of the

complicated relationships between dynamics and function via

the direct monitoring of the open-closed transitions, and the

exploitation of the available information to pursue biotech-

nological and medical applications.
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