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Abstract The emerging critical implications of Rho/Rho-

kinase (ROCK) signaling in neurodegenerative diseases,

glaucoma, renoprotection, diabetes and cancer have

sparked growing interest in the pharmacological potential

of ROCK inhibitors beyond their current application in

cardiovascular disease. This article discusses the thera-

peutic benefits of novel ROCK inhibitors in development,

and highlights the recent advances in the current under-

standing of disease-dependent and isoform-specific

functions of ROCK and their potential impact on future

therapeutic strategies.
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Rho-associated kinase (ROCK) belongs to the AGC (PKA/

PKG/PKC) family of serine-threonine protein kinases and

is a major downstream effector of the small GTPase RhoA

[1–3]. To date, two ROCK isoforms have been described;

ROCK1 (ROKb, p160ROCK) and ROCK2 (ROKa).

ROCK1 and ROCK2 are highly homologous, sharing 65%

homology in amino acid sequence and 92% homology in

their kinase domains. Although both isoforms are ubiqui-

tously expressed, ROCK1 expression is enriched in lung,

liver, spleen, kidney, and testis, whereas ROCK2 is more

prominent in the brain and heart [4]. ROCK activity leads

to the phosphorylation of downstream targets including

myosin light chain (MLC) [5, 6], MLC phosphatase

(MYPT1) [7, 8], ezrin/radixin/moesin (ERM) [9], adducin

[10], and LIM kinases (LIMK) [11–13], thereby modulat-

ing actin cytoskeletal organization, stress fiber formation

and cell contraction [14]. ROCK controls vascular smooth

muscle contraction and endothelial barrier function

[15–22]. This key role as a master regulator of the vascular

bed explains why cardiovascular diseases were the primary

indication in early ROCK drug discovery projects and

these remain ongoing efforts.

ROCK1-/- and ROCK2-/- knockout mice develop a

similar phenotype resulting in eyes-open at birth and

omphalocele [23–25], demonstrating that the biological

functions of ROCK1 and ROCK2 isoforms are in many

cases redundant and cannot be separated. For example,

both isoforms phosphorylate the same major downstream

substrates such as smooth muscle MLC and MYPT1 in

vitro [26]. Given the pathway redundancy and the high

degree of homology within the kinase domain of both

isoforms, it was believed that isoform selectivity could not

be achieved, and early drug discovery efforts concentrated

on the development of non-isoform selective ROCK

inhibitors. To date, the only clinically approved ROCK

inhibitor from these efforts is Fasudil, which was approved

in Japan in 1995 for the treatment of vasospasm following

subarachnoid haemorrhage. Besides regulating the cardio-

vascular bed, ROCKs are involved in a myriad of

biological functions such that inhibition of ROCK activity

could be of potential benefit for the treatment of diseases

ranging from glaucoma to neurodegenerative diseases to

cancer. For an overview see Table 1.

Most of the studies were performed using chemical

inhibitors, and one has to be careful how to interpret these

data, especially when using Fasudil and Y-27632, consid-

ering their selectivity profile and potency. Y-27632 was

non-selective against 4 out of 25 tested kinases [27] and
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Fasudil exhibited non-selectivity for 8 out of 27 tested

kinases [27]. Both inhibitors have biochemical IC50s in the

hundreds of nanomolar, but they are typically used at

concentrations of 10–50 lM in cell-based studies, opening

up the possibility that observed phenotypes could be off-

target effects. However, based on the overall promising

studies showing efficacy of ROCK inhibitors in a variety of

animal disease models, there are significant efforts aimed

at developing more potent and selective ROCK inhibitors.

Recent activities within the pharmaceutical industry and

academia have led to a series of novel ROCK inhibitors

with enhanced potency within the low nanomolar range

and improved kinase selectivity [28–34]. In addition, as of

July 2009, two compounds, RKI983 (Novartis) and

INS117548 (Inspire), are in phase I/II studies for the

treatment of glaucoma (NCT00846989, NCT00767793).

Moreover, phase II trials for the treatment of glaucoma

investigating DE-104 (Santen) as well as phase I/II trials

for the treatment of spinal cord injury investigating

BA-210 (Alseres Pharmaceuticals) are completed

(NCT00650338, NCT00500812). Recently published data

from a phase I clinical trial for the treatment of glaucoma

Table 1 Effects of pharmacological ROCK inhibitors on disease biology

Therapeutic area Compounds Pharmacological effects Species References

Hypertension Fasudil Decrease in blood pressure and

vascular resistance

Clinical study [66, 67]

AD Decrease in blood pressure Rat, mouse, dog [59, 60]

AA Decrease in blood pressure Rat [34]

SAR407899 Decrease in blood pressure Rat, mouse [31]

Glaucoma Fasudil Decrease in IOP Rabbit [68]

Y-27632 Decrease in IOP, increase in

aqueous outflow

Rabbit, mouse [37, 69, 70]

Increase in aqueous outflow Monkey, pig [71, 72]

Y-39983 Decrease in IOP Mouse, rabbit, monkey [36, 37]

Neurodegeneration Fasudil, Y-27632 Axonal sprouting and functional

recovery after SCI

Rat [73–76]

Y-27632 Decreased amount of

amyloidogenic Ab42

Mouse [77]

Fasudil, Y-27632, H-1152 Inhibition of mutant huntingtin

aggregation

Mouse (in vitro) [78]

Oncology Wf-536 (Y-32885) Inhibition of tumor metastasis Mouse [79]

Inhibition of tumor growth,

angiogenesis and metastasis

Human lung and prostate cancer

xenograft

[32, 80]

Y-27632 Inhibition of tumor metastasis (in

vivo), angiogenesis (in vitro)

Human hepatocellular and prostate

cancer xenograft

[81, 82]

Fasudil Inhibition of tumor progression

and metastasis

Human lung and breast cancer

xenograft

[83]

Renoprotection Y-27632 Macrophage infiltration and

interstitial fibrosis

Mouse [84]

Fasudil Improved proteinuria,

glomerulosclerosis, renal

interstitial fibrosis and

macrophage infiltration

Rat [85–89]

Improved progression of diabetic

nephropathy

Mouse [90]

Diabetes Fasudil Prevention of diabetes

development

Rat [86]

Corrected glucose and lipid

metabolism, improved insulin

signaling

Rat [91]

Erectile dysfunction Y-27632 Improved erectile function Rat [92–94]

H-1152, Y-27632 Improved erectile function Rat [95]

All data are derived from in vivo experiments unless otherwise noted

AA Aminofurazan azabenzimidazoles, AD azaindole derivative, IOP intraocular pressure, SCI spinal cord injury
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using SNJ-1656 [35] showed no adverse systemic effects

and only minor side effects in this 7-day repeated-instil-

lation trial when dosed either once or twice a day, i.e., the

occurrence of ocular hyperemia was reported, which is in

accordance with previous animal studies using Y-39983

[36]. Consistent with the old paradigm that both ROCK

isoforms show similarity in their downstream targets,

recent studies of the role of ROCK in glaucoma suggest

that neither isoform is predominant in modulating intra-

ocular pressure (IOP), since mice deficient for either

ROCK1 or ROCK2 exhibit a significant decrease in IOP

compared to wild-type littermates [37]. Off-target effects

and systemic toxicity might play a minor role for appli-

cations such as for the treatment of glaucoma, where

pharmacokinetic and pharmacodynamic parameters of

inhibitors can be optimized to reduce or eliminate systemic

exposure. However, little is known about side effects and

toxicity of ROCK inhibitors for systemic and long-term

applications and these need to be further investigated. From

the knockout mouse models, it is known that inhibition of

both ROCK isoforms results in embryonic death due to

placental malfunction, and ROCK inhibitors might be

counter-indicated for pregnant women. In addition, given

ROCK’s involvement in many biological functions, espe-

cially the regulation of blood pressure, isoform-selective

ROCK inhibitors may be preferential as systemic drugs.

For any disease, blood pressure changes will need to be

monitored with respect to the efficacious dose of ROCK

inhibitor for the indicated disease, and it has to be decided

what level of blood pressure decrease is acceptable or even

advantageous and what level would be a health concern.

Recent genetic studies as well as animal disease models,

along with short interfering RNA (siRNA)-based gene

silencing experiments in vitro, provide significant insights

into ROCK isoform biology. Cell type-specific cases, in

which either ROCK1 or ROCK2 appear to have distinct

non-redundant functions, have been shown in fibroblasts

and vascular smooth muscle cells. Whereas knockdown of

ROCK1 but not ROCK2 leads to disassembly of stress

fibers in fibroblasts [26], in smooth muscle cells this phe-

notype is mediated by knockdown of ROCK2 [38]. These

findings could be explained by the fact that both isoforms

are expressed to different levels in individual cell types and

have unique interaction partners. ROCK1 but not ROCK2

is regulated by RhoE [39–41], which competes with RhoA

for interaction with ROCK1. In addition, ROCK1 is

cleaved by caspase-3 at a conserved sequence in the

C-terminus that does not exist in ROCK2, leading to con-

stitutively active ROCK1, MLC2 phosphorylation, and

membrane blebbing during apoptosis [42, 43]. In contrast,

during granzyme B-induced cell death, granzyme B spe-

cifically cleaves and activates ROCK2 but not ROCK1,

resulting in downstream MLC2 phosphorylation and

membrane blebbing [44]. ROCK1 and ROCK2 activity and

signaling, however, are not only regulated differentially by

their upstream modulators but both ROCK isoforms also

utilize selective downstream partners to mediate their

biological functions. For example, ROCK2 induces deg-

radation of transforming growth factor b type I receptor

[45], thereby regulating mesoderm induction. In vascular

smooth muscle cells, both ROCK isoforms modulate

MYPT1 activity but have different effects on smooth

muscle cell morphology. Only ROCK2 binds directly to

and phosphorylates MYPT1 [38]. In contrast, upon

UV-induced stress, ROCK1 activates c-Jun N-terminal

kinase (JNK) and induces apoptosis through binding and

phosphorylating JNK-interacting protein 3 (JIP-3) [46]. In

addition, cell spreading of breast cancer cells during mes-

enchymal-mode of 3D-migration depends upon specific

ROCK1-LIMK2 interaction [47]. The functional and reg-

ulatory significance of each isoform is further highlighted

during pathological conditions. Induction of pressure

overload cardiac hypertrophy in mice by aortic banding

shows that, at the state of stable hypertrophy, after 3 weeks

the levels of ROCK1 expression and ERM phosphorylation

are increased, while ROCK2 expression levels remain

unaltered. Even though the disruption of ROCK1 did not

affect the development of cardiac hypertrophy, the devel-

opment of fibrosis in the myocardium was significantly

reduced in the ROCK1-/- [48] and ROCK1?/- mice [49].

ROCK isoforms also have distinct contributions in cancer

progression. Increased ROCK2 levels have been reported

in hepatocellular [50], colon [51], and bladder [52] cancer.

A study of 41 pairs of hepatocellular carcinomas revealed

that ROCK2 is frequently overexpressed as compared to

non-tumorous livers, while ROCK1 expression is unal-

tered. Silencing of ROCK2 by short-hairpin RNA reduces

stress fiber formation, phosphorylation of MYPT1, migra-

tion and invasion in vitro, and lung metastasis in vivo [50].

In contrast, ROCK1 expression levels, but not ROCK2, are

significantly higher in human mammary tumors and are

associated with poor clinical outcome and overall survival

of patients [53], and elevated ROCK1 levels were recently

reported to be involved in the transformation of hormone-

refractory prostate cancer [54]. Overexpression of ROCK

isoforms during disease progression could be the cause for

or the effect of the disease. Recent advances in siRNA

delivery should allow researchers to answer those questions

not only in vitro but also in vivo. It is now possible to

not only administer siRNA systemically but also to tar-

get specific cells or organs. b1,3-D-glucan-encapsulated

siRNA nanoparticles were successfully used to target

specifically macrophages [55], and magnetic siRNA

nanoparticles were used to target solid tumors [56]. Others

successfully applied siRNA coupled to an antibody or cell

surface receptor ligand such as transferrin [57] or rabies
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virus glycoprotein [58] to target a specific cell type. In

addition, Alcon Research filed a patent application to treat

glaucoma using siRNA-mediated knockdown of ROCK

(WO/2007/076367), demonstrating that siRNA treatment

in vivo cannot only be used as a tool to investigate pathway

biology but also shows the potential for the use of siRNA

as therapeutic agent.

Despite the significant progress and the increasing

understanding of the functions of ROCK isoforms in dis-

ease progression, it is notable that recent patents on ROCK

inhibitors [30, 34, 59, 60] do not address isoform selec-

tivity. This might be due to the fact that both isoforms

show such a high degree in amino acid homology within

the kinase domain that it is not believed to be possible to

achieve isoform selectivity. In fact, prior to 2008, all

published ROCK inhibitors are equally potent against both

isoforms. Only recently has one isoform-selective ROCK

inhibitor been described. SLx-2119 is a ROCK2 selective

compound that has shown promise in cancer xenograft

models [61] and in preclinical models of fibrosis [62].

SLx-2119 has further been reported to attenuate arterial

plaque formation in apolipoprotein-E-deficient mice. At the

same time, this inhibitor avoids unwanted hemodynamic

side effects compared with non-selective ROCK inhibitors

[63]. Interestingly, these data are in conflict with the

findings that ROCK2 polymorphism [64] and a haplotype

block consisting of 4 SNPs within the ROCK2 allele [65]

are associated with changes in systemic blood pressure.

In conclusion, ROCK inhibition has shown promise as a

therapeutic target for a variety of human diseases, and

several small molecule inhibitors are in development. For

some diseases, such as glaucoma, ROCK isoform selec-

tivity is not required, and for such topical applications the

compound can be easily dosed directly to the target organ.

A systemic inhibition of ROCK, however, bears the risk of

unwanted side effects such as drop of blood pressure and it

has to be carefully evaluated if the benefit is to outweigh

the risk in a disease-dependent context. Even though

ROCKs are expressed ubiquitously, there is rationale for

future efforts towards isoform-selective ROCK inhibitors.

A growing body of evidence clearly indicates that both

ROCK1 and ROCK2 have distinct expression levels and

unique interaction partners in individual tissue types, sug-

gesting that these functional differences could be of

therapeutic benefit. Yet, further investigation is required to

elucidate the regulatory networks of both isoforms in a

disease context, especially in their native in vivo environ-

ment. This task may be accomplished by recent advances

in siRNA delivery technologies allowing targeting to spe-

cific organs or cells. Ultimately, this will not only lead to a

deeper understanding of the relative importance of each

isoform for the pathophysiology of many human diseases,

but will also help the next generation of effective ROCK

inhibitors to avoid unwanted systemic side effects by tar-

geting each isoform.
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