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Abstract Periostin, also called osteoblast-specific factor 2

(OSF-2), is a member of the fasciclin family and a disulfide-

linked cell adhesion protein that has been shown to be

expressed preferentially in the periosteum and periodontal

ligaments, where it acts as a critical regulator of bone and

tooth formation and maintenance. Furthermore, periostin

plays an important role in cardiac development. Recent

clinical evidence has also revealed that periostin is involved

in the development of various tumors, such as breast, lung,

colon, pancreatic, and ovarian cancers. Periostin interacts

with multiple cell-surface receptors, most notably integrins,

and signals mainly via the PI3-K/Akt and other pathways to

promote cancer cell survival, epithelial–mesenchymal

transition (EMT), invasion, and metastasis. In this review,

aspects related to the function of periostin in tumorigenesis

are summarized.
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Introduction

Periostin, originally designated osteoblast-specific factor 2

(OSF-2), was first identified in a mouse osteoblastic cell

line as a cell adhesion protein for pre-osteoblasts [1, 2].

Thereafter, orthologous genes in human, rat, and zebrafish

were also cloned [3–5]. Most current studies of periostin’s

role in development have focused on its expression and

function in bones, teeth, and the heart. Periostin has been

shown to be highly expressed in early osteoblastic cells in

vitro and in periosteum and periodontal ligaments in vivo

and to play a potential role in formation and structural

maintenance of bones and teeth [2]. During their devel-

opment, periostin is expressed in teeth and surrounding

tissues. Mice lacking periostin exhibit dwarfism, incisor

enamel defects, and an early-onset periodontal disease-like

phenotype [6]. As an important developmental factor and a

secreted adhesion molecule, periostin has also been shown

to be involved in the development of heart valves and other

tissues [7–9]. Periostin is also re-expressed in adults after

myocardial [7, 10, 11], vascular [12], and skeletal muscle

[13] injuries or bone fracture [14]. In addition, recent

studies have reported that periostin is frequently found to

be highly expressed in various types of human cancer cell

lines in vitro and human cancer tissues in vivo [15–18].

In this review, we will focus on findings related to the

current understanding of the role of periostin in tumori-

genesis and summarize the molecular mechanisms of

periostin in these activities.

Structure of periostin

The murine periostin gene is located on chromosome 3,

while human periostin is found on chromosome 13q [19].
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The length of mouse periostin cDNA is 3,187 bp, with an

18-bp 50 untranslated region, a 733-bp 30 untranslated

region, and a 2,436-bp open-reading frame, which encodes

a protein of 811 amino acids with a MW of 90.2 kDa [1].

Currently, five different forms of human periostin have

been isolated, due to multiple splicing events that can occur

within the C-terminal domain. Alternative splicing of the

C-terminus gives rise to periostin isoforms [1]. Isoforms

lacking the entire carboxyl domain have been shown to

inhibit cell motility and migration [20]. The first two iso-

lated human periostin cDNAs were screened from

placental and osteosarcoma cDNA libraries, using mouse

periostin cDNA as a probe. The human placental periostin

open-reading frame encodes a protein of 779 amino acids,

with a MW of 87.0 kDa, while the human osteosarcoma

periostin open-reading frame encodes a protein of 836

amino acids with a MW of 93.3 kDa. Homology analysis

shows that periostin is highly conserved between mouse

and human. The amino acid identity between the two

species is 89.2% for the entire protein and 90.1% for the

mature form. However, as compared to other regions

within the mature periostin protein, the C-terminal region

shows slightly less conservation, with 85.5% identity.

Periostin is a unique, evolutionarily conserved extracel-

lular matrix (ECM) protein that shares high homology with

the insect axon guidance protein fasciclin 1 (FAS1). In

Drosophila, the ancestral fasciclin domain functions as an

adhesion molecule linked to axonal guidance, migration, and

differentiation [1, 19, 21]. FAS1-like domains exist in many

proteins from various species, including bacteria and plants,

suggesting that this domain represents an evolutionarily

ancient adhesion domain. Therefore, periostin has been

assigned to the fasciclin family, which includes big-h3

(TGF-b-induced gene clone 3), stabling I and II, MBP-70,

algal-CAM, and periostin-like factor (PLF) [22]. These

proteins all contain repeats of the FAS1 domain, each con-

sisting of 150 amino acids. Periostin protein contains a

typical N-terminal secretory signal sequence but lacks a

typical transmembrane domain. Adjacent to the signal

sequence is a cysteine-rich domain, followed by four internal

homologous repeat regions which precede the C-terminal

hydrophilic domain [1, 2]. The four internal homologous

repeats in periostin are homologous to FAS1 and are thought

to be important for periostin’s adhesive activity.

Periostin has been shown to interact with other ECM

proteins, such as fibronectin, tenascin-C, collagen V, and

periostin itself [23, 24]. Periostin co-localizes with fibro-

nectin, tenascin-C, and collagens, known components of

subepithelial fibrosis of bronchial asthma, indicating that

periostin forms a reticular structure by binding to these

ECM proteins [24]. Functionally, periostin interacts with

integrins to support cell adhesion and the spreading of

chondrocytes, fibroblasts, and cancer cells.

Expression of periostin in clinical cancers

Periostin is a unique ECM protein found in collagen-rich

connective tissues and is highly expressed in the

embryonic periosteum, cardiac valves, placenta, and

periodontal ligaments, as well as in many adult tissues,

and its deposition is augmented by an increase in

mechanical pressure [6, 25, 26]. Recently, periostin was

found to be overexpressed in various types of human

cancer, such as non-small-cell lung carcinoma, breast

cancer, colon cancer, head and neck cancer, ovarian

cancer, and pancreatic ductal adenocarcinoma. Here, we

focus on the expression of periostin in five prevalent

human cancers: breast, lung, colon, pancreatic, and

ovarian cancers (Fig. 1).

Breast cancer

High levels of periostin expression are associated with

human breast cancers [18, 27]. The level of periostin

expression is undetectable in normal breast tissues or in an

immortalized cell line derived from normal mammary

epithelial cells. However, the expression of periostin is

readily detectable in the vast majority of breast tumor

samples, with an average level of periostin expression 20-

fold higher than the baseline expression, defined by gene

array data obtained from normal breast tissues [27].

Another report shows that serum periostin levels are ele-

vated in breast cancer patients with bone metastases from

breast, but not lung cancer [28].

Lung cancer

A recent report showed that periostin was expressed in

42% of 88 patients with non-small-cell lung cancer

(NSCLC). Its expression was significantly correlated with

tumor size, disease stage, metastasis, and lymph node and

lymphatic invasion [29]. Another report also demonstrated

that high expression of periostin in either stroma or tumor

epithelia, correlated with male gender, higher stage, higher

pT category, and larger tumor size; similarly, periostin

expression in stroma also correlated with tumor relapse

[30]. There also was a significant relationship between

periostin expression and density of both circulatory and

lymphatic microvessels. NSCLC patients with periostin

expression have significantly poorer survival rates than

patients showing no periostin expression [3, 29]. In addi-

tion, the serum periostin level may serve as a prognostic

marker for NSCLC [31]. These data indicate that periostin

correlates with increased tumor progression, angiogenesis,

and lymphangiogenesis, as well as a worse prognosis for

NSCLC patients.
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Colon cancer

We have previously found that periostin is differentially

overexpressed in more than 80% of human primary colon

cancer samples [15]. Quantitative analysis indicates that

two-thirds (20 of 29 cases) of examined primary colon

carcinomas show a tumor/normal (T/N) ratio of periostin

message expression higher than 5-fold, with one-third of

these primary tumors having a T/N ratio higher than

10-fold. Furthermore, periostin is overexpressed in all

cases of colon metastatic tumors in the liver. Importantly,

the expression level of periostin in hepatic metastases,

derived mostly from patients with relapses of their colon

cancers, is noticeably higher than in matched primary

colon tumors from the same patients (eight of nine cases)

[15]. Another report also demonstrated that periostin is

upregulated in primary colorectal cancers and liver

metastases [32]. These results suggest that late-stage met-

astatic tumors express higher levels of periostin, which

may play a role during the metastatic stage of colon cancer

progression [15].

Pancreatic cancer

Periostin is overexpressed in a large set of pancreatic cancer

tissues. Although the periostin transcript is exclusively

expressed in tumor cells, the protein product is only detected

in the extracellular matrix adjacent to cancer cells. There are

significantly increased levels of periostin in the sera of

pancreatic cancer patients, compared to non-cancer controls.

Furthermore, periostin promotes the invasiveness of tumor

cells and enhances the survival of tumor cells exposed to

hypoxic conditions [33]. Several other reports dealing with

pancreatic cancer have shown that the periostin protein is

secreted from pancreatic stromal cells rather than cancer

cells [34–36]. Therefore, the interaction between cancer

cells and stromal cells plays a critical role in pancreatic

cancer development, and periostin from pancreatic satellite

cells might create a tumor-supportive microenvironment in

the pancreas [35].

Ovarian cancer

Periostin transcription is up-regulated in epithelial ovarian

tumors [37]. While periostin transcripts are expressed in

several normal tissues and highly expressed in fetal tissues,

they are not found in normal ovaries. Ovarian cancer cells

secrete periostin, which can accumulate in malignant

ascites in patients with ovarian cancer. There are not any

significant changes in the serum levels of periostin in

women with ovarian cancer, when compared with controls.

However, the majority of ascites from ovarian cancer

patients contain high levels of periostin [37, 38].

Other cancers

Periostin is also highly expressed in tumors from patients

suffering from other cancers, including melanoma, gastric

cancer, head and neck squamous cell carcinoma, oral

squamous cell carcinoma, thymoma, and neuroblastoma,

although it is not expressed in the patients’ normal tissues

[3, 16, 39–43]. However, other studies have reported a

down-regulation of periostin transcription in bladder

carcinoma [20].

Role of periostin in the hallmarks of cancer

The development of human cancer, ultimately caused

by genomic instability, involves a complex series of

Periostin

Colon cancer [15, 32]
Promotes cancer cell survival under stress

conditions via Akt/PKB pathway
Promotes angiogenesis
Promotes tumor growth and hepatic metastasis

Lung cancer [3, 29-31]
Correlation with tumor size, disease stage, 
metastasis, lymph node and lymphatic invasion
The serum periostin level may serve as a

prognostic marker for NSCLC

Ovarian cancer [37, 38]
Promotes cell motility

Breast cancer [18, 27, 28]
Promotes cell survival and angiogenesis
Promotes tumor growth and bone metastasis

Other cancers
Thymoma [42]: Correlates with

tumor invasion and progression

Neuroblastoma [43]: Correlates with
tumor progression and prognosis

Bladder cancer [20]
Periostin expression is down-regulated

Suppresses tumor invasion and
metastasis

Gastric cancer [39]
Promotes tumor metastasis

Melanoma [40]
Promotes metastasis in

the liver or lymph nodes

Pancreas cancer [33-36]
Promotes cell survival and invasion
Pancreatic cancer cells stimulate stromal cells to

secrete periostin
Periostin has biphasic effect on EMT and

migration of human pancreatic cancer cells

Head and neck
cancer including oral 
cancer [16, 41]

Promotes angiogenesis,
invasion and metastasis

Fig. 1 Expression and function

of periostin in human cancers
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processes. During tumorigenesis, cancer cells can acquire

some special capabilities, such as the ability to overcome

the restraints of the microenvironment of nearby normal

tissue, self-sufficiency for mitogenic signals, deregulation

of the cell cycle, escape from apoptosis, and the potential

for unlimited replication [44, 45]. Within a growing tumor

mass, the genetic and epigenetic alterations generated also

enable cancer cells to gain the ability to induce angio-

genesis, invade neighboring tissues, and metastasize to

distant organs [15]. Current reports have demonstrated that

periostin plays a critical role in the acquisition of most of

these hallmarks of cancer cells (Table 1).

Promoting or inhibiting cell proliferation

Cell proliferation is strictly regulated by the concerted

actions of both mitogenic growth signals and anti-prolif-

erative signals that converge on regulators of the cell cycle

[44, 45]. Periostin has been reported to promote re-entry of

differentiated mononucleated cardiomyocytes into the cell

cycle, where such cell cycle re-entry required integrins and

the PI3-K/Akt pathway [7]. Exposure of MIF101 colorectal

cancer cells to periostin-induced a dramatic increase in cell

proliferation [32]. To reveal the role of periostin in the

progression of tumor development, Shao et al. [27] used

three tumor cell lines, 293T, the highly invasive mouse

melanoma cell B16F1, and the metastatic human breast

cancer cell MDA-MB-231, to engineer stable cell lines that

overexpress periostin. Interestingly, the proliferation rate

of these periostin-producing cells was noticeably slower

than that of the control cells in culture, suggesting that

periostin does not promote proliferation of tumor cells in

vitro. However, these periostin-overexpressing tumor cell

lines showed a phenotype of accelerated growth and

angiogenesis when planted as xenografts in immunocom-

promised SCID-Beige mice [27]. Kudo et al. [41] also

demonstrated that periostin overexpression does not pro-

mote cell proliferation, but it dramatically enhances the

invasiveness of the head and neck cancer cell lines HSC2

and HSC3. Since the activities of this mesenchyme-specific

gene product may not be exclusively associated with the

promotion of cell proliferation, evaluation of the potential

contribution of periostin to the progression of tumorigen-

esis must be based on an assessment of its ability to

promote tumorigenesis in in vivo studies of xenografts or

transgenic animal model systems, rather than solely on in

vitro studies in cell culture [27].

Evasion of apoptosis

It is well known that tumors grow in an uncontrolled

manner, resulting from an imbalance between cell prolif-

eration and death [45]. In contrast to normal cells, cancer

cells can break the balance between pro- and anti-apoptotic

factors to promote cell survival under conditions of envi-

ronmental stress [15]. Our previous work has revealed that

cancer cells can induce the expression of some secreted

ECM proteins, such as periostin and OPN, to prevent

apoptosis in the context of a tumor [15, 46–48]. Periostin

can dramatically enhance the metastatic growth of colon

cancer by promoting survival of both cancer cells and

endothelial cells under stress conditions that are commonly

associated with metastatic tumors and fast-growing tumor

masses, such as hypoxia, nutrient depletion, and loss of

Table 1 Periostin and the hallmarks of cancer

Hallmarks of cancer Functions of periostin

in hallmarks of cancer

Cancer types or cancer cell lines

Resistance to anti-proliferation signals

and independence from exogenous

growth factor signals

Pro-proliferation Colon cancer, colorectal cancer MIF101 cells

Anti-proliferation 293T, mouse melanoma B16F1 cells,

MDA-MB-231

Evasion of apoptosis Anti-apoptosis Colon cancer, pancreatic cancer,

breast cancer cells

Limitless replicative potential Regulation of immortalization

or senescence

None reported

Induction of angiogenesis Pro-angiogenesis Colon cancer, breast cancer, NSCLC, oral cancer

Evasion of the immune system Escape from immunosurveillance None reported

Tissue invasion and metastasis Pro-metastasis Colon cancer, NSCLC, oral cancer, breast cancer,

head and neck cancer, oral cancer, gastric cancer,

neuroblastoma, thymoma, pancreatic cancer cells

Anti-metastasis Bladder carcinoma, pancreatic cancer cells

Genomic instability Genomic instability results

in overexpression of periostin

Breast cancer

2222 K. Ruan et al.



adhesion [15]. In addition, periostin promotes the survival

of human breast cancer cells under several stress condi-

tions, including hypoxia, serum starvation, and acid

conditions (our unpublished data). Periostin can also pro-

mote the survival of pancreatic cancer cells under hypoxic

conditions [33]. Interestingly, pancreatic stellate cells can

secrete periostin to perpetuate fibrogenic activity and sup-

port tumor cell growth under serum deprivation and

hypoxia [35]. As a result of periostin’s promotion of cell

survival, requirements for the establishment of metastatic

colonies would be less stringent. Therefore, promoting cell

survival or evading apoptosis might be one of the key

mechanisms of periostin-enhanced tumor growth.

Limitless replicative potential

Oncogene-induced senescence is an important mechanism

of tumor suppression that restricts the progression of

benign tumors in the absence of additional cooperating

mutations. It has been demonstrated that many genes

trigger oncogene-induced senescence in vitro and in vivo

[49]. Periostin has been shown to be highly expressed in

immortalized human microvascular endothelial cells [50]

and TesPDL cells, derived from miniature swine peri-

odontal ligaments [51], where these cells are transfected

with hTERT to prevent cell senescence. However, there are

no reports on the direct role of periostin as an oncogene

product that results in the unlimited replicative potential of

cancer cells. We also do not know whether overexpression

of periostin is sufficient to induce senescence in vitro and

in vivo. Further studies are required to reveal the role of

periostin in cell immortalization and evasion of senescence

during tumorigenesis (Fig. 2).

Induction of angiogenesis

It is now well established that unrestricted growth of

tumors is dependent upon angiogenesis [45, 52]. There is

accumulating evidence indicating that many molecules can

promote angiogenic signaling cascades in endothelial cells

[53]. VEGF, which acts through its membrane tyrosine

kinase receptors VEGF receptor 1 (Flt-1) and receptor 2

(Flk-1/KDR) is one of the most potent angiogenic mole-

cules. As a mesenchyme-specific gene product, periostin

has also been defined as a novel potent angiogenic factor

for tumor growth [27, 50]. One of the mechanisms by

which periostin dramatically enhances metastatic growth of

colon cancer is through augmentation of human endothelial

cell survival, which promotes angiogenesis [15]. Overex-

pression of periostin in human breast cancers leads to a

significant enhancement of angiogenesis. The underlying

mechanism of periostin-mediated induction of angiogene-

sis has been found to derive, in part, from the upregulation

of Flk-1/KDR by endothelial cells through an integrin

avb3-focal adhesion kinase (FAK)-mediated signaling

pathway [27]. Thus, although periostin may confer a

growth advantage to breast tumors in vivo by altering the

microenvironment through promotion of angiogenesis, its

overexpression may impose a growth disadvantage when

the tumor cells are grown in culture [27]. In oral cancers

and NSCLC, periostin is also frequently overexpressed and

enhances angiogenesis and invasion [16, 29]. Therefore,

epithelial cell-derived tumors may gain the ability to gen-

erate more blood vessels, invade, and metastasize during

late stages of tumorigenesis via the acquired expression of

genes that normally are associated only with mesenchymal

cells [27].

Normal cells Pre-cancer cells Cancer cells

Invasive tumorsMicrometastases

Periostin

Oncogene
expression

Genomic
instability Growth

Micro-tumors

Metastases Tumor

Angiogenesis,
Evading apoptosis

Migration,
Attachment,
Interaction with
new ECM

Angiogenesis

Anti-apoptosis

Fig. 2 Hypothetical illustration of the role of periostin in tumori-

genesis. This model depicts the potential role of periostin in

regulating the transformation of normal cells into malignant cancer

cells and, eventually, metastatic tumors. Periostin, which is highly

expressed in various malignancies, interacts with integrins or other

receptors to induce a variety of cellular events. Current reports have

revealed that periostin contributes to malignancies mainly by

preventing apoptosis and promoting angiogenesis, invasion, and

metastasis. The roles of periostin in regulating cell proliferation,

evasion of senescence and immunosurveillance, and genomic insta-

bility of cancer cells during tumorigenesis still require further

investigation
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Tissue invasion and metastasis

Tumor invasion and metastasis is a multifaceted, con-

trolled, and complicated process in the final phases of

tumor development; it includes intravasation, survival in

the circulatory system, arrest and extravasation into a new

tissue, initiation and maintenance of growth, and reacti-

vation of angiogenesis, in order to successfully establish

metastatic colonies in the parenchyma of distant organs

[15]. To complete this journey, cancer cells utilize

numerous strategies, all of which lead to the same goal: the

establishment of secondary sites of tumor growth [54]. In

this multistep process, metastasis requires interactions

between cancer and stromal cells, as well as between

cancer cells and the ECM. Alterations of components in the

ECM within the tumor microenvironment exert a consid-

erable impact on the metastatic process [55].

Periostin, a fasciclin-containing adhesive ECM glyco-

protein, promotes tumor metastasis not only in breast, lung,

and colon cancers, as mentioned above, but also in mela-

noma, gastric cancer, head and neck squamous cell

carcinoma, thymoma, and neuroblastoma. In melanoma

samples, the average periostin expression is not increased

in primary tumors, whereas periostin overexpression is

detected in about 60% of metastatic melanoma tumors in

the liver or lymph nodes [40]. Periostin is also overex-

pressed in gastric cancer and lymph node metastases [39].

Overexpression of periostin is frequently observed in head

and neck squamous cell carcinoma and is believed to

promote angiogenesis, tumor invasion, and metastasis of

oral squamous cell carcinoma cases [16, 41]. In addition,

periostin mRNA levels correlate with neuroblastoma tumor

progression and prognosis [43]. Serum periostin levels are

not significantly different between most thymoma patients

and controls; however, the serum periostin level of stage IV

thymoma patients is significantly higher than that of con-

trols, suggesting that serum periostin level may indicate

tumor invasion and progression of thymoma [42].

One critical step in tumor metastasis is termed epithe-

lial–mesenchymal transition (EMT), which enables

epithelial cancer cells to acquire invasive and metastatic

potential [56–59]. Periostin has been shown to facilitate the

migration and differentiation of cells that have undergone

EMT, both during embryogenesis and in pathological

conditions [60]. Furthermore, periostin is associated with

EMT during cardiac development [19, 61]. Periostin is

expressed throughout all stages of murine tooth develop-

ment, especially in the embryonic sites of epithelial-

mesenchymal interaction and in later newborn cells that

transdifferentiate from one phenotype to another [62].

Various aggressive tumors are characterized by overex-

pression of periostin. As a mesenchyme-specific gene

product, periostin is a potential contributor to metastasis

and EMT in tumor progression. Stable expression of

periostin in tumorigenic, but nonmetastatic, 293T cells

induces those cells to undergo EMT and promotes cell

migration, invasion, and adhesion [63]. High expression of

periostin is also noted during EMT of cancer cells in

NSCLC [30].

However, periostin may play a role as a suppressor of

invasion and metastasis in the progression of human

bladder cancers [20, 64]. The induced expression of

periostin in pancreatic cancer cells (to levels of 150 ng/ml)

can inhibit EMT and reduce cell migration in vitro as well

as lead to formation of smaller tumors and suppression of

metastasis in vivo. On the other hand, a high concentration

of recombinant periostin (1 lg/ml) promotes cell migration

with Akt activation [34]. Periostin can bind different

integrin receptors, and different cancers express specific

integrins. In addition, there are different spliced periostin

isoforms in different tissues. These isoforms are not

expressed uniformly but are differentially expressed in

various cells [1, 2, 64]. Taken together, these results sug-

gest that context influences the function of periostin, as

related to tumor invasion and metastasis.

Genomic instability

It is crucial for cells to maintain their genomic integrity and

stability because the DNA contained in every mammalian

cell is under constant attack by many stresses and dam-

aging agents [65, 66]. It is well known that genomic

instability, one of the hallmarks of human cancer, is

responsible for cellular changes that confer progressive

transformation on cancer cells [45]. Genetic defects in

DNA repair mechanisms and cell cycle checkpoints result

in increased genomic instability and cancer predisposition

[67, 68]. The genetic instability of tumorigenesis allows

cancer cells to frequently bypass these systems. A recent

paper has shown that periostin is overexpressed in Brca1

mutant cancer cells [69]. The Brca1 tumor suppressor, a

checkpoint protein, plays a role in homologous recombi-

nation and may function in DNA repair by serving as a

scaffold for ATM and ATR, thereby facilitating phos-

phorylation of downstream targets [70, 71]. Inherited

mutations in Brca1 predispose individuals to breast and

ovarian cancer; for carriers, the lifetime risk of breast

cancer is 60–80%, and the risk of ovarian cancer is 25–50%

[71–74]. Quaresima et al. [69] used microarray analysis to

explore the gene expression pattern produced by the

cancer-associated Brca1 5083del19 founder mutation.

They found that periostin was significantly upregulated

in HeLa/(5083del19)Brca1 cells, compared with both

HeLa/(pcDNA3.1/empty) and HeLa/(wt)Brca1 cells. This

finding was confirmed both in vitro, in breast cancer cell

lines harboring mutations in Brca1, and in vivo, in breast

2224 K. Ruan et al.



cancer specimens bearing the 5083del19 Brca1 mutation as

well as sera obtained from patients and healthy carriers of

the same mutation [69]. Since cancer is caused by a mul-

tistep process of sequential alterations in several oncogenes

and tumor suppressor genes, periostin overexpression,

together with Brca1 mutations, may be key steps in

tumorigenesis of some breast and ovarian cancers.

Periostin activation of intracellular signaling

pathways in tumorigenesis

Integrins: versatile integrators of periostin-mediated

cell signaling

Integrins are transmembrane, heterodimeric receptors with

noncovalently associated a and b subunits and are involved

in both cell–cell and cell–ECM interactions [75]. Through

integrins, cells can sense dimensionality and other physical

and biochemical properties of the glycoproteins in the

extracellular matrix, either in basement membranes or the

interstitial matrix, or sense other ligands on the surface of

neighboring cells [76]. Hence, integrins constitute the

majority of receptors for sensing the environment of the

cell. In addition to sensing the environment through their

extracellular region, integrins are also able to engage sev-

eral effectors on their cytosolic side. Through coupling to

kinases, scaffolding proteins, or small GTPases, integrins

modulate intracellular signaling pathways to determine

adhesion, migration, polarity, survival, growth, or death of

the cell [77].

The expression of integrins is frequently altered in

tumors [78]. Cancer cells that express a wide variety of

integrins can constitutively activate signaling pathways

to promote tumor cell growth, survival, and migration

[45, 79]. Current studies have shown that periostin is

upregulated in various tumors and enhances cancer cell

proliferation, survival, angiogenesis, and metastasis. Iden-

tified integrin receptors of periostin that play a role in

tumorigenesis include avb3, avb5, and a6b4. Receptors

avb3 and/or avb5 are thought to regulate adhesion and

migration of ovarian, breast, colon, and oral cancer cells

[15, 38]. Gillan et al. [38] have found that purified

recombinant periostin protein supports the adhesion of

ovarian epithelial cells, which can be inhibited by mono-

clonal antibodies against avb3 or avb5 integrin, but not by

anti-b1 integrin antibody. Furthermore, avb3 integrins, but

not b1 integrin, co-localize with the focal adhesion plaques

formed on periostin. Cells plated on periostin form fewer

stress fibers and are more motile than those plated on

fibronectin. Therefore, periostin functions as a ligand for

avb3 and avb5 integrins to support the adhesion and

migration of ovarian epithelial cells [38].

In determining whether integrins are involved in the

activity of periostin to promote survival of human colon

cancer cells (CX-1NS) and microvessel endothelial cells

(HMVECs), we have found that the activation of the

Akt/PKB survival pathway by periostin is mediated pri-

marily through the avb3 integrin signaling pathway [15].

The angiogenic activity of periostin has been correlated

with the increased expression of the VEGF receptor

Flk-1/KDR on endothelial cells via an integrin avb3-FAK-

mediated signaling pathway [27]. In addition, the a6b4

integrin complex acts as the receptor for periostin in pan-

creatic cancer cells [33]. At the mechanistic level, it is not

surprising that periostin exerts its effect via integrins,

because current reports have demonstrated that integrins on

the surface of tumor cells and adhesion molecules in the

ECM microenvironment are extremely important for tumor

cell survival, growth, and migration [15, 80–82]. One

recent report has shown that secreted periostin interacts

with avb5 integrins, and the intracellular signaling acti-

vation via cross-talk between integrins, and EGFR

promotes the cell to undergo EMT, resulting in tumor

invasion and metastasis [63]. Nonetheless, we cannot yet

rule out the existence of other receptors that transduce

periostin signals in tumorigenesis.

PI3-K/Akt: a critical pathway in regulating

periostin-induced tumorigenesis

Signals from the ECM are based on the engagement of

integrins with specific matrix proteins to stimulate cell

survival signaling molecules, including the extracellular

signal-regulated kinases 1 and 2 (ERK1/2) and PI3-K in the

MAP kinase cascade [83, 84]. It is now generally accepted

that the PI3-K/Akt survival pathway is a central regulator of

cell survival and proliferation [48, 85]. Akt functions as a

cardinal node for transduction of extracellular and intra-

cellular signals. It is positively regulated by PI3-K and

negatively regulated by PTEN. Akt plays a critical role in a

variety of cellular events including cell growth, motility,

and survival, in both normal and cancer cells. The

PI3-K/Akt pathway is also instrumental in EMT and angi-

ogenesis during tumorigenesis. Deregulation of the PI3-

K/Akt pathway is one of the most common signaling

alterations in human malignancy [85]. Our previous work

has revealed that periostin can dramatically enhance met-

astatic growth of colon cancer both by preventing stress-

induced apoptosis in cancer cells and by augmenting

endothelial cell survival via the Akt/PKB pathway [15].

Interestingly, OPN and SPARC are other secreted matrix-

cellular proteins that play important roles in the progression

of tumor development [86–88]. Our recent results suggest

that the underlying mechanism of OPN-mediated promo-

tion of tumor development is largely associated with Akt
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activation, which enhances cell survival under stress

[15, 46–48]. In addition, periostin can induce Akt phos-

phorylation via binding to a6b4 integrins and can activate

the PI3-K/Akt pathway, rather than the RAF/MEK/ERK

pathway, to promote the survival of pancreas cancer cells

[33]. In this regard, acquired expression of periostin, OPN,

SPARC, and similar types of proteins may enable tumor

cells to thrive in a tumor microenvironment.

Regulators of periostin in tumorigenesis

Periostin expression has previously been shown to be

significantly increased by both TGF-b and bone morpho-

genetic protein (BMP)-2 [2, 89]. BMP-2 induces cell

migration and periostin expression during atrioventricular

valvulogenesis [90]. Since TGF-b has been revealed to

promote EMT and tumor metastasis, it is possible that

periostin acts as an effector that mediates the pro-metastatic

activity of TGF-b in certain cancers. Besides TGF-b and

BMP-2, PDGF-bb, PDGF-aa, FGF-B, and FGF-A are also

potent secretagogues for periostin in pancreatic stellate cells

[35]. Periostin has also been shown to be regulated by twist,

which is a basic helix–loop–helix (bHLH) transcription

factor important for cell proliferation, migration, and dif-

ferentiation in embryonic progenitor cell populations and

transformed tumor cells. Twist can bind the periostin pro-

moter in undifferentiated pre-osteoblasts and upregulate

periostin expression [91]. The hypoxia-responsive growth

factors FGF-1 and angiotensin II enhance periostin

expression in pulmonary arterial smooth muscle cells by

activation of the PI3-K/Akt/p70S6K, Ras/MEK1/2/ERK1/

2, and Ras/p38MAPK signaling pathways, but not the

Ras/JNK pathway [92]. We have also found that TGF-a and

bFGF upregulate the expression of periostin to promote the

survival of A549 lung cancer cells in a hypoxic microen-

vironment via activation of PI3-K/Akt pathway (our

unpublished data). In addition, periostin can be regulated by

Wnt-3 in mouse mammary epithelial cells [93] and by IL-4

or IL-13 in lung fibroblasts [24]. However, most of the

data about the regulators of periostin have come from

studies on embryonic or adult development. Further studies

are necessary to identify the regulators of periostin in

tumorigenesis.

Concluding remarks

A tumor-supportive microenvironment is critical for tumor

cell proliferation, survival, angiogenesis, invasion, and

metastasis because tumors require essential growth factors,

survival signals, pro-angiogenic factors, and various

adhesion molecules [94]. It is well accepted that tumors are

composed of several distinct cell types, including cancer

cells, immune cells, fibroblasts, and endothelial cells.

Tumorigenesis largely depends on alterations in the het-

erotypic interactions between incipient cancer cells and

their normal neighbors [45]. Cancer cells can modify the

composition of the adjacent stroma by secreting their own

ECM proteins to create a permissive and supportive envi-

ronment for their growth [33, 95, 96]. However, it is still

not well understood how cancer cells manipulate periostin

and other ECM proteins to cooperate with other cell types

within tumors to promote their own survival and growth

under stressful microenvironments. A recent report dem-

onstrated that once stimulated by pancreatic cancer cells,

pancreatic stellate cells remain active via an autocrine

periostin loop. This process is exacerbated by even radio-

therapy, resulting in the production of an excess of ECM

proteins, creating a tumor-supportive microenvironment.

Therefore, pancreatic stellate cells can secrete excessive

amounts of ECM proteins, including periostin, collagen-1,

and fibronectin, which promote tumor growth under serum

deprivation, hypoxia, and chemotherapeutic pressure [35].

The class of nonstructural ECM proteins, including

SPARC, osteopontin, thrombospondin, and tenascin-C, is

structurally diverse, but regulates similar biological func-

tions during embryonic development, tissue injury, and

tumorigenesis by promoting the adhesion, migration, and

survival of cancer cells [33, 88, 97, 98]. In contrast to many

defined oncogenes, the normal functions of this type of

gene are not often associated with the promotion of cell

proliferation. Instead, this group of proteins may exert their

influence on tumorigenesis by changing the microenvi-

ronment through the regulation or alteration of cell

adhesion, composition of the extracellular matrix, and the

activities of stromal cells within and surrounding the tumor

mass [27]. As an adhesive protein, periostin is highly

expressed in the embryonic tissues and in several normal

adult tissues, predominantly bone, and is strongly upregu-

lated in some adult tissues after injury [6, 7]. Furthermore,

periostin has been found to potently promote adhesive

interaction through desmoplastic stroma and to enhance

metastatic development of various cancers. Therefore,

periostin can be regarded as a new member of the ma-

trixcellular proteins; increased periostin expression may

confer a selective advantage to cancer cells during the

process of metastasis and reflect a more aggressive tumor

phenotype.

It is important to note that the data obtained from reports

on big-h3 may also provide important clues about the role of

periostin in development and tumorigenesis. big-h3 and

periostin are both TGF-b-induced ECM proteins, both have

FAS1 domains, and both are assigned to the FAS1 family.

big-h3 contains a signal sequence at the N-terminus, an Arg-

Gly-Asp (RGD) sequence at the C-terminus, and four FAS1

domains; it shares a significant structural homology with
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periostin [55, 99]. However, the RGD motif (an integrin

recognition site) near the C-terminus in big-h3 can be deleted

without affecting cell adhesion [100]. big-h3 does not con-

tain any sequence homologous to the C-terminal hydrophilic

domain in periostin, while periostin does not contain an RGD

motif, suggesting that functional differences may exist

between the two proteins during development and tumori-

genesis [15, 17, 55]. As a secreted protein, the major function

of big-h3 is to mediate cell spreading, adhesion, prolifera-

tion, migration, and the promotion of tumorigenesis. Current

studies have revealed that these functions are mediated

through interactions between the FAS1 domains and integrin

receptors, such as a3b1, avb5, avb3, and a6b4 [19]. Inter-

estingly, although big-h3 and periostin share significant

sequence and structural homology, these two ECM proteins

are involved in different processes in tumorigenesis. big-h3

appears to promote colon cancer metastasis primarily during

extravasation, a critical step in the metastatic dissemination

of cancer cells, by inducing the dissociation of VE-cadherin

junctions between endothelial cells via activation of the

integrin avb5-Src signaling pathway [55]. However, as

noted earlier, periostin has been shown to promote metastatic

development of colon tumors by activation of the Akt/PKB

signaling pathway through avb3 integrins to increase cell

survival [15]. Therefore, the differences in their C-terminal

domains may contribute to their differential integrin binding

specificities, which, in turn, may result in differing impacts

on tumor progression [15, 55].

Considering the key role periostin plays in bone and

tooth formation, cardiac development, cardiovascular dis-

ease, oncogenesis, and tumor metastasis, this secreted

protein could serve as a potential therapeutic target. Further

studies will facilitate a deeper understanding of the

mechanisms involved in the function, regulation, and bio-

logical activities of periostin in embryonic development

and tumorigenesis.
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