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Abstract The Rh (Rhesus) genes encode a family of

conserved proteins that share a structural fold of 12

transmembrane helices with members of the major facili-

tator superfamily. Interest in this family has arisen from the

discovery of Rh factor’s involvement in hemolytic disease

in the fetus and newborn, and of its homologs widely

expressed in epithelial tissues. The Rh factor and Rh-

associated glycoprotein (RhAG), with epithelial cousins

RhBG and RhCG, form four subgroups conferring upon

vertebrates a genealogical commonality. The past decade

has heralded significant advances in understanding the

phylogenetics, allelic diversity, crystal structure, and bio-

logical function of Rh proteins. This review describes

recent progress on this family and the molecular insights

gleaned from its gene evolution, membrane biology, and

disease association. The focus is on its long evolutionary

history and surprising structural conservation from pro-

karyotes to humans, pointing to the importance of its

functional role, related to but distinct from ammonium

transport proteins.
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Introduction

Most of us become aware of the ‘‘Rh (Rhesus) factor’’ at a

blood bank or sense its importance in a hospital where we

see ‘‘Rh’’ along with ‘‘ABO’’ as labels on all bags of blood

to be transfused into patients. At other times we may hear

the words ‘‘Rh-positive’’ and ‘‘Rh-negative’’ or learn

touching stories from friends or relatives about pregnant

women who needed clinical care owing to a mismatch with

their baby’s Rh blood type. All these now routine medical

practices rest on the genotype-phenotype principles of

human genetics, as illuminated by Landsteiner, Levine, and

Weiner in their seminal discoveries of the ABO and Rh

blood group substances [1–4]. Indeed, the Rh and ABO

antigens are still the clinically most significant [5] and

genetically most polymorphic of all human blood group

systems to date [6]. However, ABO are carbohydrate

antigens [7] depending on the enzymatic activity and

specificity of allelic glycosyltransferases [8], whereas Rh

antigens are protein motifs [9, 10], whose surface expres-

sion entails an interaction of two genetic loci [11, 12]. The

protein nature endows Rh antigens, particularly the more

recently evolved D antigen, with the inherent ability to

mount potent alloimmune reactions to counteract such

conflicting situations as fetal-maternal incompatibility.

As a model system that has been well studied for seven

decades, Rh proteins have generated many exciting

moments of discovery in the disciplines of hematology,

biochemistry, and human genetics. The foundation of Rh

phenotypic variation and population genetics was laid out in

the first 35 years [13], culminating in the development of

prophylaxis therapy for hemolytic disease of the fetus and

newborn (HDFN) in the 1960s [14, 15]. A series of studies

in the 1980s established Rh antigens and Rh-associated gly-

coprotein (RhAG) as integral membrane proteins [7, 8, 16].
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Such endeavors led to the partially determined protein

sequences [17–19] that paved the way for cloning of Rh30

(RHCE and RHD) and RhAG (RHAG) in the early 1990s

[20–24]. Ensuing studies resulted in definition of the com-

mon D and CcEe antigens in molecular terms [25] and

compilation of a thorough compendium of human Rh allelic

diversification [6, 9, 26–30]. The nature of RhAG as a

genetic regulator for Rh antigen expression was also veri-

fied via the identification at the RHAG locus of mutations

that cause Rh-deficiency syndrome [31–37].

Despite their folding into 12 transmembrane helices

(TMH) common to members of the major facilitator

superfamily (MFS) [38], the red cell Rh proteins have been

notoriously refractory to functional definition [39, 40],

let alone specification of their elusive substrate. The

cloning of epithelial RhBG and RhCG cousins and their

remote relatives has extended the erythroid paradigm and

opened new avenues of research in nonerythroid tissues

and model organisms [41–43]. The functional importance

of such nonerythroid homologs in their natural settings has

been established in the unicellular green alga C. reinhardtii

[44–46], the worm C. elegans [47, 48], and the mouse as a

mammal [49]. Now Rh30, RhAG, RhBG, and RhCG

together define the four subgroups of the family and grant

vertebrates a genealogical commonality [50–52]. The past

decade has heralded a new era for our understanding of the

Rh family in terms of its genetic diversity, protein evolu-

tion, three-dimensional (3D) structure, and biological

function. Despite the debate on their substrate specificities

as CO2 and/or ammonia, Rh proteins have emerged as a

key class of plasma-membrane proteins playing important

roles in maintaining systemic pH at the organismal level.

This review provides an update of recent findings on the Rh

family and focuses on multifaceted insights newly gained

from its molecular evolution, structural conservation,

membrane biology, and disease association.

Genetic structure and molecular evolution of the Rh

protein family

Origin and taxonomic distribution

The Rh family is now believed to have arisen from a

common ancestor of prokaryotic origins, based on our

increasing awareness of the presence of its homologs in

bacteria [52] (Table 1). Despite their absence in sequenced

archaeal genomes [46], Rh homologs are present as single-

copy loci in certain bacterial taxa dwelling in soils, waters

or subsurface and showing unique metabolic features,

slower cell cycles, or more elaborate intracellular partitions

[53–61]. Of the ammonia-oxidizing and CO2-fixing bac-

teria, three are aerobic lithoautotrophs [53, 54] and one is

an anaerobic anammox [55]. Four are rod-shaped free-

living Clostridia species that are obligate anaerobes

capable of sporulating and acetate-oxidation or sulfate-

reduction along with CO2-fixation [58, 59]. Geobacter sp.

M21 belongs to clade 1 of the four Geobacteraceae clades

sampled from Fe(III)-reducing subsurface regions [60],

whereas the Ellin345 isolate of A. bacteria is a highly

capsulated aerobic heterotroph widely found in soils [61].

The open reading frames (ORF) of these bacterial genes

encode Rh proteins with a notable sequence identity to one

another and to human proteins, particularly the RhAG,

RhBG, and RhCG glycoproteins (Table 1). The common

features dictate an orthologous relationship between bac-

terial and human Rh proteins implicating a conserved

function across enormously distant phylogenies.

In contrast to their prokaryotic rarity, members of the Rh

family show a much broader distribution in eukaryotes

(Fig. 1). It appears that Rh genes were first dispersed

among unicellular eukaryotes and then became ubiquitous

in the animal kingdom from primitive metazoans to

invertebrates [52]. Ultimately, the Rh family genesis

arrived at its prominence and steady state in vertebrates,

with definitive subgroups emerging from fish to mammals,

as typified by the four loci in humans (Table 1). Of uni-

cellular eukaryotes, most Rh-harboring species are free-

living microbes in soils and/or waters, such as social

amoebae slime molds (myxomycetes), water molds

(oomycetes), or marine diatoms (stramenophiles). Rh genes

are also present in the green alga C. reinhardtii [44], but so

far not in other nonvascular plants, i.e., the Bryophyta

(mosses), Marchantiophyta (liverworts), Anthocerotophyta

(hornworts), or vascular (seed) plants. Strikingly Rh genes

are absent or lost all at once in the morphologically similar

but phylogenetically dissimilar fungi and in certain para-

sites such as the obligate parasitic protists, Apicomplexa

and Kinetoplastida (Fig. 1).

Rh gene gains and losses in eukaryotic evolution

Gene duplication is a critical selection force that gives rise

to raw materials for neofunctionalization and subfunc-

tionalization of protein families [62]. As to this novelty,

several rounds of gene duplication involving the Rh family

have occurred and may account for its presence in extant

organisms [50]. A careful inspection of copy number,

exon–intron junction, and physical location of RH loci

discloses hallmarks that recapitulate their expansion and

contraction in the eukaryotic life domain (Fig. 2). Toge-

ther, the evolutionary events have shaped the conservation

and diversification of the Rh family in transitions from

single-copy to multi-copies, from intronless to multi-

introns, from unicellularity to multicellularity, and from

epithelial cells (nonerythroid) to non-epithelial (erythroid)
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cells. Thus the Rh family is an excellent model system, on

a large taxonomic scale, to look into the pattern of gene

gain and gene loss throughout molecular evolution (Fig. 2).

Unicellular eukaryotic microbes may carry one (com-

mon) to three genes (rare). Such Rh duplicates seem to

have arisen by adaptation, as their intraspecific identity

generally exceeds their interspecific identity [50, 52].

Metazoan Rh members are also duplicates of a common

ancestor but display more complex gene-gain and gene-

loss patterns (Fig. 2). Supporting evidence includes a sin-

gle-copy gene in the bona fide outgroup M. brevicollis (a

unicellular choanoflagellate) [63]; one to three in inverte-

brates (water flea D. duplex is special, harboring six); six in

teleost fish; and four in frogs, birds, and mammals [50].

While gene duplication apparently occurred twice in

invertebrates, the doubling of genes from three in lancelet

[64] or tunicate [65] to six in teleost fish [50] likely resulted

from whole-genome duplication through tetraploidization

[66]. This genome-wide duplication had reset the stage to

place Rh genes on different chromosomes. The subsequent

loss of two genes finalized four loci, i.e., RhAG, RhBG,

RhCG, and Rh30, which together define the four distinct

subgroups and confer upon vertebrate animals a genea-

logical commonality [52]. In recent primate to human

evolution, the division of RH into RHCE and RHD via

tandem gene duplication reformed the Rh blood group

system [11, 12]. Gene duplications in metazoans went

through chaotic changes in exon–intron organization of Rh

genes in the wide variety of phylogenies. Although Rh

genes are intronless in bacteria and certain eukaryotes, they

keep multiple introns in all metazoans (Fig. 2). Depending

on species, these introns invade the protein-coding

sequence at different positions and thus break exons with

changing numbers (Fig. 2); yet, Rh proteins still maintain

their conserved features, thereby sharing astounding

structural homologies.

Negative versus positive selection on subgroups

Congruent with species orders, Rh homologs cluster in

subgroups [50] suggesting that natural selection has acted

differently on these subgroups. The Rh family as a whole is

highly conserved, but its subgroups vary in divergence rate

and sites thereby relating functional specification to species

Table 1 Comparison between bacterial and human Rh proteins

Taxonomic name Bacterial Rh homolog Human Rh protein family

ORF (aa) % Id/Sm

(aa align)

% Id/Sm (aa align)

RhAG RhBG RhCG RhCE RhD

409 458 479 417 417

Proteobacteria b

Nitrosomonas europaea 425 100/100 (425) 37/58 (354) 36/51 (407) 34/53 (387) 29/48 (318) 31/49 (277)

Nitrosomonas sp. AL212 457 70/83 (401) 38/58 (357) 39/55 (407) 33/50 (430) 29/48 (314) 33/51 (283)

Nitrosomonas multiformis 407 73/84 (407) 36/57 (355) 41/59 (340) 36/55 (313) 28/47 (313) 29/50 (317)

Proteobacteria d

Geobacter sp. M21 403 51/66 (362) 36/55 (342) 37/55 (301) 33/51 (336) 29/48 (284) 29/48 (286)

Planctomycetes

Kuenenia stuttgartiensis 585 50/67 (360) 33/55 (368) 39/59 (313) 34/57 (296) 25/46 (321) 25/46 (338)

Firmicutes-Clostridia

Clostridium carboxidivorans 404 50/70 (345) 35/55 (376) 36/56 (346) 34/55 (313) 26/49 (311) 28/52 (277)

Clostridium cellulovorans 401 50/70 (345) 36/58 (345) 36/60 (319) 30/50 (384) 27/47 (318) 28/52 (309)

Clostridium papyrosolvens 391 63/78 (356) 37/57 (352) 38/58 (306) 32/53 (379) 27/48 (340) 28/49 (335)

Desulfotomaculum acetoxidans 400 51/68 (346) 38/57 (341) 35/56 (347) 34/55 (292) 27/50 (304) 30/53 (273)

Acidobacteria

Acidobacteria bacterium 390 61/75 (388) 36/56 (345) 36/54 (342) 34/54 (312) 27/46 (332) 29/49 (290)

Archaea

Archaeoglobus fulgidus Amt1 391 26/44 (222) 27/44 (240) 28/43 (216) 28/43 (153) 41/48 (97) 28/44 (225)

% Id/Sm Percent identity/similarity based on pairwise alignment of protein sequences. N. europaea Rh (top) and A. fulgidus Amt1 (bottom) are

used for comparison since their 3D structures are known. % Id/Sm between each bacterial Rh and human Rh proteins (RhAG to RhD) is shown

(left to right). The number in parenthesis is the total amino acid sites aligned. Note that three b-proteobacteria have Rh only, whereas the

remaining bacteria retain both Rh and Amt genes

ORF Open reading frame in total amino acids (aa). The length of bacterial and human Rh proteins falls in the range from 390–585 to 409–479

residues, respectively
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adaptation [52]. One key advance from unicellularity to

multicellularity is the origin of epithelia; the duplication of

Rh gene from one in sponge [67] to two in the Placozoa

[68], the basal metazoans with epithelia [69, 70], coincides

with this morphological innovation (Fig. 2). Invertebrate

Rh proteins comprise a large group having endured a long

period of negative selection and a similar degree of

sequence identity to the individual vertebrate subgroups,

RhBG [ RhCG [ RhAG [ Rh30 [52]. Hence the Rh

ancestors born with epithelia must have branched to

engender those homologs now expressed in invertebrate

hemocytes and vertebrate red cells. In vertebrates, negative

selection continues on epithelial homologs, but positive

selection occurs to erythroid Rh proteins. The Rh30 sub-

group has diverged rapidly and steadily after its origin [71–

74], whereas the RhAG subgroup has experienced two

phases of selection, negatively in lower vertebrates but

positively in mammals parallel to Rh30 selection [51]. The

fast co-evolution of Rh30/RhAG matches with the timeline

of morphological transition of red cells from elliptical to

biconcave through enucleation.

Distant relatedness of Rh to Amt

Ammonia transporters (Amt) are thought to be members of

the MFS club [38]; they and Rh proteins form the only

known related families [46, 75]. Our knowledge of their

differences and similarities in organism distribution,

molecular evolution, and protein structure has dramatically

increased since the report linking human erythroid Rh

proteins to Amt proteins [75]. The two families not only

show an opposite pattern of distribution but coexist in a

great variety of organisms (Fig. 1). Apparently Rh ances-

tors had already branched off from Amt ancestors in

prokaryotes and the two had gone through their respective

evolutionary pathways after separation [50, 51] (Fig. 3a).

In addition, the Rh proteins and Amt proteins in those

organisms from bacteria to invertebrates that have both

Fig. 1 Distribution of Rh genes

and their coexistence with Amt

genes in eukaryotes. Plus and

minus indicate presence and

absence, respectively, of Rh

(left) or Amt genes (right). The

results were obtained from

tblastn/blastp search using Rh or

Amt protein queries against

genome databases. Taxonomic

divisions are modified from the

eukaryotic tree

(www.ncbi.nlm.nih.gov/

sutils/genom_tree.cgi). Certain

taxa lack both Rh and Amt
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types of genes also cluster independently and are separated

by an unpredictable distance because of the long period of

divergent evolution (Fig. 3b). These findings pinpoint a

distant and paralogous relatedness arguing for a functional

distinction between the Rh family and the Amt family

[46, 52].

Fig. 2 Gene gain and gene loss

in the genesis and evolution of

the Rh protein family. Left Gene

gain and loss are denoted by

copy numbers (circled) on the

tree trunk (not to scale).

Bending arrows indicate gene

duplications (green) or gene

contractions (black). The

increase from three to six genes

may arise by a genome-wide

duplication. Vertical arrows to

the truck point to evolutionary

events with which Rh gene

duplications coincide: a origin

of an ancient Rh gene and its

branch off Amt genes in

Bacteria and Archaea below the

arrow; b origin of epithelia;

c origin of erythrocyte. Right
Exon remodeling in Rh family

genes from representative taxa

is shown. E6 (exon 6), the most

conserved exon encoding 46

amino acids in metazoans, is

used as a reference

Fig. 3 Rh and Amt are distantly related families but have gone

through divergent and independent evolution. a The maximum

likelihood (ML) joint tree of 111 Rh proteins (red) and 260 Amt

(blue) proteins. Bacterial NeRh and archaeal FaAmt and TvAmt are at

the base of the respective families. b The ML joint protein tree of 18

Rh and 30 Amt in species that harbor both types of genes. The values

at nodes are the bootstrap proportion from ML. This expanded

analysis covers species from bacteria to invertebrates
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Primary structure, transembrane fold, and 3D

structure of Rh proteins

Biochemical features of primary structures

With the primary structures of Rh proteins known in

human red cells [20–24], epithelial cells, and other species

[41, 42], a consensus has emerged as to the index of con-

servation and diversification for the Rh family [50, 51].

Analysis of selected members from bacteria to humans

reinforces such common features (Table 2). The total

length of Rh proteins differs considerably depending on

species, e.g., it is 390 aa for the A. bacteria Rh protein and

958 aa for the Rh2 homolog of N. gruberi (a soil/water

amoeboflagellate), but the vast majority have a size of

400–500 aa (Table 2). The primary sequences that define

TM helices are most conserved and thus hydrophobic

residues account for two-thirds or more of total residues.

For the TM helices, the ratio of hydrophobic/polar residues

is constant (3:1) and so is the Gly/Pro ratio (4–5:1) and

strict His occurrence (Table 2). The patterns of charge and

size are distinct among intracellular loops (ICL), extra-

cellular loops (ECL), and C-tails. C-tail is most diverged in

sequence and size between subgroups [43]. Paradoxical to

this variation is the invariant retention of charged residues

in N and C-termini, although not at the same sites. Negative

charges show a greater presence in the C-tail of RhAG,

RhBG, or RhCG and positive ones in the N-terminus of

Rh30, manifesting a bi-modularity pI profile as acidic and

basic, respectively (Table 2). As little variability occurs in

Table 2 Primary composition and biochemical features of Rh proteins

Name ORF (aa) pI TM% Hydro/polar TM ECL (aa) ICL (aa) Total (aa) (Nt/Ct)

Overall Tm G/P H

Human

RhAG 409 6.66 64.8 182/96 159/52 31/7 5 68 42 25 (4/21)

RhBG 458 6.70 57.9 203/99 151/53 31/7 8 96 43 55 (13/42)

RhCG 479 6.20 55.3 209/108 150/63 27/7 5 100 42 72 (10/62)

RhCE 417 9.41 63.5 202/98 164/57 22/5 2 69 44 39 (11/28)

RhD 417 8.51 63.5 201/98 161/59 23/5 2 69 44 39 (11/28)

Eukaryotes

DmRh 449 5.74 59.9 203/105 164/56 25/6 3 103 43 38 (9/29)

CeRh1 463 6.21 58.1 198/114 155/58 23/7 7 96 41 61 (10/51)

TaRh1 445 5.36 59.6 204/108 155/59 22/6 4 88 41 52 (7/45)

TaRh2 459 5.73 57.7 213/116 158/65 20/4 6 102 41 54 (8/46)

GcRh 523 4.79 51.4 225/129 153/58 28/7 3 129 40 87 (6/81)

MbRh 480 5.51 55.2 210/119 155/56 29/6 6 115 48 48 (5/43)

Bacteria

NeRh 425 6.33 62.4 214/89 163/52 28/7 3 61 39 60 (4/56)

NiRh 457 5.85 58.0 209/103 160/49 30/8 6 60 39 93 (4/89)

NmRh 407 5.60 65.1 200/89 167/47 27/7 4 61 39 41 (4/37)

GeRh 403 4.77 65.8 200/83 158/54 24/6 3 57 38 43 (4/39)

KsRh 585 6.85 45.3 248/134 157/56 24/6 4 260 38 22 (3/19)

CcRh 404 8.03 65.6 192/96 160/53 23/9 3 75 38 26 (4/22)

CIRh 401 5.22 66.1 193/90 157/56 26/8 3 60 39 23 (4/19)

CpRh 391 6.34 67.8 197/79 160/54 28/6 4 75 38 27 (4/23)

DaRh 400 7.25 66.2 187/96 158/57 25/8 3 75 38 22 (4/18)

AaRh 390 6.85 67.9 186/87 157/56 27/7 3 60 42 23 (4/19)

Archaea

AfAmt1a 391 5.90 66.0 208/71 171/43 25/4 3 63 43 28 (3/25)

TM % Percent of TMH residues to total residues of a full-length protein, Hydro/Polar hydrophobic vs. polar residues in full-length protein

(overall) or in TMH (Tm), G/P and H Gly/Pro and His residues assigned to transmembrane segments, ECL and ICL total size of extracellular and

intracellular loops in residue numbers, Nt/Ct the total and respective size of N- and C-terminal regions in residue numbers. The data were from

structure-based sequence alignments and are available upon request
a AfAmt1 lacks TMH0 or signal peptide and thus has 11 TM helices. This Amt is chosen for comparison because it gives rise to a better

alignment with Rh proteins than EcAmtB
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TMH and ICL, the C-tail contributes a net negative charge

to Rh glycoproteins, a feature also pertaining to most Amt

proteins [51]. Hence, the variable C-tail and the tightly

packed TM helices consolidate Rh function and regulation

in a single adaptable modular design in the membrane.

Fold of transmembrane helices

Rh proteins are predicted to have 12 transmembrane

helices [40, 43], a condition which has now been observed

in the 3D structure of NeRh, the N. europaea Rh, and

human RhCG [76–78]. Figure 4 shows a 2D topology of

NeRh with its short N-terminus and long C-tail facing the

cytoplasm. This model and Table 2 illuminate some

identifying features, both general and particular to Rh

proteins. The two 6-TMH halves (TMH0-5 and 6–11)

grossly appear as ‘‘self-images’’ given their patched

identities and shared motifs. For Rh glycoprotein homo-

logs TMH1, 3, 5, 6, 8, and 10 are conserved with key

amino acids, e.g., twin-His and twin-Phe. TMH0 is

peripheral [78] as suggested [79, 80], but TMH1:6, 2:7,

3:8, 4:9, and 5:10 each form a pair of TM domains packed

close in the membrane [76–78]. The surface-charge across

the lipid bilayer is asymmetric because ECL and ICL are

coated by net negative and net positive charges, respec-

tively (Fig. 4). ICL are short and invariant in size

(Table 2); of these, ICL3 between TMH5 and 6 is the

longest allowing 6-TM halves limited mobility, and others

are just long enough for helix turns. ECL changes are

largely confined to elongation or truncation of ECL0 and

ECL5. The strict total length of ICL as a feature common

to Rh and Amt (Table 2) makes them unique within the

MFS club. It is tempting to speculate that oscillation of

TMH5 plays a crucial role in triggering the Rh channel

function as in the AmtB protein [81].

Of note is TMH0, an integral part of Rh proteins [82, 83]

but a cleavable signal peptide (SP) either present [84–86]

or absent in Amt proteins [87]. Thus unlike the Rh proteins,

membrane-bound Amt proteins lack the TMH0 but have

the N-terminal end from part of ECL0 float in the peri-

plasmic space. In the heterologous E. coli cell NeRh-

TMH0 was likely recognized as SP and removed [76, 77];

but whether it is so processed in the native host N. euro-

paea is unclear [88, 89]. Perhaps different from Amt Rh-

TMH0 is a hybrid motif of SP and TMH given its possible

origin from an SP-like segment. As a key issue related to

intracellular routing and membrane assembly, the dual role

of Rh-TMH0 in both prokaryotes and eukaryotes needs to

be verified. The absence of TMH0 in NeRh crystals [76,

77] but presence in human Rh proteins [82, 83] also raises

the question of what effects TMH0 has on protein oligo-

merization and intramembrane folding [79, 80].

3D structure of NeRh protein and its implications

for function

The high-resolution 3D structures of E. coli AmtB (EcA-

mtB) and A. fulgidus Amt1 (AfAmt1) have provided fresh

insights into the mechanism of ammonia conduction [85–

87]. EcAmtB and AfAmt1 both fold as homotrimers with

each monomer forming a vestibule for NH4
?/NH3 binding

and a long narrow hydrophobic channel for ammonia

transport. Mechanistically, both Amt proteins appear to

operate as a gas channel that mediates the passage of

neutral species of ammonia, but the conduit of proton

transfer/movement as a prerequisite for gas conduction is

only partially understood [90–92]. Given the known relat-

edness, the 3D structures of Amt proteins had been used as

a template for homology modeling of human Rh proteins to

gain insight into their function [79, 80, 93, 94]. The studies

suggest that Rh glycoproteins and Rh30 proteins both adopt

a 3D fold similar to the two Amt proteins, but Rh30 lacks

the conserved His and/or Phe residues important for sub-

strate conduction.

Fig. 4 Membrane topology of

N. europaea Rh protein as a

model for the Rh family. TMH0

is absent in the crystals and is

based on hydropathy plot,

whereas TMH 1-11 are from the

3D structure. Closely packed

TMH are colored the same

except TMH0. The residues

positioned at the bilayer leaflets

are numbered. Twin-His H170/

H324 and twin-Phe F110/F218

are bold (red). Positive K/R

charges are colored pink and

negative D/E charges green.

The a-helical bundle-forming

sequence in the C-tail is boxed
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The diffraction of NeRh crystals has laid a solid foun-

dation to relate the 3D structure to the function of Rh

family proteins [76, 77]. As compared to the Amt struc-

tures [85–87], the overall fold and membrane topology of

NeRh are similar. Due to TMH0 removal each subunit is

composed of 11 TMH with pseudo two-fold symmetry

enclosing a central pore presumably mediating gas trans-

port (Fig. 5a). The NeRh structure is also an a3-homotrimer

generated by a crystallographic three-fold passing through

the center of the three monomers (Fig. 5b). A cartoon

shows the extracellular vestibule, central channel, and

other notable features in one subunit (Fig. 5c). Besides the

general folding pattern, a prominent conservation is the

twin-His site, namely His170/His324 in NeRh [76, 77],

His170/His320 in EcAmtB [85, 86], and His157/His305 in

AfAmt1 protein [87]. Although controversial, this twin-His

site is thought to mediate NH4
? ion deprotonation [85] and

is crucial for function [95]. In both Rh and Amt structures,

the twin-His site lies just below the twin-Phe barrier

(Fig. 5c); the two His adopt an unusual coplanar orienta-

tion and situate in a fairly hydrophobic environment. The

coplanar orientation may enable the two His residues to

stabilize a proton between them, and the hydrophobic

milieu may shield them from approaching water molecules

and thereby foster anhydrous proton migration. Together

with twin-Phe, twin-His may also add in selectivity by

blocking the passage of small cations such as Na? and K?,

while allowing the passage of neutral gases such as CO2 or

NH3 [76, 77]. Notably, the twin-His site is conserved in Rh

glycoproteins, but one or both residues are mutated in Rh30

homologs [50, 79, 80], supporting that the Rh30 group has

evolved to gain a different function [11, 12, 27, 30].

Structural comparison also reveals critical differences

between Rh and Amt crystals. (1) Most notably, NeRh has

a C-tail a-helix directed along the three-fold axis but away

from the trimer proper [76, 77] (Fig. 5a). The three helices

come close to form a left-handed three-helix bundle, a

fairly mobile part with much higher average residue B

factor (76 Å2) than the rest of the protein (20 Å2). (2)

NeRh has a CO2-binding pocket, a unique structure formed

by fairly conserved residues when native crystals were

pressurized under CO2 and then flash cooled in liquid

nitrogen [76]. This pocket is located within a deep cavity

near the channel exit to the cytoplasm (Fig. 5d); its role is

presently unclear but could be to promote CO2 movement

in and out of the pore as a secondary site. (3) NeRh has a

higher presence of prolines in TMH like its homologs

(Table 2). Such internal prolines can lead to distortions or

kinks in TM helices [96] and thereby impact helix packing

or protein function (e.g., dictating the hinge sites for a

conformational change). (4) NeRh lacks the extracellular

vestibule p-cation binding site formed by three aromatic

Fig. 5 3D structure of the

N. europaea Rh protein. Each

drawing is oriented such that the

periplasm is above and

cytoplasm is below. a Ribbon

diagram of a monomer.

b Ribbon diagram of a

homotrimer. c Diagram of the

putative central channel in a

monomer. The constriction of

extracellular vestibule (3.5 Å)

and membrane-crossing (28 Å)

are denoted. Twin-Phe barrier,

twin-His site, and CO2-binding

site are illustrated. d Atomic

details of CO2-binding residues

in the pocket. e Interactions

between Tyr41 and TMH1.

Potential hydrogen bonds

between Tyr41 and Ser217 are

shown as black dotted lines
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residues thought to be key to NH4
?/NH3 recruitment in

EcAmtB [84]. (5) The twin-Phe are conserved in NeRh

(Phe110/Phe218) (Fig. 5c), EcAmtB (Phe107/Phe215), or

AfAmt1 (Phe96/Phe204) but show altered orientation. In

Amt, the two Phe adopt positions that block substrate

passage through the channel [85–87] as important func-

tional sites [97]. In NeRh Phe218 appears to be the major

barrier, since Phe110 adopts a different orientation [76,

77]. (6) Although the role of twin-His may be similar, one

difference in potential functional impact is that in NeRh the

Ne2 atoms of His170 and His324 form hydrogen bonds to

neighboring water molecules. In contrast, His320 of EcA-

mtB or His305 of AfAmt1 has only one hydrogen-bonding

partner. The structural differences between Rh and Amt

have implications for function and suggest important tar-

gets for future studies.

A putative gating mechanism for opening

of Rh channel proteins

The a-helical bundle found in NeRh C-tail suggests that it

may mediate a functionally relevant protein–protein inter-

action [76, 77]. The 3D structures of AmtB-GlnK protein

complexes yield clues to this view in that GlnK inhibits

ammonia uptake via binding to the ICL face [98, 99]. If the

C-tail of NeRh binds to a protein, it could similarly block

substrate passage by linking such an interaction to the

putative CO2 binding site in two ways [76]: (1) substrate

transfer is facilitated by the binding partner; (2) substrate-

induced protein recruitment is executed as a sensing

mechanism, as has been proposed for A. brasilense AmtB

[100]. Currently, the solved 3D structures of Amt and Rh

proteins are all in a channel-closed configuration [76, 77,

85–87], where twin-Phe separates the channel into two

parts and thereby shuts off transport (Fig. 5c). To open the

channel passage through NeRh, a C-tail-mediated partner

binding must disengage this twin-Phe block, for example,

by altering its orientation.

There are three key structural elements that support this

potential form of regulation. (1) The C-tail a-helix has a

glutamate that is salt bridged to Arg63 and Arg64 on ICL1

between TMH1 and TMH2 (Fig. 4). (2) Tyr41 on TMH1 is

hydrogen bonded to the main-chain NH and side-chain-OH

of Ser217 on TMH6 of an adjacent subunit (Fig. 5e). (3)

Ser217 lies in between the internal Pro216 that induces a

helical kink in the TMH6 helix (Fig. 4) and the Phe218 that

serves as a major steric barrier for transport (Fig. 5c). Thus

changes in the interactions between Tyr41 and Ser217

could affect the magnitude of TMH6 tilting, which in turn

impacts the movement of Phe218 to enable channel

opening or closing [76, 77].

The mechanism envisaged in which pore opening of the

Rh protein is dictated by C-tail-mediated interactions begs

for binding partners. Potential candidates include carbonic

anhydrase (CAH) or RuBisCO if Rh proteins conduct CO2

or ammonia monoxygenase (AMO) and glutamine syn-

thetase if Rh proteins were Amt equivalents. Of special

note is the a-CAH enzyme, for its distribution is totally

correlated with that of Rh proteins in all organisms whose

genome sequences have been determined [50]. Given this

phylogenetic coexistence, it is of great interest to test out

whether a-CAH could be docked onto NeRh trimer and, if

so, whether the interaction occurs in biochemical and

functional forms in vivo [101]. It is also of interest to

determine how C-tail-mediated regulations cope with the

great C-tail sequence diversity in functional adaptations of

Rh subgroups.

Substrate specificity

Rh proteins were inferred to participate in ammonia

transport by sequence relatedness to Amt proteins [75], a

view evidenced by human RhAG expression in a yeast mep

mutant showing growth on ammonia as the only nitrogen

source [102]. Follow-up studies in oocyte, yeast, or other

cell types indicated that Rh proteins mediated the passage

of both charged and uncharged species [103–114]. NeRh

protein also seemed to have a role in NH3 transport [88,

89], as [14C]-methylamine uptake was competitively

inhibited by NH3 and NeRh expression improved growth of

the yeast mep mutant on limited ammonium. However, one

challenge to the view of Rh proteins being ammonia

channels is that AMO, the chief site of ammonia oxidation

in N. europaea, is an integral membrane protein. Although

acetylene did not affect ammonia passage [88], it inhibits

the active site but not the substrate channel of AMO that

might facilitate NH3 transport. These observations would

make ammonia transport into the cell less important.

There is also evidence supporting an alternate view for

the function of Rh proteins as a CO2 channel. Studies of

Rh1 in C. reinhardtii showed its strong up-regulation upon

high [CO2] induction [44]. Further studies of the pheno-

typic properties of C. reinhardtii strains depleted of Rh1

expression by RNAi provide evidence for its role in CO2

transport [45]. Under a high [CO2] condition, the rh1-

deficient mutants grow more slowly than wild-type cells.

Moreover, arguing against its role in ammonia transport,

these rh1 mutants accumulate [14C]-methylamine normally

when grown with either arginine (high accumulation) or

ammonia (low accumulation) as the nitrogen source [45].

Recently it was found that the rate of CO2 transport is

much lower in Rhnull cells lacking the Rh proteins than in

normal red cells [115, 116]. Together these data corrobo-

rate the view that Rh proteins have a distinct functional

role in mediating CO2 passage as compared to Amt pro-

teins [46].
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Expression of Rh genes and proteins: location

and induction

Tissue and cell-specific expression

Rh antigens are abundant non-glycosylated proteins of the

red cell membrane [9, 10] with *1 9 105 copies per cell

[40] and their glycosylated partner RhAG may be of sim-

ilar quantity [16, 19]. In humans and mice, Rh30 and

RhAG promoters contain cis-acting regulatory elements to

direct erythroid-specific expression [32, 117–120]. RhAG

is also expressed in human esophageal epithelia [121] and

in mouse brain [122] independently of Rh30. RhCG and

RhBG are highly expressed in kidney, testis, liver, brain, or

skin and variably in many other tissues [41, 42] with RhCG

being a most abundant renal transcript based on quantita-

tive RNA profiling [123]. The 50-regions of RhCG and

RhBG are highly C/G-rich, thus acting as general pro-

moters to govern their broad epithelial expression [41, 42].

In the case of C. reinhardtii [44] and C. elegans [47], the

level of Rh expression is also high. In C. elegans, the Rh1

gene is driven by a strong promoter and is highly expressed

in multiple sites mimicking the pattern of mammals. The

high-level expression of Rh proteins and their slow evo-

lution may be correlated with the demand for precise

protein folding [124].

Location and induction of expression

As in humans, Rh proteins from C. elegans and C. reinhardtii

are also routed to the plasma membrane [47, 125]. The only

exception is RhgA from D. discoideum, which resides in

contractile vacuoles [126], organelles that play a key role in

osmoregulation [127]. A stretch of negatively charged resi-

dues clustered in the C-tail of RhgA appears crucial for this

targeting [128]. In human red cells, Rh30 and RhAG are

vertically linked to the cytoskeleton through their C-tails.

Whereas Rh30 is present in both ankyrin R and protein 4.1R-

based complexes [129], in an ankyrin-based assembly RhAG

associates Rh30 and band three as a macrocomplex, which is

thought to be an integral gas exchange metabolon for CO2

transport [129–131]. In contrast, RhCG and RhBG are found

in nearly all types of epithelia and are targeted to distinct

membrane domains: RhCG is mainly apical and RhBG

mainly basolateral. For RhBG, its C-tail tyrosine-sorting

signal appears crucial for basolateral location and its C-tail

may attach to the ankyrin G-based network in MDCK cells

[132]. However, RhCG and RhBG may not always occur in

the same cell type or the same tubular structure. In mice,

RhBG is found in periveinous hepatocytes [133] but coex-

pressed with RhCG in gastrointestinal tracts [134]. In rats,

Rhbg is ubiquitously expressed in the alimentary tract, i.e.,

esophagus, stomach, duodenum, jejunum, ileum, and colon,

and Rhcg is coexpressed with Rhbg in these tissues except

the stomach and colon [135]. In human RhCG is widely

found in esophageal epithelia [121] and various renal tubules

[136, 137], but RhBG is barely detected in kidneys [138].

The differences may reflect organ-specific physiology or

species-specific adaptation.

The plasma-membrane homing means Rh proteins face

external challenges directly in unicellular eukaryotes and

indirectly in multicellular animals. Thus Rh genes are

prone to induction by developmental cues and environ-

mental perturbations. In C. reinhardtii, the expression of

Rh1 gene or protein is specifically induced by high CO2

[44]. In C. elegans, Rh genes show increased, differential

expression in a stage-specific manner as required for

embryonic and adult development [47]. In mammals, Rh

genes in epithelial tissues and erythroid cells show an

elevated expression in a stage-specific pattern [43, 118]. In

whole animals such as rodents, epithelial Rh expression

also responds to changes in internal milieu and food

sources. In rats the expression of Rhbg and Rhcg responds

to metabolic acidosis [139]. In mice, depleting potassium

from food alters Rh expression in the renal collecting duct,

resulting in Rhcg up-regulation and Rhbg down-regulation,

respectively [140].

The Rh gene family and human disease associations

The genes of the human Rh family are located on three

chromosomes (Fig. 6a); they share synteny with mouse

homologs in both exon–intron structure and the linkage

map that characterize the subgroups [11, 43]. The associ-

ation of erythroid Rh proteins with red cell disorders has

been well established [11, 12, 27]. Rh antigens, particularly

the D antigen, play a major part in HDFN due to the

incompatibility between Rh-negative and Rh-positive

blood [3, 4] (Fig. 6a, left). Hence accurate RH genotyping

forms a core of HDFN management and transfusion ther-

apy in clinical settings [141–143]. The complete absence of

red-cell Rh antigens caused by complex mutations in the

RH locus defines the amorph type of Rhnull syndrome with

mild phenotypes [144, 145] (Fig. 6b, upper). In contrast,

genetic mutations of RHAG (Fig. 6b, lower) cause reces-

sive Rh deficiency syndrome (regulator type Rhnull or

Rhmod) [31–37, 146], or dominant over-hydrated hereditary

stomatocytosis (OHSt) showing increased permeability to

nomovalent cations [147]. The two genetic disorders show

mild chronic hemolytic anemia and share some phenotypic

features with other forms of hereditary stomatocytosis

[148]. Such changes indicate that ablation or disruption of

the RhAG function also affects red cell integrity.

On the other hand, negative selection has placed epi-

thelial RhBG and RhCG under highly conserved evolution
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[50], accounting for the current lack of their genetic

mutations in humans. However, their physiologic impor-

tance has been shown by the knockdown phenotypes of

orthologs from primitive species such as C. reinhardtii and

C. elegans [45, 47, 48]. RhBG and RhCG have been

implied as potential tumor suppressors given their sharp

down-regulation in human esophageal squamous epithelial

cancers [121] and mouse brain tumors [149]. Lately the

physiological importance of mammalian Rh proteins has

been shown in Rhcg knockout mice, which have pH per-

turbations in urine and epididymal fluids [49], indicating a

deficit in pH balance that is primary to renal NH4
?

excretion. In contrast to the negative data observed in Rhbg

knockout mice [150], this work implies that the human

RhCG gene, when mutated, may result in distal renal

tubular acidosis and male infertility [49]. Notably human

RHCG has also been identified as a candidate gene for

early-onset major depressive disorder [151], and human

RHAG is linked to a subtype of migraine [152] (Fig. 6a). It

is hoped that these studies will stimulate future efforts to

decipher the role of Rh glycoprotein genes in human

diseases.

Conclusion and outlook

The last decade has seen much progress in research on the

Rh family while a debate goes on regarding its substrate

specificity. Current evidence suggests a role for Rh proteins

as dual channels for CO2 and ammonia, whether in neutral

Fig. 6 Chromosomal location

and disease association of

human Rh family genes. a RH,

RHBG, RHAG, and RHCG
reside in chromosomes 1, 6, and

15. The exon–intron structure

and orientation of each gene as

well as Rh-negative and Rh-

positive haplotypes are shown.

c Centromere, p short arm,

q long arm, HDFN hemolytic

disease of the fetus and

newborn, OHSt over-hydrated

hereditary stomatocytosis,

MDD-RE recurrent early-onset

major depressive disorders,

dRTA distal renal tubular

acidosis. Question mark denotes

unknown. b Diagram of

mutations of RH and RHAG
genes. Amorph type Rhnull

(upper); regulator Rhnull, Rhmod,

and OHSt (lower). The 12-TMH

of Rh and RhAG is based on

NeRh (Fig. 4). Duclos, DSLK,

and Ola located on the ECLs are

point changes of RhAG likely to

be neutral antigenic

polymorphisms
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forms or as charged species (CO2/HCO3
- vs. NH3/NH4

?).

This review highlights their long history of evolution and

their surprising structural conservation from prokaryotes to

humans and elicits a challenging question as to their bio-

logical function: why would nature give rise to two

proteins, Rh and Amt, to coexist and fulfill the same

function across a wide range of organisms? The evidence

accumulated is compelling that the functional role of Rh

proteins is related to but distinct from Amt proteins. A

mechanism is required to reconcile the substrate duality

given the differences and similarities of CO2 versus NH3 in

physicochemical properties. Of note is that pH is an inti-

mate factor linked to the two molecules, but its role in

transport may be overlooked in studies of Rh proteins.

Thorough studies of the pH effect on the transport process

of Rh and Amt may hold a key to our understanding of

their function.
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