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Abstract Maximal cardiac output is reduced in severe

acute hypoxia but also in chronic hypoxia by mechanisms

that remain poorly understood. In theory, the reduction of

maximal cardiac output could result from: (1) a regulatory

response from the central nervous system, (2) reduction of

maximal pumping capacity of the heart due to insufficient

coronary oxygen delivery prior to the achievement of the

normoxic maximal cardiac output, or (3) reduced central

command. In this review, we focus on the effects that acute

and chronic hypoxia have on the pumping capacity of the

heart, particularly on myocardial contractility and the

molecular responses elicited by acute and chronic hypoxia

in the cardiac myocytes. Special emphasis is put on the

cardioprotective effects of chronic hypoxia. (Part of a

multi-author review.)
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Introduction

Maintaining oxygen homeostasis is critical for survival and

proper function of cells and organisms. During exercise,

systemic O2 demand is augmented due to increased meta-

bolic rate in the active skeletal muscles, the respiratory

muscles, and the heart. This increase in systemic O2

demand is fulfilled by increasing systemic O2 delivery and

O2 extraction. Systemic O2 delivery depends on the arterial

oxygen content and cardiac output. During submaximal

exercise, systemic O2 demand and O2 delivery are well

matched, and for a given metabolic rate (oxygen uptake:

VO2), cardiac output increases with the reduction in arterial

oxygen concentration (CaO2) [1–5]. Conversely, cardiac

output (Q) is reduced when the CaO2 is increased either by

raising blood hemoglobin concentration [2, 6–9] or with

hyperoxia [5, 10]. Since hemoglobin (Hb) saturation is, in

general, maintained close to its maximum even at maximal

exercise, maximal cardiac output (Qmax) is the principal

factor determining maximal O2 delivery and, hence, exer-

cise capacity at sea level [7, 11–14]. During exercise at

altitude, SaO2 falls as exercise intensity increases, and thus

cardiac output is even more critical to assure appropriate

O2 delivery [15, 16]. With altitude acclimatization, [Hb]

increases and, after few weeks of residence at altitude, [Hb]

reaches values similar to those observed in altitude natives

[17–19]. This increase is sufficient to offset the decrease in

arterial O2 saturation (SaO2) caused by the reduced

inspired PO2 and thus restore arterial O2 concentration to

[17] or even above sea level values [20]. Consequently,
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during submaximal exercise at a given absolute intensity,

cardiac output is increased in acute hypoxia compared to

the value observed in normoxia, so as to offset the reduc-

tion in CaO2 and to maintain systemic O2 delivery at the

same level as in normoxia. In altitude acclimatized

humans, cardiac output during submaximal exercise is

similar to that observed at sea level [21].

The arterial blood pressure response to dynamic whole

body exercise in acute hypoxia is similar (or slightly reduced)

compared to that observed in normoxia [1, 15]. Thus, for a

given cardiac output, the work of the left heart is essentially

similar in normoxia and hypoxia. However, for a given

absolute workload or VO2, the work of the heart is increased

during exercise in acute hypoxia due to need of a higher

cardiac output to compensate for the reduction in CaO2.

In chronic hypoxia, resting blood pressure and sympa-

thetic nerve activity are increased [20, 22]. During

exercise, mean arterial pressure is slightly higher in chronic

as compared to acute hypoxia, implying that for a given

cardiac output the work of the left heart is increased in

chronic compared to acute hypoxia or normoxia [23, 24].

Nevertheless, for a given absolute exercise intensity or

VO2, in chronic hypoxia the work of the heart is lower than

in acute hypoxia.

During exercise in acute hypoxia with a large muscle

mass (i.e., at least the muscle mass of both lower extrem-

ities being recruited, i.e., upright bicycling exercise), the

pumping capacity of the heart is apparently similar to that

observed in normoxia [25]. In fact, at exhaustion, maximal

cardiac output (Qmax) is the same in normoxia and in acute

hypoxia [26]. However, in severe acute hypoxia (i.e., at

altitudes above 4,500 m), Qmax is reduced and hence sys-

temic O2 delivery is severely affected because not only

SaO2 is reduced but also maximal cardiac output [15, 23].

Since the seminal study by Pugh, it is known that Qmax is

reduced in chronic hypoxia [27]. This response is also

observed in Andean natives living at 4,100 m [18] and in

well-acclimatized lowlanders living at 5,260 m [21]. The

mechanisms leading to the reduction in Qmax in acute and

chronic hypoxia are poorly understood. In theory, the

reduction of maximal cardiac output could result from: (1)

a regulatory response from the central nervous system, i.e.,

hypoxia could blunt the cardiovascular drive from the

CNS, (2) reduction of maximal pumping capacity of the

heart due to insufficient coronary oxygen delivery prior to

the achievement of the normoxic maximal cardiac output,

or (3) reduced central command, i.e., as in hypoxia the

maximal exercise intensity is lower in absolute terms, it is

possible that a lower recruitment of motor units is paral-

leled by lower activation of the cardiovascular nuclei and,

hence, stimulation of the heart to pump maximally. In this

review, we will focus on the effect that acute and chronic

hypoxia may have on the pumping capacity of the heart,

particularly on myocardial contractility and the molecular

responses elicited by acute and chronic hypoxia in the

cardiac myocytes.

Reduction of maximal cardiac output

in severe acute hypoxia

The mechanism responsible for the reduction in peak car-

diac output in severe acute hypoxia is likely linked to low

PaO2, since maximal cardiac output is not reduced in acute

[7] or chronic anemia [28]. In principle, this reduction in

cardiac output may represent a failure of the cardiovascular

system or may be the result of regulatory mechanisms

aimed at protecting either the heart itself or, more impor-

tantly, the central nervous system, from hypoxic damage

[29] due to the risk of increased desaturation at very high

cardiac outputs [16, 30]. Based on the model of pulmonary

gas exchange of Piiper and Scheid [31], it can be predicted

that pulmonary gas exchange will be impaired as car-

diac output increases, particularly when pulmonary gas

exchange has to occur at PO2 which falls in the steepest

region of the downslope of the hemoglobin O2 dissociation

curve. An increase of cardiac output could impair pul-

monary gas exchange by reducing the time available for

alveolar-end capillary diffusion equilibration [31–34].

Under these circumstances, a further elevation in cardiac

output might result in no increase or, even worse, a dete-

rioration of systemic O2 supply. If this hypothesis is true,

maximal O2 delivery in severe acute hypoxia should be

attained at a lower maximal cardiac output than in nor-

moxia. We have hypothesized that a down-regulation of

maximal cardiac output is likely mediated by PaO2, and

presumably CaO2 and SaO2, sensing mechanisms that

adjust the output drive from cardiovascular nuclei in the

central nervous system [15, 20]. The cardioinhibitory effect

of hypoxia could also have been mediated by activation of

the peripheral chemoreceptors which, through the release

of NO, may attenuate the activation of presympathetic

vasomotor neurons at the rostral ventrolateral medulla

during hypoxia [35]. Hypoxia can be sensed directly by

sympathoexcitatory reticulospinal vasomotor neurons of

the rostral ventrolateral reticular nucleus of the medulla

[36], which initiate the integrated response to hypoxia by

activating neurons distributed elsewhere in the CNS.

Another mechanism unrelated to the heart itself that

could explain a reduction in maximal cardiac output is an

impairment of venous return and, hence, ventricular filling

pressure [37]. Several factors may influence venous return

during exercise, such as central blood volume, body posture,

cardiac aspirating effects, venous vascular tone (venous

capacitance), mean arterial pressure, the muscle pump, the

respiratory pump, and cardiac output itself [38]. The action
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of the respiratory pump is likely similar at maximal exercise

or slightly lower if maximal exercise ventilation at

exhaustion is reduced, as observed during whole body

exercise under severe acute hypoxia conditions [15, 17]. The

action of the muscle pump increases with exercise intensity

and exerts an important influence on venous return and

cardiac output [38–42]. The action of the muscle pump may

be blunted during exercise in severe acute hypoxia simply

due to the lower maximal power output attained in hypoxia

compared to normoxia. However, it is more likely that

hypoxia first attenuates increases in cardiac output which

limits muscle oxygen delivery and power output, and in turn,

the muscle pump and ventricular filling.

Direct effects of acute hypoxia on the heart

Myocardial hypoxia may be caused by a mismatch between

myocardial O2 demand and delivery (in general caused by

insufficient coronary blood flow) and/or a reduction in

arterial blood oxygen partial pressure. Although, ischemia

(i.e., reduced tissue blood flow) causes hypoxia (reduced

PO2), both conditions are clearly different [43], since

ischemia also causes a decrease in both supply of substrates

and removal of metabolites. The effects of ischemia are

usually more severe than hypoxia and typically include

lactic acidosis due to anaerobic glycolysis, diminished

mitochondrial energy production, and cell death [44].

Hypoxia elicits both direct and indirect effects on the heart,

which are mediated by neurohumoral mechanisms.

A complete absence of oxygen (anoxia) ablates ATP syn-

thesis leading to cell death by induction of apoptosis [45–47].

However, cells exposed to hypoxia may be able to maintain

normal ATP synthesis and survive [48, 49]. Mammalian cells

respond to hypoxia by activating transcription factors and, in

particular, hypoxia-inducible factors, or HIFs [50, 51]. HIFs

bind to hypoxia-responsive elements and consensus sequen-

ces in the promoter region of more than 100 genes, which

activates the transcription of genes that allow the cell to adapt

to and survive in the hypoxic environment [52]. Genes regu-

lated by HIFs include glucose transporters that allow the cells

to efficiently import glucose to continue generating ATP

despite reduced nutrient availability [53], and genes that

reorganize the microenvironment to facilitate oxygenation,

such as vascular endothelial growth factor, which stimulates

formation of new blood vessels [54].

Effects of acute hypoxia on myocardial contractility

The myocardium has a rather low anaerobic capacity and

ATP turnover is very dependent on oxygenation [55].

Myocardial oxygen consumption increases linearly with

heart work [56], and the increase in heart rate accounts for

50–70% of the increase in myocardial oxygen consumption

during exercise [57]. Since myocardial oxygen extraction

fraction at resting state is already high (70–80%) [58], the

approximately sixfold increase in left ventricle myocardial

oxygen demand in the transition from resting to heavy

exercise is met principally by augmenting coronary blood

flow (approximately fivefold), as hemoglobin concentra-

tion and oxygen extraction increase only modestly and only

for exercise intensities above 70% of VO2max [57, 59].

It has been demonstrated that when oxygen supply is

critically reduced, causing a myocardial O2-delivery-VO2

mismatch, such that the oxygen demand exceeds the O2

supply, the energy demands of myocardial contraction is

reduced to match the diminished myocardial O2 delivery

[60]. Although hypoxia is thought to elicit a negative

influence on myocardial contractility, several neural and

humoral changes act conjointly to increase myocardial

contractility in hypoxia, namely the increase in sympathetic

activity and the release of apelin. In contrast, adenosine

reduces myocardial contractility, whilst the production of

nitric oxide may reduce or increase contractility depending

on the micro-environmental circumstances.

Sympathetic activation

Activation of peripheral chemoreceptors causes positive

inotropic effects in a working heart–brainstem preparation

of the rat by a mechanism that is sympathetically mediated

and attenuated by b-adrenoceptor blockade with atenolol

[61]. This activation requires L-glutamate and ATP in the

neurotransmission of the sympatho-excitatory component

of the chemoreflex in the commissural nucleus tractus sol-

itarii of awake rats and in the working heart–brainstem

preparation [62]. The b-adrenergic inotropic effect is

mediated by (protein kinase A) PKA-dependent phosphor-

ylation of several proteins, such as L-type Ca2? channels

(which increases sarcolemmal Ca2? entry), phospholamban

(increases sarcoplasmic reticulum (SR) Ca2? uptake and

Ca2? loading), and likely cardiac troponin I (cTnI) [63].

PKA-dependent cTnI phosphorylation increases cross-

bridge cycling rate and maximum unloaded shortening

velocity (Vmax), which contributes to the lusitropic effects

(acceleration of relaxation) of b-adrenergic stimulation [64,

65]. An increased shortening velocity also contributes to

positive inotropy, particularly in the auxotonically con-

tracting heart [63], since the power output of cardiac muscle

is determined by the product of force and velocity [66].

Apelin

Apelin is a highly conserved 77 amino acid prepropeptide

expressed in the endothelium of heart, kidney, and lung,

whilst its G-protein-coupled receptor [the apelin-angio-

tension receptor-like 1 (APJ)] is expressed by myocardial
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cells and some vascular smooth muscle cells [67–70].

Hypoxia, at least in part via HIF pathways, is a stimulus for

the expression of apelin-APJ in heart and lung endothelial

cells, leading to an increase in extracellular apelin protein

content [71, 72]. Apelin has a potent positive inotropic

effect and modulates systemic vascular resistance through

nitric oxide-dependent signaling [73, 74]. Enhanced con-

tractility can be a result of increased availability of Ca2?,

and/or increased Ca2? responsiveness of the myofilaments,

or both. The inotropic effect of apelin is in part mediated

via an enhanced myofilament sensitivity to Ca2? as apelin

enhanced the activity of the sarcolemmal Na?/H?

exchanger NHE with consequent intracellular alkaliniza-

tion, without affecting [Ca2?] transient amplitude [74]. But

it has also been shown that apelin increases in force

development are accompanied by increases in amplitudes

of [Ca2?]i transients [75]. Apelin is also a potent angio-

genic factor required for normal vascular embryonic

development [76], and could also have a role in hypoxia-

induced capillarisation in heart submitted to chronic

hypoxia [77]. Moreover, apelin (at 10 nM) increases con-

duction velocity in monolayers of cultured neonatal rat

cardiac myocytes [74]. In vivo, apelin administration to

rodents has a clear acute inotropic effect [78]. Adminis-

tered chronically, it reduces left ventricular preload and

afterload and increases contractile reserve without evi-

dence of hypertrophy [78]. In addition, activation of the

apelin pathway elicits arterial and venous vasodilation via a

nitric oxide-dependent mechanism [70, 79, 80]. The precise

effect that apelin may have in the hypoxic exercising

human heart remains to be determined.

Nitric oxide

Hypoxia elicits the release of nitric oxide (NO) from the

endothelium but also intra-cytoplasmatically, by direct and

indirect mechanisms. NO is an ubiquitous intra- and inter-

cellular signaling molecule principally generated by a

family of NO synthases (NOSs), which catalyze the con-

version of the amino-acid L-arginine to L-citrulline in a

reaction that requires O2 and cofactors. In addition, both

deoxyhemoglobin [81] and deoxymyoglobin [82] have a

nitrite reductase function which, under allosteric control,

leads to the formation of NO from nitrite. Nitrite reduction

by hemoglobin reaches maximal activity at the hemoglobin

P50 (PO2, at which hemoglobin saturation is 50%, i.e., close

to a PO2 value of 25 mmHg) [83]. This effect is likely

more accentuated during intense exercise accompanied by

lactic acidosis. Nitrite reduction is potentiated by protons,

due to the fact that protons enhance the formation of

nitrous acid increasing the reaction rate to a much greater

extent than the nitrite reductase slowing effect attributable

to the Bohr effect [83]. When in the cardiomyocyte oxygen

concentration decreases to a value around the P50 of

myoglobin (3.1 lM), myoglobin deoxygenates and reduces

existing nitrite (present at a rather high concentration in the

cardiomyocytes) to NO [84]. The nitrite reductase activity

of myoglobin is enhanced at higher levels of hypoxia [83]

and also when tissue pH drops [84].

NO mediates a number of hypoxic cell signaling

responses including expression of hypoxia inducible factor

1 (HIF-1a) [85, 86], mitochondrial respiration and bio-

genesis [87–91], and angiogenesis [92, 93]. Rassaf et al.

[82] recently reported that nitrite reduces myocardial

oxygen consumption in response to hypoxia in wild-type

but not in myoglobin knockout mice. NO also has effects

on myocardial function which include the modulation of

contractile function, energetics, substrate metabolism, cell

growth, and survival [94, 95]. Endothelial nitric oxide

synthase (eNOS or NOS3) is found in coronary and

endocardial endothelial cells and cardiomyocytes [96, 97],

whereas neuronal (nNOS or NOS1) is present in cardiac

autonomic nerves and ganglia and cardiomyocytes [97–

99]. eNOS and nNOS are expressed in distinct subcellular

compartments in the cardiomyocyte [96, 99, 100] where

they couple to distinct effector molecules [95]. The effect

of NO is likely limited to the vicinity of its production site,

since the diffusion distance of NO within cardiac myocytes

is expected to be very short due to both a high cytoplasmic

concentration of myoglobin (an NO scavenger) and an

abundance of superoxide anions (particularly increased in

acute hypoxia, but also in disease states), which can react

with NO reducing its bioavailability [95]. Selective eNOS

gene deletion (eNOS-/-) enhances the inotropic response

to b-adrenergic stimulation in vivo and in isolated hearts

[101–103], but not in isolated LV myocytes [102, 104–

106]. In agreement, the basal and isoproterenol-stimulated

(inwards calcium current) ICa in LV myocytes from

eNOS–/– mice do not differ from control mice [104, 105].

However, both contraction and isoproterenol-stimulated ICa

are greater in LV myocytes from nNOS-/- mice both

under basal conditions and in response to isoproterenol (a

b-adrenergic agonist) [107, 108]. Thus, it seems that most

of the physiological effects of eNOS-derived NO on

myocardial contraction may be paracrine and require an

intact endothelium. However, myocardial-specific overex-

pression of eNOS reduces b-adrenergic responses [109–

112], suggesting that increased NO production in the heart

may inhibit b-adrenergic inotropy, regardless of the

localization (myocardial or endothelial) of its source [106].

Basal contraction is increased and relaxation (due to slower

Ca2? reuptake in the SR) is impaired in LV myocytes from

nNOS-/- mice [106], implying that the negative inotropic

and lusotropic effect is mostly mediated by NO produced

by myocardial nNOS. In addition, deoxymyoglobin nitrite

reductase elicits NO formation from nitrite, and this effect
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is expected to be increased during maximal exercise under

severe hypoxemia [83]. Moreover, it has been suggested

that most of the NO produced in the hypoxic myocardium

originates from the myoglobin nitrite reductase activity

[83, 113].

The NO generated in the vicinity of the mitochondrion by

deoxymyoglobin nitrite reductase activity inhibits mitochon-

drial respiration by binding to the heme a3/CuB center in

cytochrome c oxidase [87]. This reduces myocardial VO2,

aerobic ATP generation, and contractility [82]. Consequently,

ROS production is also reduced. During maximal exercise in

severe acute hypoxia, this mechanism could limit myocardial

contractility and, hence, maximal cardiac output.

In contrast, NO may be implicated in the positive inotropic

response to increased preload, i.e., the Frank–Starling

response by NO-induced phosphorylation of thin filament

protein troponin I (TnI) in its N-terminal [114], which

amplifies the positive inotropic effects of stretch through

increased crossbridge cycling [64], even if myofilament Ca2?

sensitivity is reduced by TnI phosphorylation [115].

Adenosine

Cardiac myocytes and endothelial cells produce and release

adenosine in response to hypoxia or ischemia [116–120].

Adenosine may bind to four subtypes of cell surface

adenosine receptors named A1, A2A, A2B, and A3 (A1R,

A2AR, A2BR, and A3R, respectively). Adenosine receptors

A1 and A2A are present in the cardiac myocytes. A1 and A3

receptors are negatively coupled to adenylyl cyclase, and

A2 subtypes are positively coupled to adenylyl cyclase

[121]. Acting on A1 receptors, adenosine elicits a negative

dromotropic effect via blocking of the AV (atrioventricu-

lar) node, a negative chronotropic effect via depression of

SA (sinoatrial) node and a negative inotropic effect [117,

122]. Systemic and local hypoxia causes endothelial cells

to release adenosine, which acts back on endothelial A1

receptors to induce vasodilatation [120]. Adenosine may

also elicit vasodilation through the release of NO after

binding to A2AR of smooth muscle and endothelial cells

[123]. Activation of A1R in cardiomyocytes reduces the

contractile responsiveness of the myocardium to adrenergic

stimulation [124]. In contrast, A2ARs have a direct positive

inotropic effect [122, 125] by facilitating a greater response

to adrenergic stimulation [122, 126] and an indirect effect

by inhibiting the action of the A1R [122, 127]. The anti-

adrenergic action of A1R is thought to be mediated through

multiple signaling mechanisms involving a decrease in

adenylyl cyclase activity [128], reduction in calcium tran-

sients [124, 127], and increased protein kinase C epsilon

(PKCe) translocation [129].

Thus, several neurohumoral factors convey in the hypoxic

myocardium, some with positive and others with negative

inotropic effects. However, the pumping capacity of the heart

does not seem to be impaired in healthy humans, studied

either under severe acute hypoxia [15, 130] or after accli-

matization to high altitude [131, 132]. During exercise in

acute hypoxia, the adrenergic response to maximal exercise is

similar to that observed in normoxia [15, 17, 130, 133],

indicating a similar positive inotropic stimulation and pre-

sumably a similar sympathetic vasoconstrictor drive at

maximal exercise in acute hypoxia and normoxia. Perhaps

higher levels of hypoxia than those tested so far could cause a

negative inotropic effect in healthy humans. However, when

the level of acute hypoxia exceeds approximately 6,000 m,

the degree of hypoxemia reached during exercise may result

in syncope due to severe hypoxia in the CNS [134], making it

rather difficult to study the specific effect of very severe

hypoxia on the exercising heart itself.

Repeated exposures to severe acute hypoxia induce

myocardial adaptations which are cardioprotective

In the late 1950s, epidemiological observations indicated

that the incidence of myocardial infarction is lower in

people living at high altitude close or above 4,000 m [135].

Moreover, in 1977, Mortimer et al. [136] reported a pro-

gressive decline in mortality from coronary heart disease in

men residing at altitudes between 914 and 2,135 m. Ani-

mal studies provided strong experimental support for

hypoxia-induced cardioprotection [137, 138]. Later, Murry

et al. [139] demonstrated that, in dogs, four cycles of 5-min

ischemia separated by reperfusion markedly limited infarct

size induced by subsequent prolonged ischemia. This

phenomenon termed ischemic preconditioning is the most

powerful form of in vivo protection limiting the infarct size

other than early reperfusion [140, 141]. This adaptation

occurs in a biphasic pattern with an early phase, which

develops very quickly (within a few minutes from the

exposure to the stimuli), and lasts only 1–2 h, and a late

phase, which develops more slowly (needing 12–24 h) but

lasts 3–4 days [141]. Early preconditioning is more potent

than delayed preconditioning in reducing infarct size and

depends on adenosine, opioids and, to a lesser degree, on

bradykinin and prostaglandins released during ischemia

[141, 142]. These molecules activate G-protein-coupled

receptors, initiate activation of K(ATP) channel, generate

oxygen-free radicals, and stimulate a series of protein

kinases, among which PKC plays a central role [143].

Several stimuli may lead to PKC activation, namely mild

oxidative conditions presumably linked to an increase of

the Ca2?/phospholipid-independent kinase activity [144].

Both hypoxia and hypoxia/reoxygenation causes a rapid

activation of Src family tyrosine kinases, p60c-src and

p59c-fyn, which are upstream mediators of MAP kinase
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activation [145]. The Src family of tyrosine kinases is also

involved in the ROS-mediated transactivation of receptor

tyrosine kinase [145]. Src kinases are known to interact

with many signaling proteins including PKC and phos-

phatidylinositol-3-kinase [146]. Mitochondrial ROS

production, PTEN (phosphatase and tensin *homologue)

oxidation, and AKT phosphorylation are impaired in mice

heterozygous for a null allele at the locus encoding HIF-1a
[147], which has partial deficiency of HIF-1a. In these

mice, early preconditioning is abrogated, implying that

HIF-1a is necessary for the early phase of ischemic pre-

conditioning [147]. Repeated episodes of ischemia/

reperfusion have been associated with a ROS-dependent

reduction of PPARa gene expression [148].

Late preconditioning essentially depends on newly

synthesized proteins, which comprise iNOS, COX-2,

manganese superoxide dismutase, and possibly heat shock

proteins [140, 141]. However, the cardioprotective effect of

chronic hypoxia is blunted by concomitant hypercapnia

induced via increased CO2 levels in the inspired air, pos-

sibly by interacting with ROS signaling pathways [149].

Effects of chronic hypoxia on the heart

Chronic hypoxia elicits functional and structural changes in

the heart which facilitate oxygen diffusion from the coro-

nary capillaries to the myocardial mitochondria [150].

Chronic hypoxia also increases glycolytic and antioxidant

capacities, and enhances mitochondrial respiratory function

to sustain and to increase the efficiency of mitochondrial

energy production, to preserve myocardial contractility

[43, 151]. The main source of ATP in the heart is oxidative

phosphorylation which by transfer of electrons through a

series of acceptor cytochromes generates a proton gradient

within the inner mitochondrial membrane. The potential

energy of this gradient is used to synthesize ATP. In the

fasting adult mammalian heart, *60–80% of the ATP is

obtained from fatty acid oxidation [152]. The rest of the

heart’s ATP is derived from glucose and lactate in nearly

equal proportions [43]. After uptake, glucose is rapidly

phosphorylated to glucose-6-P, and cardiomyocyte glucose

utilization is limited by the rate of this reaction [153].

Hypoxia, through HIF-1a, induces the expression of genes

encoding for glycolytic enzymes and glucose transport

proteins [154]. Overexpressing hexokinase in cardiomyo-

cytes increases ATP generation in hypoxic cardiomycytes,

reducing the damage caused by severe hypoxia [155]. High

altitude natives like the Himalayan Sherpas and the Andean

Quechuas display enhanced myocardial glucose uptake

[156]. A shift from fatty acid to glucose oxidation improves

heart efficiency, since the oxidation of glucose in mam-

malian heart is 12–14% more O2 efficient than the

metabolism of free fatty acids [43]. Chronic hypoxia may

also increase the capacity of the heart to uptake and oxidize

lactate [157, 158]. Importantly, resting plasma lactate

concentrations and lactate turnover are increased in

humans adapted to chronic hypoxia [159]. Increased lactate

levels have an inhibitory effect on lipolysis [160]. The

latter could contribute to reduce heart O2 uptake, due to the

fact that free fatty acids exert an uncoupling effect on

oxidative phosphorylation, [161]. In addition, the activity

of b-hydroxy-acyl-CoA dehydrogenase (fatty acid b-oxi-

dation enzyme) and CPT1 is reduced in chronic hypoxia

[162, 163], likely due to down-regulation of PPARa [164],

retinoid X receptor a (RXRa) [165], and their target genes

[166]. Thus, with chronic hypoxia, heart energy metabo-

lism becomes more like the fetal pattern, i.e., decreased

fatty acid and increased carbohydrate utilization [43].

Excessive ROS production in hypoxic cells may be

prevented by two mechanisms [167]. First, by expression

of PDK1 [PDH (pyruvate dehydrogenase) kinase] which

phosphorylates and inactivates PDH, the mitochondrial

enzyme that converts pyruvate into acetyl-CoA. In com-

bination with the hypoxia-induced expression of LDHA

(lactate dehydrogenase A), which converts pyruvate into

lactate, PDK1 reduces the delivery of acetyl-CoA to the

tricarboxylic acid cycle, thus reducing the levels of NADH

and FADH2 delivered to the electron-transport chain.

Second, the subunit composition of COX is altered in

hypoxic cells by increased expression of the COX4-2

subunit, which optimizes COX activity under hypoxic

conditions, and by increased degradation of the COX4-1

subunit, which optimizes COX activity under aerobic

conditions [168]. Hypoxia-inducible factor 1 controls the

metabolic adaptation of mammalian cells to hypoxia by

activating transcription of the genes encoding PDK1,

LDHA, COX4-2, and LON, a mitochondrial protease that

is required for the degradation of COX4-1 (see, for review,

[167]). This pattern of adaptation has been confirmed in

rats submitted to severe chronic hypoxia whose myocardial

mitochondrial mass has been found to be reduced [169].

Chronic hypoxia increases cardiac tolerance to acute

ischemia–reperfusion injury

Chronic hypoxia increases cardiac tolerance to acute

ischemia–reperfusion injury, as evidenced by reduced

myocardial infarction, improved recovery of contractile

function, and limitation of ventricular arrhythmias [170–

174], which persist for several weeks after resuming

normoxic conditions [172, 175]. Chronic hypoxia increases

myocardial tolerance to ischemia, and acute ischemic

preconditioning increased the tolerance even further [176],

although it has also been reported that the cardioprotective

effects of chronic hypoxia and ischemic preconditioning
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are not additive [177]. However, when the severity of hypoxia

exceeds certain levels then adaptative responses are insuffi-

cient and/or inappropriate to elicit a healthy adaptation and,

hence, pathological changes are elicited [178, 179]. For

example, chronic hypoxia may result in pulmonary hyper-

tension, increasing right ventricle afterload, and right heart

hypertrophy, and lead to heart failure [179].

Chronic hypoxia and myocardial contractility

Chronic hypoxia may decrease myocardial contractility due

to an alteration of intracellular Ca2? ([Ca2?]i) homeostasis,

such that the magnitude of the [Ca2?]i transient in response

to several inotropic factors is attenuated [180–182]. Chronic

hypoxia (FIO2 = 0.10) is associated with reduced expres-

sion of and Ca2? uptake by sarco(endo)plasmic reticulum

Ca2?-ATPase (SERCA), reduced release of Ca2? via

ryanodine receptors, and reduced extrusion of Ca2? by Na?/

Ca2? exchange in rats [183]. On the other hand, data col-

lected during the 1998 CMRC’s Chacaltaya Expedition

have shown that chronic hypoxia increases sympathetic

muscle nerve activity [20, 22] and cardiac norepinephrine

spillover (a measure of cardiac sympathetic activity)

(Kaijser, unpublished observations). Interestingly, myo-

cardial hyperemia is limited by cardiac autonomic

denervation [184] or by selective sympathetic denervation

[185, 186] indicating that cardiac sympathetic overactivity

could contribute to facilitate coronary vasodilation at rest

and during exercise. Although circulating cathecholamines

may also influence coronary blood flow during exercise

[187], the weight of evidence is consistent with the concept

that autonomic influences on the coronary circulation are

principally neurally mediated [57]. In normoxia, b-adren-

ergic blockade causes a greater reduction of coronary flow

than of myocardial oxygen consumption, resulting in

increased oxygen extraction by the heart and demonstrating

a direct feed-forward b-adrenergic vasodilator effect on the

coronary vessels [185].

Sympathetic overactivity in chronic hypoxia is likely

mediated by HIF-1, since it has been shown that the carotid

bodies from mice that are heterozygous for a null

(knockout) allele at the locus encoding HIF-1a appear

histologically normal, but do not respond to continuous

hypoxia or chronic hypoxia [188]. In contrast to wild-type

littermates, when heterozygous-null mice are subjected to

chronic intermittent hypoxia, they do not develop hyper-

tension or increased levels of HIF-1, catecholamines, or

ROS [188]. These findings led Semenza and co-workers to

suggest the existence of a feed-forward mechanism in

which chronic intermittent hypoxia-induced ROS activate

HIF-1, which then promotes persistent oxidative stress,

which may further amplify HIF-1 activation, with its

consequent effects on gene expression [167, 188].

But is myocardial contractility impaired in altitude

acclimatized humans? There is no single good measure-

ment of myocardial contractility during maximal upright

exercise in humans acclimatized to altitude. However, in

series of studies with humans carried during the 1998

CMRC’s Chacaltaya Expedition, it was shown that the

maximal work attained by the heart during incremental

exercise to exhaustion in healthy humans acclimatized to

5,260 m may be enhanced during isovolemic hemodilution

despite reduced arterial CaO2 and similar levels of hypoxia

[189]. Likewise, by parasympathetic blockade with gly-

copyrrolate (a muscarinic blocker), it was shown that the

heart is able to perform more work during maximal exer-

cise in chronic hypoxia than that actually reached in the

control condition (chronic hypoxia without glycopyrro-

late), even when glycopyrrolate did not alter blood

oxygenation [190]. Although some reduction in myocardial

contractility may be present in chronic hypoxia, the

experimental data obtained in Chacaltaya, Monte Rosa and

during Operation Everest II, show that the reduction of

maximal cardiac output observed in chronic hypoxia can-

not be explained through changes in myocardial

contractility or in the chronotropic response to exercise [1,

21, 23, 189–192]. The mechanisms and the rationals for the

reduction of maximal cardiac output in chronic hypoxia

remains to be deciphered.
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