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Abstract Clinical depression is viewed as a physical and

psychic disease process having a neuropathological basis,

although a clear understanding of its ethiopathology is still

missing. The observation that depressive symptoms are

influenced by pharmacological manipulation of monoam-

ines led to the hypothesis that depression results from

reduced availability or functional deficiency of monoam-

inergic transmitters in some cerebral regions. However,

there are limitations to current monoamine theories related

to mood disorders. Recently, a growing body of experi-

mental data has showed that other classes of endogenous

compounds, such as neuropeptides and amino acids, may

play a significant role in the pathophysiology of affective

disorders. With the development of neuroscience, neuronal

networks and intracellular pathways have been identified

and characterized, describing the existence of the interac-

tion between monoamines and receptors in turn able

to modulate the expression of intracellular proteins

and neurotrophic factors, suggesting that depression/

antidepressants may be intermingled with neurogenesis/

neurodegenerative processes.

Keywords Depression � Neurotransmitter �
Neuropeptide � Brain plasticity � Growth factor

Introduction

Depression is a complex psychiatric disorder affecting

approximately 15% of the population with high morbidity

and mortality. Major depressive disorder (MDD) is com-

mon in the general population; it affects up to one-sixth of

the population.

Despite high prevalence and socioeconomic impact,

little is known about the etiology of depressive illnesses.

The underlying causes of most mood disorders remain

unknown. Heritability estimates demonstrate up to a 50%

genetic component based on family aggregation and con-

trasting monozygotic and dizygotic twin studies [1]. This

strong heritable component to psychiatric illnesses, when

coupled with environmental influences, results in increased

susceptibility to develop the illness in response to stressful/

adverse environmental conditions. Population genetic

studies suggest that there is an increased risk of bipolar

illness in the relatives of bipolar patients and an increased

risk of unipolar depressive illness in the relatives of both

bipolar and unipolar patients. Intensive research efforts

have been made to better characterize the genetic under-

pinnings of mental illness. Technological advances,

including the completion of the human genome inventory,

chromosome mapping, high throughput DNA sequencing,

and others, offer the promise of identifying the genetic

basis of mental illnesses. Several linkage and association

studies showed that the inheritance for major depressive

illness could reside on chromosomes 11 and 18 [2]. In

particular, on chromosome 18, two putative candidate

genes have been identified: the gene for corticotrophin

receptor (CRF1) and for Gs protein-alpha subunit. How-

ever, recent genome scan meta-analysis yielded somewhat

contrasting conclusions with a relatively low significance

for quantitative trait loci on chromosomes 9, 10, 14, and 18
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[1]. To date, unfortunately, no gene or genetic risk factor

has been convincingly identified yet for depression.

Depression and antidepressants: still matter

of neurotransmitters?

Almost 4 decades of intensive research have sought to

elucidate the neurobiological bases of depression. How-

ever, the study of biological bases of depression is still

overdue. The principal aims are to increase the knowledge

of the basis of the disease in order to better define its

pathogenic process and to identify predictive biomarkers

or, at least, markers able to support the diagnosis. Within

this context, a great variety of bioumoral parameters have

been explored as well as the existence of a genetic com-

ponent of depression. Epidemiological studies have

revealed that both genetic and environmental factors con-

tribute to the risk for depression. Adverse early life

experiences influence neurobiological systems, leading to

the neurobiological and behavioral manifestations of

depression. Several data on biological fluids from patients

affected by depression, on brain tissue from suicide sub-

jects, and the evidence of a clinical activity of the

antidepressant drugs suggested that depression is associ-

ated with an impairment mainly in monoaminergic

neurotransmission systems (see below). These observations

are mainly indirect and based on the role of the aminergic

cerebral circuits on functions, such as attention and alert-

ness, which are altered in depressive illnesses, and on

behavioral effects induced by drugs acting on aminergic

transmission.

The catecholamine/serotonin theory: a brief view

The observation that depressive symptoms were influenced

by the pharmacological manipulation of monoaminergic

system led to the hypothesis that depression results from

reduced availability or functional deficiency of monoam-

inergic transmitters in some cerebral regions [3–6] (see

Table 1 and Fig. 1 for a better comprehension of the role of

noradrenaline (NE), serotonin (5-HT), and dopamine (DA)

in depression [7–33]). This view was supported by the

pharmacological action of both tricyclic antidepressants

(TCAs) and monoamine oxidase inhibitors (MAOIs), able

to acutely increase synaptic levels of monoamines, and by

drugs, such as reserpine, to induce depression [10]. The

idea that exposure to chronic stress or cerebral disorders

could decrease levels and activity of monoamines, thus

leading to depression, took place. On this conceptual basis

the commonly used antidepressants were developed. All

the antidepressant drugs now in use modulate monoamine

neurotransmission, both acutely and chronically, although

their therapeutic effects need as long as 6 to 8 weeks to

develop, and each drug is efficacious in only 60–70% of

patients [34].

The monoaminergic hypothesis has enjoyed consider-

able support, since it attempts to provide a pathophy-

siologic explanation for the actions of antidepressants.

However, in its original form it is clearly inadequate, as it

does not provide a complete explanation for the actions of

antidepressants, and the pathophysiology of depression

itself remains unknown. The hypothesis has evolved over

the years to include, for example, adaptive changes in

receptors to explain why there should be only a gradual

clinical response to antidepressant treatment when the

increase in availability of monoamines is rapid. Still, the

monoamine hypothesis does not address key issues such as

the reason why antidepressants are also effective in other

disorders, such as panic disorder, obsessive-compulsive

disorder, and bulimia, or why all drugs that enhance

serotonergic or noradrenergic transmission are not neces-

sarily effective in depression (for example, amphetamine or

cocaine). Despite these limitations, however, it is clear that

the development of the monoamine hypothesis has been of

great importance in understanding depression and in the

development of safe and quite effective pharmacologic

agents for its treatment.

In the past 2 decades, with the development of neuro-

science, a great deal of success has been achieved in our

understanding of the neurobiological basis of depressive

syndromes and of cerebral systems’ activity, mainly con-

cerning receptor-mediated intracellular mechanisms.

Neuronal networks have been identified and characterized.

It has been understood that the interaction monoamine-

receptor is able to modulate the expression of intracellular

proteins, such as CREB (cAMP response element binding

protein) and BDNF (brain-derived neurotrophic factor).

Through a number of their receptor subtypes, the seroto-

nergic and noradrenergic systems regulate the cyclic

adenosine 30,50-monophosphate (cAMP)-mediated signal

transduction cascade, which activates protein kinases that

phosphorylate specific proteins. One of these proteins is the

transcription factor CREB, which mediates the cAMP

activation of certain genes, such as BDNF [35]. This

increased understanding of mechanims at the base of psy-

chopathologies suggests that, beyond receptors, depressive

mood is probably characterized by modifications in neu-

rotrophic factors, CREB, and BDNF, which are regulated

in turn by a modulation in gene activation.

However, despite the advances in recent years, two

critical concepts should be carefully pointed out. It is worth

noting that, in spite of an increase in knowledge about the

neurobiological basis of depressive syndromes and about

cerebral systems’ activity, no valid alternative hypothesis

to monoaminergic theory is available to date. This might be
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due to the nature of clinical studies or the experimental

models now available to examine the neuronal state of

depressed patients. On the other hand, it should be noticed

that animal models can provide crucial information on the

whole range of neuronal functions not accessible in

humans and potentially allow us to identify novel targets

for antidepressant drug development, although they do not

predict the clinical outcome and the latency time necessary

for the therapeutic response.

Other classical neurotransmitters

Recently, some important advances in a better under-

standing of the psychopathology of depression have been

made. Moving beyond monoamines, a growing body of

experimental data indicates that other classes of com-

pounds, such as neuropeptides and amino acids (the

glutamatergic and GABA-ergic systems), are likely to play

a significant role in the pathophysiology of affective

Table 1 The role of noradrenaline, serotonin, and dopamine in depression

Neurotransmitter Parameter (brain area,

tissue, or biological fluid)

Suggestion Reference

Noradrenaline (NE) Decreased levels in 3-methoxy-4-

hydroxy-phenylglycol (MHPG) (liquor,

plasma, and urine) often with great

variability among patients and studies

Inhibition of locus coeruleus (LC) Maas et al. [7], Roy et al. [8],

Potter and Manji [9]

Alpha-methylparatyrosine (AMPT)

administration

Rapid depletion of brain catecholamines

and relapse of depressive symptoms

Ordway et al. [10],

Ruhè et al. [11]

Elevated tyrosine hydroxylase (TH) Noradrenergic dysregulation in

depression

Charney [12],

Zhu et al. [13]

Increased agonist binding to

alpha2-adrenergic receptors

Noradrenergic dysregulation in

depression

Ordway et al. [14, 15]

Reduced levels of NE transporters Noradrenergic dysregulation in

depression

Klimek et al. [16]

Serotonin (5-HT) Reduced 5-hydroxyindoleacetic acid

(5-HIAA) concentration (liquor)

Correlation with suicidal and violence-

impulsivity behavior than depressive

symptoms

Asberg et al. [17, 18]

Reduction of 5-HT concentrations

(postmortem tissues of whole brain,

hypothalamus, and amygdala)

Serotoninergic dysregulation in

depression

Csernansky and Sheline [19],

Tuinier et al. [20]

Decreased plasma in l-tryptophan Serotoninergic dysregulation in

depression

Quintana 1992 [21],

Jans et al. 2007 [22]

Reduction in the activity of the 5-HT

reuptake transporter (brain)

Serotoninergic synapse dysregulation

in depression

Arango et al. [23],

Celada et al. [24]

Increase in the density of 5-HT2 receptors

(brain)

Serotoninergic synapse dysregulation

in depression

Arango et al. [23],

Celada et al. [24]

Increased density of postsynaptic 5-HT2

receptor binding sites (frontal cortex)

Serotoninergic synapse dysregulation

in depression

Mann et al. [25],

Arora and Meltzer [26],

Yates et al. [27]

Reduction of pre- and postsynaptic

5-HT1A receptor binding

Reduced 5-HT1A autoreceptor function

and a blunted postsynaptic 5-HT1A

receptor signaling in depression

Celada et al. 2004 [24],

Drevets et al. [28]

Increase in 5-HT1A autoreceptors in the

midbrain areas

Increased 5-HT autoreceptor function and

thereby a reduction in 5-HT release

Yates et al. [27]

Dopamine (DA) Low DA and/or DA metabolite levels

(serum, CSF, and urine)

Dopaminergic dysregulation in

depression responsible for anhedonia,

loss of motivation, and psychomotor

slowdown

Hamner and Diamond [29],

Engstrom et al. [30]

Increased D2/D3-receptor binding in the

basal ganglia and striatum

Dopaminergic synapse dysregulation

(reactive to low DA levels?)

D’Haenen and Bossuyt [31],

Shah et al. [32],

Klimek et al. [33]
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disorders. The compounds currently under investigation are

summarized in Table 2.

Glutamate

Glutamate is the major mediator of excitatory synaptic

transmission in the mammalian brain [36]. In the human

brain, glutamatergic neurons project within and from the

cortex to the subcortical regions, such as the locus coeru-

leus, raphe nucleus, and substantia nigra, where mono-

aminergic pathways are modulated. Under normal conditions,

the glutamatergic system plays a role in a wide array of

physiological functions, including memory and other cog-

nitive tasks, neurotrophic and neurotoxic actions, and the

induction of neuronal plasticity. However, in pathological

conditions it is known to be a potent neuronal excitotoxin,

triggering either rapid or delayed neurotoxicity. To date,

an abnormal function of the glutamatergic system is

known to be implicated in the pathophysiology of several

neurodegenerative disorders, such as Huntington’s chorea,

epilepsy, Alzheimer’s disease, schizophrenia, and anxiety

disorders. Recent and increasing evidence suggests that

abnormal activity of the glutamatergic system is likely to

contribute to the impairments in the synaptic and neural

plasticity observed in patients with severe mood disorders

[37]. Glutamatergic abnormalities have been reported in

plasma [38–40], serum [41], cerebrospinal fluid [42, 43],

and brain tissue [44] of subjects affected by mood disor-

ders. However, these studies are compromised by problems

with potential medication effects, lack of appropriate

control for diagnosis, post-mortem effects on metabolism,

and the inability to identify the precise source of the glu-

tamate in the peripheral tissue. Brain imaging studies

showed the presence of elevated glutamate levels in the

occipital cortex of depressed patients and decreased glu-

tamate levels in the anterior cingulate cortex of MDD

patients [37]. In addition, an increased glutamate content in

several brain regions of individuals with bipolar disorder

has also been reported. Several studies showed glutamate

receptor alterations, mainly differences related to NMDA

(N-methyl-D-aspartate) receptor expression and binding

affinities between individuals with and without mood dis-

orders. Decreased NMDA receptor binding and NR1

subunit expression have been reported in the superior

temporal cortex of subjects with MDD and bipolar disorder

[45]. Interestingly, two polymorphisms of the GRIN1 gene

coding for the NR1 subunit and two other polymorphisms

in the GRIN2B gene coding for NR2B were also recently

reported to be associated with bipolar disorder [46, 47]. On

the contrary, fewer postmortem studies have investigated

the link between AMPA (a-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid) and kainate receptors and mood

disorders. Only a single study reported an increased AMPA

binding associated with a decreased glutamate receptor 1

(GLUR1) subunit expression in the striatum in bipolar

disorder [48]. Furthermore, decreased levels of GLUR2

and GLUR3 were found in subjects with MDD [49].

Interestingly, the STAR*D (sequenced treatment alterna-

tives to relieve depression) study, the largest prospective

treatment trial for MDD, recently demonstrated associa-

tions of genetic polymorphisms within kainate and AMPA-

glutamate receptors GRIK2 and GRIA3 with treatment-

emergent suicidal ideation [50, 51], an uncommon symptom

found in some patients following antidepressant treatment

initiation. These studies, even if not yet confirmed, suggest

the existence of a relationship between antidepressant

treatment-emergent suicidal ideation and the glutamate

system [52, 53]. In addition, many studies highlighted

the importance of glial deficits in mood disorders as they

could cause a complex disturbance in glutamatergic regu-

lation. Deficits in glia function, as are found in some types

of epilepsy, appear to be associated with dysfunctional

accumulations of synaptic glutamate [54]. Postmortem

studies [55, 56] have shown cortical glial cell loss and

reduced glial density in patients with mood disorders. Glial

loss has been well-documented in several brain regions,

such as the dorsolateral prefrontal cortex [57], the orbito-

frontal cortex [57], and the amygdala [58] from subjects

with MDD and bipolar disorder. Altogheter, these data

provide a link between the glutamatergic neurotransmitter

system and the pathophysiology of mood disorders, thus

suggesting that agents acting on the glutamatergic system

can be explored as potential treatment in this field. Within

this context, in fact, ketamine, an NMDA receptor anta-

gonist, has been recently demonstrated effective in

treating antidepressant-resistant patients [59]. Ketamine is

Fig. 1 Relationship among noradrenaline, serotonin, and dopamine

and some behaviors

2988 C. Lanni et al.



T
a

b
le

2
C

la
ss

ifi
ca

ti
o

n
o

f
an

ti
d

ep
re

ss
an

t
d

ru
g

s,
ap

p
ro

v
ed

fo
r

u
se

o
r

cu
rr

en
tl

y
in

re
se

ar
ch

an
d

d
ev

el
o

p
m

en
t,

o
n

th
e

b
as

is
o

f
th

ei
r

m
o

d
e

o
f

ac
ti

o
n

an
d

in
d

ic
at

io
n

T
ra

n
sp

o
rt

er
/r

ec
ep

to
r

M
o

le
cu

le
P

h
ar

m
ac

o
lo

g
ic

ac
ti

o
n

In
d

ic
at

io
n

C
li

n
ic

al
p

h
as

e

5
-H

T
F

lu
o

x
et

in
e,

p
ar

o
x

et
in

e,
fl

u
v

o
x

am
in

e,

ci
ta

lo
p

ra
m

,
es

ci
ta

lo
p

ra
m

S
el

ec
ti

v
e

se
ro

to
n

in
re

u
p

ta
k

e

in
h

ib
it

o
r

(S
S

R
I)

D
ep

re
ss

io
n

,
an

x
ie

ty
,

o
b

se
ss

iv
e-

co
m

p
u

ls
iv

e
d

is
o

rd
er

,
an

d
so

m
e

fo
rm

s
o

f
se

v
er

e
sh

y
n

es
s

A
p

p
ro

v
ed

fo
r

u
se

T
ra

zo
d

o
n

e
5

-H
T

2
re

u
p

ta
k

e
an

d
re

ce
p

to
r

in
h

ib
it

o
r;

al
so

k
n

o
w

n
as

se
ro

to
n

in
an

ta
g

o
n

is
t

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
A

R
I)

D
ep

re
ss

io
n

;
o

ff
-l

ab
el

u
se

fo
r

p
an

ic

d
is

o
rd

er
,

in
so

m
n

ia
,

an
x

ie
ty

,
an

d

al
co

h
o

li
sm

A
p

p
ro

v
ed

fo
r

u
se

V
il

az
o

d
o

n
e

5
-H

T
1
A

p
ar

ti
al

ag
o

n
is

t,
5

-H
T

re
u

p
ta

k
e

in
h

ib
it

o
r

D
ep

re
ss

io
n

P
h

as
e

II
I

L
u

A
A

2
1

0
0

4
5

-H
T

3
an

ta
g

o
n

is
t,

5
-H

T
1
A

p
ar

ti
al

ag
o

n
is

t

D
ep

re
ss

io
n

,
an

x
ie

ty
P

h
as

e
II

I

N
E

R
eb

o
x

et
in

e
N

E
re

u
p

ta
k

e
in

h
ib

it
o

r
(N

R
I)

D
ep

re
ss

io
n

A
p

p
ro

v
ed

fo
r

u
se

T
ri

cy
cl

ic
an

ti
d

ep
re

ss
an

ts
(T

C
A

):

am
o

x
ap

in
e,

d
es

ip
ra

m
in

e,
n

o
rt

ri
p

ty
li

n
e

N
E

re
u

p
ta

k
e

in
h

ib
it

o
r

D
ep

re
ss

io
n

,
p

an
ic

A
p

p
ro

v
ed

fo
r

u
se

5
-H

T
/N

E
T

ri
cy

cl
ic

an
ti

d
ep

re
ss

an
ts

(T
C

A
):

A
m

it
ri

p
ty

li
n

e,
cl

o
m

ip
ra

m
in

e,

d
o

x
ep

in
e,

im
ip

ra
m

in
e,

tr
im

ip
ra

m
in

e

N
E

an
d

5
-H

T
re

u
p

ta
k

e
in

h
ib

it
o

r
D

ep
re

ss
io

n
,

p
an

ic
,

so
ci

al
an

x
ie

ty
,

g
en

er
al

iz
ed

an
x

ie
ty

,
an

d

o
b

se
ss

iv
e-

co
m

p
u

ls
iv

e
d

is
o

rd
er

A
p

p
ro

v
ed

fo
r

u
se

N
o

ra
d

re
n

er
g

ic
an

d
sp

ec
ifi

c
se

ro
to

n
er

g
ic

an
ti

d
ep

re
ss

an
t

(N
aS

S
A

):
M

ir
ta

za
p

in
e,

m
ia

n
se

ri
n

e

A
d

re
n

er
g

ic
al

p
h

a 2
-a

u
to

re
ce

p
to

rs

an
d

al
p

h
a 2

-h
et

er
o

re
ce

p
to

rs

an
ta

g
o

n
is

t,
5

-H
T

2
an

d
5

-H
T

3

b
lo

ck
er

D
ep

re
ss

io
n

A
p

p
ro

v
ed

fo
r

u
se

V
en

la
fa

x
in

e
5

-H
T

an
d

N
E

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
N

R
I)

D
ep

re
ss

io
n

,
g

en
er

al
iz

ed
an

x
ie

ty

d
is

o
rd

er
,

so
ci

al
an

x
ie

ty
d

is
o

rd
er

,

an
d

,
si

n
ce

N
o

v
em

b
er

2
0

0
5

,
in

ad
u

lt
s

fo
r

p
an

ic
d

is
o

rd
er

.
O

ft
en

ef
fe

ct
iv

e
fo

r
d

ep
re

ss
io

n
n

o
t

re
sp

o
n

d
in

g
to

S
S

R
Is

A
p

p
ro

v
ed

fo
r

u
se

D
u

lo
x

et
in

e
5

-H
T

an
d

N
E

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
N

R
I)

D
ep

re
ss

io
n

,
g

en
er

al
iz

ed
an

x
ie

ty

d
is

o
rd

er
,

p
ai

n
re

la
te

d
to

d
ia

b
et

ic

n
eu

ro
p

at
h

y
,

an
d

fi
b

ro
m

y
al

g
ia

A
p

p
ro

v
ed

fo
r

u
se

N
E

/D
A

B
u

p
ro

p
io

n
N

E
an

d
D

A
re

u
p

ta
k

e
an

d
re

ce
p

to
rs

in
h

ib
it

o
r;

ab
o

u
t

tw
ic

e
as

p
o

te
n

t

in
h

ib
it

o
r

o
f

D
A

u
p

ta
k

e
th

an
N

E

u
p

ta
k

e

D
ep

re
ss

io
n

an
d

se
as

o
n

al
af

fe
ct

iv
e

d
is

o
rd

er
.

A
ls

o
p

re
sc

ri
b

ed
fo

r

sm
o

k
in

g
ce

ss
at

io
n

A
p

p
ro

v
ed

fo
r

u
se

5
-H

T
/N

E
/D

A
G

S
K

3
7

2
4

7
5

(N
S

2
3

5
9

)
5

-H
T

,
N

E
,

an
d

D
A

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
N

D
R

-I
)

D
ep

re
ss

io
n

P
h

as
e

II

D
O

V
2

1
6

,3
0

3
5

-H
T

,
N

E
,

an
d

D
A

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
N

D
R

I)

D
ep

re
ss

io
n

,
at

te
n

ti
o

n
d

efi
ci

t

h
y

p
er

ac
ti

v
it

y
d

is
o

rd
er

P
h

as
e

II

D
O

V
2

1
,

9
4

7
5

-H
T

,
N

E
,

an
d

D
A

re
u

p
ta

k
e

in
h

ib
it

o
r

(S
N

D
R

I)

D
ep

re
ss

io
n

,
at

te
n

ti
o

n
d

efi
ci

t

h
y

p
er

ac
ti

v
it

y
d

is
o

rd
er

,
re

st
le

ss

le
g

sy
n

d
ro

m
e

P
h

as
e

II

Biological bases of depression 2989



T
a

b
le

2
co

n
ti

n
u

ed

T
ra

n
sp

o
rt

er
/r

ec
ep

to
r

M
o

le
cu

le
P

h
ar

m
ac

o
lo

g
ic

ac
ti

o
n

In
d

ic
at

io
n

C
li

n
ic

al
p

h
as

e

G
lu

ta
m

at
e

T
IK

-1
0

1
/D

-c
y

cl
o

se
ri

n
e

N
M

D
A

p
ar

ti
al

ag
o

n
is

t
A

n
x

ie
ty

d
is

o
rd

er
s

P
h

as
e

II

A
Z

D
6

7
6

5
N

M
D

A
re

ce
p

to
r

an
ta

g
o

n
is

t
D

ep
re

ss
io

n
P

h
as

e
II

D
el

u
ce

m
in

e
(N

P
S

1
5

0
6

)
N

M
D

A
an

ta
g

o
n

is
t

D
ep

re
ss

io
n

,
st

ro
k

e
P

h
as

e
I

A
F

Q
0

5
6

m
G

lu
R

5
re

ce
p

to
r

an
ta

g
o

n
is

t
A

n
x

ie
ty

d
is

o
rd

er
s

P
h

as
e

I

G
A

B
A

A
Z

D
7

3
2

5
G

A
B

A
re

ce
p

to
r

p
ar

ti
al

ag
o

n
is

t
A

n
x

ie
ty

d
is

o
rd

er
s

P
h

as
e

II

A
Z

D
6

2
8

0
G

A
B

A
re

ce
p

to
r

p
ar

ti
al

ag
o

n
is

t
A

n
x

ie
ty

d
is

o
rd

er
s

P
h

as
e

I

E
n

zy
m

e
M

o
le

cu
le

P
h

ar
m

ac
o

lo
g

ic
ac

ti
o

n
In

d
ic

at
io

n
C

li
n

ic
al

p
h

as
e

M
o

n
o

am
in

e
o

x
id

as
e

Ip
ro

n
ia

zi
d

e,
tr

an
y

lc
y

p
ro

m
in

e,
p

h
en

el
zi

n
e

Ir
re

v
er

si
b

le
m

o
n

o
am

in
e

o
x

id
as

e

in
h

ib
it

o
r

(M
A

O
-I

)

D
ep

re
ss

io
n

,
p

an
ic

,
an

d
so

ci
al

p
h

o
b

ia

A
p

p
ro

v
ed

fo
r

u
se

M
o

cl
o

b
em

id
e

R
ev

er
si

b
le

m
o

n
o

am
in

e
o

x
id

as
e

In
h

ib
it

o
r

(R
IM

A
)

D
ep

re
ss

io
n

,
an

x
ie

ty
A

p
p

ro
v

ed
fo

r
u

se

C
X

1
5

7
(T

y
ri

m
aT

M
)

R
ev

er
si

b
le

m
o

n
o

am
in

e
o

x
id

as
e

A

(M
A

O
-A

)
in

h
ib

it
o

r

D
ep

re
ss

io
n

,
an

x
ie

ty
P

h
as

e
II

C
X

2
6

1
4

R
ev

er
si

b
le

m
o

n
o

am
in

e
o

x
id

as
e

in
h

ib
it

o
r

(R
IM

A
)

D
ep

re
ss

io
n

,
an

x
ie

ty
P

re
cl

in
ic

al

N
eu

ro
p

ep
ti

d
e

M
o

le
cu

le
P

h
ar

m
ac

o
lo

g
ic

ac
ti

o
n

In
d

ic
at

io
n

C
li

n
ic

al
p

h
as

e

T
ac

h
y

k
in

in
S

ar
ed

u
ta

n
t

(S
R

4
8

9
6

8
)

N
K

2
n

eu
ro

k
in

in
re

ce
p

to
r

an
ta

g
o

n
is

t

D
ep

re
ss

io
n

,
an

x
ie

ty
P

h
as

e
II

I

G
W

8
2

3
2

9
6

(o
rv

ep
it

an
t)

N
K

1
an

ta
g

o
n

is
t

D
ep

re
ss

io
n

,
an

x
ie

ty
P

h
as

e
I

S
A

R
1

0
2

2
7

9
N

K
2

re
ce

p
to

r
an

ta
g

o
n

is
t

D
ep

re
ss

io
n

,
an

x
ie

ty
P

re
-c

li
n

ic
al

C
R

F
P

ex
ac

er
fo

n
t

(B
M

S
-5

6
2

0
8

6
)

C
R

F
1

an
ta

g
o

n
is

t
D

ep
re

ss
io

n
,

an
x

ie
ty

P
h

as
e

II
I

S
S

R
1

2
5

5
4

3
C

R
F

1
an

ta
g

o
n

is
t

D
ep

re
ss

io
n

,
an

x
ie

ty
,

h
y

p
er

p
h

ag
ia

P
h

as
e

I

-U
n

n
am

ed
-

C
R

F
1

an
ta

g
o

n
is

t
D

ep
re

ss
io

n
,

an
x

ie
ty

P
re

-c
li

n
ic

al

G
S

K
5

6
1

6
7

9
C

R
F

1
an

ta
g

o
n

is
t

S
o

ci
al

an
x

ie
ty

d
is

o
rd

er
,

M
D

D
P

h
as

e
II

G
W

8
7

6
0

0
8

C
R

F
1

an
ta

g
o

n
is

t
S

o
ci

al
an

x
ie

ty
d

is
o

rd
er

P
h

as
e

II

A
rg

in
in

e
v

as
o

p
re

ss
in

S
S

R
1

4
9

4
1

5
V

1
b

an
ta

g
o

n
is

t
D

ep
re

ss
io

n
,

an
x

ie
ty

d
is

o
rd

er
s

P
h

as
e

II

In
th

is
ta

b
le

m
o

o
d

st
ab

il
iz

er
s

an
d

n
at

u
ra

l
su

b
st

an
ce

s
ar

e
n

o
t

m
en

ti
o

n
ed

.
T

h
e

ta
b

le
h

as
b

ee
n

b
u

il
t

o
n

th
e

b
as

is
o

f
av

ai
la

b
le

d
at

a
sh

ee
ts

o
f

th
e

d
ru

g
s

ap
p

ro
v

ed
fo

r
u

se
an

d
o

n
th

e
se

ar
ch

o
n

th
e

si
te

C
li

n
ic

al
T

ri
al

.g
o

v
(c

o
n

su
lt

ed
2

F
eb

ru
ar

y
2

0
0

9
)

an
d

/o
r

th
e

si
te

(s
)

o
f

th
e

p
ro

d
u

ce
rs

2990 C. Lanni et al.



of particular interest because it has been shown to yield a

rapid and sustained antidepressant effect and has been

reported as the only known drug leading to such a dramatic

and prolonged response with a single administration [60].

In particular, Maeng and Zarate hypothesized that the

rapid onset and the prolonged effects of ketamine are not

the consequence of neuroplastic changes from glutamate

modulation, rather to an increase in AMPA relative to

NMDA glutamatergic throughput, which results in increased

synaptic potentiation (for more detailed information,

see [60]).

However, NMDA receptor antagonists of this class may

have adverse psychiatric effects and may impair memory.

Moreover, other than ketamine, also memantine, another

NMDA receptor blocker exerting a voltage-dependent

reversible block of this ionotropic receptor, which has been

approved for the treatment of moderate-severe Alzheimer’s

disease, demonstrated early onset efficacy in patients with

MDD [61].

Gamma-aminobutyric acid

Gamma-aminobutyric acid (GABA) is the most widely

distributed inhibitory transmitter in the mammalian brain

[57]. In regions such as the cerebral cortex, hippocampus,

thalamus, basal ganglia, cerebellum, and brain stem, it

represents about one-third of the synapses [62]. GABA

transmission is present in interneurons modulating local

neuronal circuitry, such as noradrenergic, dopaminergic,

and serotonergic neurons [63]. In the past decades con-

siderable evidence has emerged that, in the brain, GABA

acts as a modulator of neuronal function and behavioral

processes, such as sleep, feeding, aggression, sexual

behavior, pain, cardiovascular regulation, thermoregula-

tion, locomotor activity, and mood [62, 64, 65]. This has

been supported by the reduced GABA content in the

plasma and cerebrospinal fluid of depressed patients [66–

69]. In vivo proton magnetic resonance spectroscopy, a

technique for a quantitative analysis of GABAergic sys-

tems with the use of brain scan, showed reduced occipital

cortex GABA concentrations in a sample of severely

depressed subjects [70]. Other studies demonstrated that

treatment of depression with electroconvulsive therapy

[71] or selective 5-HT reuptake inhibitor agents [72] was

able to increase occipital cortex GABA concentrations in

MDD patients, thus suggesting that GABA abnormalities

may be normalized by antidepressant medication. Gluta-

mate decarboxylase (GAD) and GABA aminotransferase

are the enzymes involved in GABA synthesis and degra-

dation [73]. GAD 65 and 67 isoforms were found to be

decreased in the cerebellum in samples from both bipolar

disorders and schizophrenia [74]. Additional studies indi-

cated a reduction in GABA concentrations and increased

GABAA receptor binding in the brain of depressed suicide

victims, thus suggesting an impairment in GABAergic

neurotransmission [75, 76]. The decreased GABA concen-

trations found in depression may reflect either decreased

rates of synthesis or increased rates of catabolism [77].

However, these studies were not always confirmed, proba-

bly because of the rapid postmortem changes in brain GAD

activity and GABA content. Furthermore, from a genetic

point of view, genes coding for GABAA receptor subunits

have been found to be associated with mood disorders.

Reports from the literature showed that polymorphisms of

the GABAA receptor 1 subunit (GABRA1) can be associ-

ated with mood disorders [78, 79], as well as the GABAA

receptor a6 subunit variant (Pro385Ser) [79]. However, not

all the studies found a significant association of the

GABRA1 gene with depression or bipolar disorder [80].

Despite quite consistent findings of GABA deficits in mood

disorders, GABAergic drugs, such as benzodiazepines,

acting as allosteric agonist of the GABAA receptor, have not

proven to be clinically efficacious as a monotherapy in the

treatment of MDD [53, 77].

On the other hand, anxiety is frequently a comorbid

condition in depressed patients, and some of the distur-

bances belonging to the anxiety spectrum are better treated

with the SSRI antidepressant drugs than with benzodiaze-

pines. Conversely, there are non-benzodiazepine anxiety

relievers, such as buspirone, working on serotoninergic

terminals. In addition, it should be stressed that presynaptic

GABA receptors, both GABAA and GABAB, may regulate

monoaminergic terminal activity. These observations do

suggest that there is still room to investigate both at the

clinical and preclinical level the role of GABAergic

transmission in depression and in depression with comor-

bid anxiety.

Acetylcholine

Cholinergic systems, among other neurotransmitters in

the brain, appear to be associated with various altered

behaviors, such as psychosis, depression, agitation, and

personality changes. One of the most consistent findings

in neuropsychiatry is that patients with depression have

dysfunctional neuroendocrine systems possibly resulting

from prolonged responses to stress [81, 82]. Acetylcholine

(ACh) plays a significant role in mediating neuroendocrine,

emotional, and physiological responses to stress. For

example, central ACh turnover is increased following

stress [83], and ACh facilitates the release of several stress-

sensitive neurohormones and peptides including cortico-

sterone, adrenocorticotropin (ACTH), and corticotropin-

releasing factor (CRF) [84], suggesting a dynamic interaction

between cholinergic and monoaminergic systems in the

regulation of mood and affect. As proposed by Janowsky
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et al. [85, 86], depression could be a manifestation of a

central cholinergic predominance, whereas mania could be

correlated to a relative monoaminergic predominance. The

hypothesis that the overactivity of the cholinergic system

over the adrenergic one could result in depressive symp-

toms [85] has been supported by several lines of evidence.

The presence of exaggerated responses (behavioral, neu-

rochemical, sleep) to cholinergic agents in patients with

affective disorder compared to controls has been reported

[87]. The indirect cholinesterase inhibitor ACh agonist,

physostigmine, when administered to healthy subjects,

produced symptoms of dysphoria, depression, anxiety, and

irritability, but increased depressed mood in manic patients

[88]; pyridostigmine, another cholinesterase inhibitor,

increased growth hormone release to a significantly greater

extent in depressed patients than in healthy subjects, sug-

gesting cholinergic receptor supersensitivity in depressed

subjects [89]. Furthermore, central acting cholinomimetics

decreased rapid eye movement (REM) sleep latency and

increased ACTH and cortisol levels, changes observed in

depression [90–92]. Based on the ‘‘cholinergic-adrenergic

hypothesis of mania and depression,’’ small pilot trials in

humans with cholinesterase inhibitors and muscarinic

agonists suggested that stimulation of muscarinic recep-

tors may produce an antimanic effect [93]. Within this

context, Burt and coworkers [94] demonstrated that the

cholinesterase inhibitor, donepezil, when added to existing

therapy in treatment-resistant bipolar patients, improved

symptoms in over half of the patients. Bymaster and Felder

[93] proposed that the antimanic activity could be medi-

ated by activation of muscarinic M4 receptor. The

rationale for the potential use of M4 agonists in the treat-

ment of mania is based on the fact that these molecules,

similarly to mood stabilizers, decrease cAMP formation

and can block DA receptor functions (motor and mood

effects) in cortical and limbic areas, which are affected in

bipolar disorders [93]. Moreover, consistently with the

hypothesis generated by Janowsky et al. [85], also the

antidepressant effects of antimuscarinic agents, such as

scopolamine, have been reported, thus supporting the link

between muscarinic receptor function and mood disorders.

Within this context, a rapid and robust antidepressant

response to scopolamine in depressed patients with poor

prognoses has been observed [95, 96]. Although the spe-

cific mechanism through which antimuscarinic effects

may positively impact the pathogenesis of depression is

still unknown, scopolamine seems to modulate, as other

somatic antidepressant drugs, NMDA receptor function. In

particular, muscarinic receptor stimulation regulates

NMDA receptor gene expression in some brain regions,

and scopolamine has been found to decrease messenger

RNA concentrations for NMDA receptors 1A and 2A in

the rat brain [97].

Furthermore, the role of nicotinic acetylcholine recep-

tors (nAChRs) has also been investigated. Shytle et al. [98]

and Silver et al. [99] have discussed the role of antide-

pressant medications in inhibiting nAChRs and suggested

that antagonism of these receptors could contribute to their

effectiveness in reducing symptoms of depression and

mood instability in patients with comorbid depression and

bipolar disorder. Modulation of nAChRs by antidepres-

sants, in fact, plays important roles in neuronal circuits

regulating mood, by regulating stress-related effects in

hypothalamic pituitary adrenal axis, behavioral reinforce-

ment in mesolimbic DA system and citoplasticity in

hippocampus [98]. Based on the evidence supporting the

hypothesis that nicotinic receptors inhibition may reduce

depression and stabilize mood [100], future research should

fully investigate the therapeutic potential of nicotinic

receptor antagonists as a novel approach to treat affective

disorders. However, much work has to be done. It is still

controversial whether the antidepressant-like effect of

nAChRs modulation is induced by activation, desensitiza-

tion, or inhibition of central nAChRs, and to date the

specific nAChR subtype/s involved remain unknown.

Furthermore, this hypothesis is also somewhat controver-

sial, as suggested by data showing that acetylcholinesterase

inhibitors relieve depressive symptoms, even in demented

patients [101, 102]. The putative use of nicotinic antagonists

could be based on the fact that nicotinic agonists increase

agitation and anxiety, symptoms which can be signs of

depression. On the other hand, such an effect in these patients

may be linked to the action of cholinesterase inhibition on the

cognitive function.

Finally, the potential antidepressant activity of drugs

inhibiting cholinergic activity, as outlined before, should

be carefully evaluated taking into consideration the possi-

ble negative effects on the cognitive function of such

agents. A clinical observation supports this warning. Lit-

erature data show that in the elderly tricyclic antidepressant

and SSRI with muscarinic receptor blocking properties

should be avoided, if possible, because of their anticho-

linergic effect both in the periphery and on cognition [103,

104].

Other non-classical (peptidergic) transmitters

About 30 years ago the observation that neuropeptides

serve as signalling molecules in the nervous system gen-

erated great expectations for the drug industry. Much

progress has been made since then in exploiting neuro-

peptide systems pharmacologically in the psychiatric field.

Nowadays, the health burden of stress-related diseases,

including depression and anxiety disorders, is rapidly

increasing, whereas the range of available pharmacother-

apies to treat these disorders is limited. In affective
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disorders several neuropeptides seem to be causally

involved in mediating the response to stress, thus identi-

fying neuropeptide systems as attractive therapeutic targets

for depression and anxiety disorders [105]. Interestingly,

repeated administration of antidepressant drugs is able to

induce adaptive changes in non-monoaminergic systems,

such as orexinergic neurons [106]. Furthermore, other

neuropeptides involved in depression-related responses

such as tachykinins [substance P (SP) and neurokinin A],

CRF, vasopressin, neuropeptide Y, neurotensin, and gala-

nin have received recent attention as candidates for

antidepressant drug development.

Corticotropin-releasing factor (CRF)

The 41 amino acid neuropeptide CRF initiates the hypo-

thalamic-pituitary-adrenal (HPA) axis response to stress

and has been the subject of intense investigation in the

pathophysiology and treatment of depression and anxiety

disorders. A large body of evidence correlates stressful life

events with an increased vulnerability for affective and

anxiety disorders; stressful events often precede the onset

of depression, and stress has also been associated with the

severity of the illness [107, 108]. Furthermore, stressful life

events in childhood have been shown to predispose an

individual for development of mood and anxiety disorders

in adulthood. In mammalian brain, CRF is heterogeneously

distributed throughout the CNS and interacts with two

G-protein-coupled CRF receptor subtypes (CRF1 and CRF2

receptors) [109]. One of the molecular mechanisms asso-

ciated with depression is an abnormal HPA activity [110],

driven by CRF-containing neurons, which start to coex-

press vasopressin when chronically activated, in turn able

to enhance CRF actions. Dysfunction of the HPA system

has been extensively studied since various researchers

independently reported that plasma cortisol concentrations,

following a higher release in ACTH, were elevated in a

majority of patients with MDD. Moreover, synthetic glu-

cocorticoid dexamethasone did not suppress plasma ACTH

and cortisol concentrations in depressed patients [111]. In

depressed patients cortisol levels are increased mainly

during the afternoon and the evening, whereas in healthy

subjects the peaks of plasma cortisol concentrations are

detected during the morning. These abnormal cortisol

levels are due to a defect in neurotransmitter regulation of

CRF release. CRF is hypersecreted from hypothalamic as

well as from extrahypothalamic neurons in depression,

resulting in hyperactivity of the HPA axis and increase in

CSF concentrations of CRF [112]. Elevated concentrations

of CRF in CSF of drug-free patients with MDD and from

suicide victims compared with patients with other psychi-

atric disorders and healthy controls have been reported

[113, 114]. The elevations of CRF neuronal activity are

also believed to mediate certain behavioral symptoms of

depression involving sleep and appetite disturbances,

reduced libido, and psychomotor changes. However, other

studies have been unable to replicate these observations

[115, 116]. Differently from CSF data, cerebral levels of

CRF appeared not to be altered. Transgenic CRF over-

expressing mice showed an increase in anxiogenic

behavior [117] and a different ability to adapt to an envi-

ronmental stressor, probably related to individual

differences in stress reactivity [118]. Interestingly, there is

evidence that CRF1 receptors play an important role in

mediating the HPA response to stress and the extrahypo-

thalamic mediation of stress-related behaviors [119].

Within this context, some studies, showing that the anx-

iolytic-like effects of CRF1 receptor antagonists are more

pronounced in rats pre-exposed to stressors such as

immobilization and forced swimming, allowed to hypoth-

esize that CRF1 receptor antagonists might be capable of

blocking pathological CRF-mediated stress responses

without producing side effects caused by a general sup-

pression of HPA activity [120].

The potential clinical usefulness of CRF1 receptor

antagonists led to synthesizing several CRF1 antagonists

for the treatment of anxiety and depression in patients with

MDD under investigation as reported in Table 2 [121].

Finally, it is worth highlighting the amount of literature

data on ACTH abnormal levels in depression at the

expense of a lack of information on its precursor, the

proopiomelanocortin (POMC) or big-ACTH. POMC ini-

tially is synthesized as an inactive molecule that requires

posttranslational modifications to generate bioactive

products, among which are ACTH, b-endorphin, and

melanocyte stimulating hormone. It should be interesting

to evaluate whether an alteration in POMC is also asso-

ciated with depression and which neuronal structures

could be involved.

Arginine vasopressin

Vasopressin (AVP, arginine vasoPressin) seems to be a key

regulator of HPA axis, acting synergically with CRF to

secrete ACTH and other corticoid hormones in physio-

logical and stress-related conditions [122]. The vasopres-

sinergic system consists of hypothalamic AVP-containing

cells located in the paraventricular and supraoptic nucleus

and extrahypothalamic AVP-containing neurons (limbic

system and amigdala) and may be critically involved in the

ethiopathogenesis of depression as supported by post-

mortem studies on the brains of individuals with a known

history of depression [123]. In depressed patients an

overproduction of AVP has been detected, measured as

increased AVP plasma levels [124, 125], number of AVP

expressing cells in paraventricular nucleus [123], or AVP
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content in the paraventricular nucleus [126]. Furthermore,

increased AVP mRNA was detected in supraoptic nuclei

of depressed patients [127]. These findings are consistent

with experimental studies in rodents showing that para-

ventricular neurons are able to coexpress both CRH and

AVP and tend to increase the relative predominance of

AVP production by stressors [128]. Furthermore, in vivo

and in vitro studies showed that a single nucleotide poly-

morphism (SNP) in the AVP locus, specifically the

SNP[A(-1276)G], resulted in overexpression of AVP and

in increased HPA axis function in a rat selected for high

anxiety behavior [129]. In addition in AVP-deficient

rodents, such as Brattleboro rats endowed with a single

nucleotide deletion (-G326) in the AVP gene, some authors

reported low levels of basal ACTH and corticosterone

[130], decreased responses to stress in terms of endocrine

response such as low ACTH response, decreased adrenal

sensitivity to ACTH [131, 132], and behavioral responses

such as decreased anxiety in a variety of models of

depression (open-field, force swimming, and sucrose

preference test) [133, 134]. As other hormones, AVP exerts

its effects through interaction with three specific receptors

(V1a, V1b, or V3 and V2) [135, 136], and the vasopressin 1b

(V1b) receptors seem to be the prominent ones involved in

depression and anxiety disorders, although also the role of

V1a subtype has been considered [137]. Studies in V1b-

receptor KO-mice reported a normal HPA axis function

[138] and a reduced aggressive behavior along with again a

normal neuroendocrine response and social response to

stress [139, 140], with no phenotypic differences in stress-

induced models compared to wild-type mice [141]. This

might be due to some complementary/compensatory

mechanism(s) probably involving other AVP or CRF

receptor subtypes, but further studies are necessary to

explore this hypothesis.

The involvement of the V1b receptor subtype is sup-

ported by experimental evidence using SR149415, a

selective V1b antagonist, at this time in phase II clinical

trials in patients with anxiety and MDD (Table 2) [142].

Preclinical studies in rodents showed that this compound is

endowed with antidepressant-like activity in different

models of depression (forced swimming test, olfactory

bulbectomized-induced hyperemotionality, DRL-72s

schedule test, unpredictable chronic mild stress) [142–146].

Its antidepressant-like effects are also supported by the data

obtained administrating SR149415 directly into the lateral

septum, the central, basolateral, or medial nuclei of amy-

gadala in the rat forced swimming test [147, 148]. Only one

study failed to detect behavioral changes [149]. Further-

more, SR149415 is able to inhibit the enhancement of

ACTH levels induced by acute restrain stress with no

influence on ACTH basal release, as expected by a V1b

receptor antagonist [150]. In addition to the vasopressin

V1b selectivity, SR149415 acts also as an oxytocin receptor

antagonist, and this may be helpful to its antidepressant-

like activity [151].

To date, conflicting data on the role of V1a receptor

subtype in depression have been reported. V1a-KO mice

show normal anxiety response to stress, and an overex-

pression of V1a receptor seems to be associated with an

enhanced anxiety behavior [152]. Opposite results, a

reduced anxiety-related behavior, have been found by

Landgraf et al. [153] in a model of V1a-deficient mice

obtained with the infusion of an antisense oligodeoxynu-

cleotide into the septum, suggesting an involvement of this

tract in anxiety onset. Recently, an antidepressant-like

action has been found in murine models of depression

using SRX251 [154], a promising V1a antagonist, at this

time, in phase I of development for other therapeutic target.

Moreover, a better understanding of the physiological role

of V1a receptor subtype will probably help to understand its

role in anxiety and depression disorders.

Complexively, the data on CRF and vasopressin point to

the existence in depression of a profound dysfunction of

the systems participating to the endocrine response to

stress, which includes their involvement both in brain and

periphery and, obviously, the coparticipation of the

monoaminergic stress system. Finally, the traits that appear

to be particularly affected by the derangement of these

systems include anxiety as a key feature deepening the

biological link between depressed mood and anxiety.

Substance P

The isolation of substance P (SP) in 1931 and the later

discovery of its preferred neurokinin (NK)1 receptor led to

intense research aimed at elucidating the biological role of

SP, mainly within the CNS. SP is an 11-amino acid peptide

belonging to the tachykinin family, and neurons containing

SP are widely distributed in the periphery and CNS [155].

To date, there is a large body of evidence supporting the

hypothesis that SP is one of the most important neuro-

transmitters and neuromodulators in the brain [156, 157].

SP has been suggested to be involved in the etiopathology

of psychiatric disorders including affective disorders,

anxiety disorders and cognitive disorders [158–160], on the

basis of data from animal and human studies. There is

some evidence for increased SP levels in the plasma [161]

and CSF [162] of depressed patients. Furthermore,

increasing evidence suggests that SP and its NK1 receptor

might play an important role in the modulation of stress-

related affective behaviors [163]. This observation is

reinforced by the fact that SP and NK1 receptor are

expressed in brain regions involved in stress, fear, and

affective response, such as the amygdala, hippocampus,

hypothalamus, and frontal cortex and that SP content in
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these areas is modified by stressful stimuli [163]. In addi-

tion, SP is colocalized with other neurotransmitters such as

5-HT [164], NE [163], DA (which are known to be

involved in the regulation of stress, mood, and anxiety),

and neuropeptides such as CRF. Therefore, it was

hypothesized that blockade of the NK1 receptor might have

anxiolytic and antidepressant effects, as demonstrated in

several animal models frequently used for assessing the

activity of antidepressant and/or anxiolytic drugs. In

addition, knockout animals for the SP-encoding gene as

well as NK1 receptor knockout mice show decreased

depression- and anxiety-related behaviors when compared

to wild-type animals [163]. The antidepressant efficacy of

the first NK1 receptor antagonist to be developed clinically,

MK0869 (Aprepitant), was originally demonstrated in

patients with MDD and high anxiety [165] and has recently

been replicated with a second compound, L759274 [166].

Aprepitant, however, failed to exert antidepressant effects

in recent phase III trials [167]. The future of NK1 receptor

antagonists as antidepressant drugs will depend on the

outcome of clinical trials with other NK1 receptor antag-

onists. The discovery of a new family of tachykinins, the

hemokinins and endokinins, which acts on NK1 receptors

and has potent effects on immune cells, has implications

for the clinical use of NK1 receptor antagonists [168].

Hence, specific therapeutic strategies may be required to

enable NK1 receptor antagonists to be introduced for

treatment of neuropsychiatric disorders. Furthermore, it has

been reported that several antidepressants (TCAs such as

clomipramine and SSRIs such as fluoxetine) did not act as

NK1 antagonists, but their action on SP-induced effects

seems to be due to their calcium-blocking properties as

reported in functional and biochemical studies in humans

and rodents [169–172].

Another member of the tachykinin family, neurokinin A,

which acts through NK2 receptors, is also under investi-

gation for its potential role in depression and anxiety

disorders [173, 174], and clinical trial to assess the anti-

depressant effects of NK2 receptor antagonists are currently

underway [163, 168].

Neuropeptide Y

Neuropeptide Y (NPY), is a 36 amino acid neuropeptide

discovered in 1980 by Tatemoto and Mutt [175]. NPY

modulates neuronal activity and HPA-axis function, influ-

ences circadian rhythms and seizure activity, and is

involved in memory processing and cognition, all of which

are dysregulated in many psychiatric states [176, 177]. It is

abundantly expressed, together with its receptors (Y1–Y5)

in numerous brain areas, including the locus coeruleus,

hypothalamus, amygdala, hippocampus, nucleus accum-

bens, and neocortex. Impaired central NPY signaling may

therefore be involved in the pathophysiology of depression,

anxiety, and schizophrenia [177]. Data from animal and

human studies have led to the hypothesis that NPY is

involved in the etiology and pathogenesis of affective

disorders. In this regard, decreased peptide and mRNA

NPY were found in hippocampus of both the genetic and

environmental rat models of depression [178]. Reduced

NPY content in the caudate nucleus and frontal cortex in

brains from suicide victims has also been found [179].

Moreover, NPY was found to be reduced in CSF of

depressed patients [177, 178]. Furthermore, antidepressive

treatments selectively increased NPY in rat hippocampus

and in human CSF. In addition, when injected to rats, NPY

showed antidepressive effects that have been antagonized

by NPY-Y1 blockers [178].

Neurotensin

Neurotensin (NT) is a neuropeptide consisting of 13

amino acids, involved in locomotion, reward, stress, and

the pathophysiology of schizophrenia and depression

[180]. NT was reported to be widely distributed in the

brain with the greatest concentrations in the hypothala-

mus and basal forebrain, intermediate levels in the basal

ganglia, brainstem and dorsal horn of the spinal cord, and

low concentrations in the thalamus and cortex [180].

Locomotor and reward effects depend on stimulation of

NT-1 receptors linking NT systems and the mesote-

lencephalic DA system. There are indications that

exogenously administered NT produces pharmacological

actions similar to those of antipsychotic drugs, particu-

larly atypical antipsychotics [181]. Moreover, NT alters

the firing rate and the metabolic activity of DA neurons,

especially in the mesolimbic system. A series of studies

showed that antipsychotic drugs increase both NT mRNA

expression and NT concentrations in specific DA terminal

areas [182–184]. The NT function as an endogenous

antipsychotic is based on clinical investigations in which

low CSF NT concentrations were found in drug-free

schizophrenic patients [185]. While the NT function has

been well documented in psychosis [186], the possible

role of endogenous NT in depression has essentially not

been fully elucidated. Cervo et al. [187] examined loco-

motor activity and behavior in the forced swim test, a

model of depression-like behavior, in rats that had

received NT in the ventral tegmental area. The results

suggested that activation of the mesolimbic DA system

through administration of NT produced antidepressant-

like effects, as evaluated by a behavioral hyperactivity

characterized by an increase in exploratory behaviors.

However, to date the NT hypothesis has not been pur-

sued, and no NT agonists have been developed for

depression.
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Galanin

Galanin, isolated from the porcine gut by Viktor Mutt and

coworkers in 1983, is a 29 (30 in human) amino acid neu-

ropeptide [188], widely distributed in brain regions

implicated in the regulation of mood and anxiety, including

the ventral forebrain, amygdala, hypothalamus and brain-

stem, in a number of species [189]. Galanin is of particular

interest since it is colocalized with 5-HT in the dorsal raphe

nucleus (DRN) and with NE in the LC, nuclei known to play

a major role in affective disorders and in the action of

antidepressant drugs. The neuropeptide has been shown to

act as an inhibitory neuromodulator of these neurotrans-

mitters in the rodent brain [190, 191]. Analyses of the role of

galanin in the brain have been based on administration of the

peptide via a chronic cannula placed in the lateral ventricle

(icv), or directly into relevant brain regions, or on in vitro

application to brain slices. Both in vitro and in vivo studies

suggest that galanin could mediate its actions via multiple

receptors in brain tissue [192]. Three distinct galanin

receptor subtypes (GAL-R), GAL-R1, GAL-R2 and GAL-

R3, have been identified in the rodent brain, which are

coupled to G-protein [193]. Several pharmacological studies

suggest a role of galanin in depression-like behavior in

rodents. The first pharmacological evidence for involvement

of endogenous galanin in depression-like behavior was

obtained after galanin icv infusions into the ventral teg-

mental area, showing a significant increased immobility

time in forced swim test in rats [194], which was fully

blocked by the galanin receptor antagonist M35. Impor-

tantly, the antagonist M35 given icv produced a significant

decrease in immobility in the forced swim test, indicative of

an antidepressant-like effect [195]. Ogren et al. [196]

showed from experimental studies in rodents that in vivo

galanin is a potent modulator of brain 5-HT transmission,

and in particular 5-HT1A receptor-mediated functions. Once

given icv, galanin showed strong inhibitory interactions with

5 HT1A receptor functions, particularly in the dorsal raphe,

but also in the hippocampus. Since pre- and postsynaptic

5-HT1A receptors in the dorsal raphe and hippocampus are

implicated in the action of antidepressant drugs, it has been

hypothesized that galanin receptors may be an important

target for the development of novel antidepressant drugs.

Within this context, stimulation of GAL-R1 and/or GAL-R3

receptors resulted in depression-like phenotype, while acti-

vation of the GAL-R2 receptor attenuated depression-like

behavior [192, 197, 198]. At present, there is no information

on the role of galanin in humans, with the exception of one

short-term study, carried out in depressed patients, which

showed an acute and rapid antidepressant-like effect of

galanin following intravenous administration as demon-

strated by a decrease in Hamilton depression rating scale

score and an increase in REM latency [199].

Altogether the data on peptides, with the exclusion of

CRF and vasopressin, do not allow to suggest a general

working hypothesis and/or a hierarchy of events to establish

whether the observed changes of substance P, neurotensin,

neuropeptide Y, and galanin are primary events or are

driven by the alteration in monoaminergic or other trans-

mission systems. On the other hand, their modulatory

roles are appreciated and may be useful pharmacological

targets. Within this context, it will be important to estab-

lish whether acting upon these targets will allow to control

MDD in a large number of patients, as it is with the

presently available drugs, or only a subpopulation of

patients characterized by a specific neurochemical alter-

ation profile.

Depression: a matter of brain plasticity

Depression and synaptic strength

Long-term potentiation (LTP) and long-term depression

(LTD) regulate the strength of synaptic transmission and

the formation of new synapses in many neural networks.

Currently, a few key aspects of the LTP are well estab-

lished. A single train of stimuli initially produces an early

phase of LTP, which lasts only 1–3 h and does not require

new protein synthesis. It involves covalent modifications of

pre-existing proteins that lead to the strengthening of pre-

existing connections. Repeated trains of electrical stimuli

produce a late phase of LTP, which persists for a longer

time, up to 24 h, and requires both translation and tran-

scription. Several kinases can participate in this local

synaptic regulation, among them the protein kinase A, the

protein kinase C, and the mitogen-activated protein kinase,

playing dominant roles in activation of the transcription

factor cAMP response-element-binding protein (CREB), in

turn able to regulate a transcription cascade ultimately

involved in a process that yields synapse-specific structural

changes [200–204]. It has been proposed that long-term

synaptic plasticity or its modulation might be disturbed in

depressed patients [205, 206]. This observation is rein-

forced by the fact that different antidepressants and

electroconvulsive therapy have been shown to effectively

modulate synaptic plasticity in the dentate gyrus and the

CA1 subfield of the hippocampus and in the neostriatum

[206, 207].

The relationship between memory and depression is a

complex one since brain circuits and neurotransmitters

involved in depressed mood are also involved in attention

and memory trace formation [208]. This intermingling of

the two systems is further strengthened by the novel infor-

mation on the growth factor changes in the hippocampus, a

brain area that is key for memory (see next paragraph).
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From the clinical point of view, it is well known that, par-

ticularly in the elderly, depressed mood negatively

influences cognitive functions and that depression may, in

some cases, be prodromal to the manifestation of a cogni-

tive disorder [209]. However, at this time, while published

data suggest that antidepressants may have favorable effects

on attention and memory, no data on drugs affecting

memory support an action also on depressed mood, sug-

gesting that the two systems are indeed separate.

Growth factors

While in the past depression research has focused mainly

on the regulation of 5-HT, NE, and DA, their synthesizing

and metabolizing enzymes, transporters and receptors,

more recent studies have identified alterations of intracel-

lular signal transduction pathways and target genes that

contribute to the possible cause of depression (Fig. 2).

Studies of neurotrophic factors, particularly brain-derived

neurotrophic factor (BDNF), have been of particular

interest and have led to the ‘‘neurotrophic hypothesis’’ of

depression [210]. The ‘‘neurotrophic hypothesis’’ postu-

lates that reduced levels of neurotrophic factors, mainly

BDNF, contribute to the hippocampal atrophy, as observed

in depressed patients, whereas antidepressant treatments

exert their therapeutic effects through increased expression

of neurotrophic factors in the hippocampus [211]. BDNF,

the most abundant neurotrophic factor, promotes the

growth and development of immature neurons and enhan-

ces the survival and function of adult neurons [212]. BDNF

plays a role in the survival of neurons during hippocampal

development, and this may relate to its putative role in

depression. Antidepressant drugs increased expression of

proteins associated with synaptic plasticity [213]. There is

evidence demonstrating a requirement for BDNF in syn-

aptic plasticity for LTP [214] and for persistence of

long-term memory storage [215]. As BDNF has a role in

synaptic plasticity, alterations in BDNF signaling may well

be involved in mood disorders, such as MDD, and in the

mechanism of action of antidepressant drugs. Although

recent findings suggest a different BDNF action/function

depending on the brain area involved [216], BDNF mRNA

expression is decreased by stress and glucocorticoids in the

hippocampus, whereas several antidepressant drugs are

able to enhance it [217]. Compared with normal human

subjects, levels of BDNF have been reported to be lower in

postmortem brain tissue from depressed patients but higher

in those taking antidepressants at the time of death [218].

Moreover, brain imaging studies have documented a

reduction in hippocampal volume in depressed subjects,

which can be attenuated by antidepressant treatment [219].

Decreased volumes of the prefrontal cortex and the

amygdala brain regions have also been linked to altered

mood, anxiety, and cognition in depressed patients [210,

219]. In addition, several reports demonstrate that serum

BDNF, which likely reflects BDNF levels in the brain, is

significantly decreased in depressed patients [220, 221].

This decline in serum BDNF levels is negatively correlated

with the severity of depressive symptoms [220]. In murine

models of depression infusion of BDNF into the midbrain

or hippocampus produces antidepressant-like effects [222].

Moreover, repeated administration of both electroconvul-

sive shocks as well as antidepressant drugs increase BDNF

gene expression in rat brain [223, 224]. Exogenous appli-

cation of BDNF, which induces a long-term potentiation

(BDNF-LTP) [225], required upregulation of the immedi-

ate early gene Arc [226] and five other genes regulated

with Arc during BDNF-LTP; moreover, an upregulation of

these BDNF-LTP-associated genes only after chronic

antidepressant administration has been observed [226],

thus suggesting that antidepressant treatment can promote

gene expression responses linked to BDNF signaling and

Fig. 2 An example of some antidepressants’ activity on noradrener-

gic and serotonergic nerve endings. The figure shows the acute effect

of some antidepressants on NE and 5-HT nerve endings. TCAs, NRIs,

SSRIs, SNRIs, and SARIs modulate the reuptake of monoamines.

NaSSA antidepressants are antagonists of some 5-HT receptor

subtypes and also act as adrenergic alpha-2 receptors antagonists,

thus controlling the monoaminergic release. This pharmacological

action on 5-HT2 and 5-HT3 receptors, together with the effect on

reuptake, promotes 5-HT action on other receptor subtypes, mainly

5-HT1A, involved in the cerebral circuits deranged in depression.

Chronic effects of antidepressants involve further mechanisms on

signal transduction, second messengers formation, and transcriptional

control of specific genes, such as BDNF. Not indicated in the figure is

the dopaminergic nerve ending. Some antidepressants have a triple

action on 5-HT, NE, and DA synapses (see text). Abbreviations: TCA
TriCyclic antidepressant, SNRI serotonin and norepinephrine reuptake

inhibitor, SSRI selective serotonin reuptake inhibitor, SARI serotonin

antagonist reuptake inhibitor, NaSSA noradrenergic and specific

serotonergic antidepressant, MAOI monoamine oxidase inhibitor,

NET, norepinephrine transporter, SERT serotonin transporter, CREB
cAMP response element binding protein, BDNF brain-derived

neurotrophic factor
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long-term synaptic plasticity. In order to elucidate BDNF

dysfunctions in mood disorders, a single nucleotide poly-

morphism (SNP) was identified in the coding exon of the

BDNF gene resulting in a valine (Val) to methionine (Met)

change at amino acid position 66 (Val66Met) [227]. This

polymorphism has been demonstrated to be correlated with

a decreased hippocampal volume and abnormal hippo-

campal activation, which may underlie an enhanced

vulnerability [228]. In addition, a recent study reported that

a highly significant excess of the Met allele is present in

geriatric depressed patients [229].

Furthermore, in an animal model of a behavioral anti-

depressant, referred to as learned safety, a learning process

critical for preventing chronic stress, an increased expres-

sion of BDNF has been found in the hippocampus,

promoting the survival of newborn cells in the dentate

gyrus of the hippocampus [230].

On the contrary, the social avoidance induced by

chronic social defeat, a novel murine model of depression,

seems to be strictly dependent on BDNF signaling in the

mesolimbic area. It should be stressed that ventral teg-

mental area-nucleus accumbens (VTA-NAc) circuits play a

critical role in reward-emotion-related behaviors. In detail,

VTA-NAc increased BDNF content induced by stress or by

direct BDNF infusion may result in neuronal changes that

could be maladaptive [231]. A pro-depressant action of

BDNF in the mesolimbic circuits was demonstrated,

reversed by chronic but not acute administration of anti-

depressant [232–234]. Furthermore, NAc knock-down of

BDNF produced the same effect of antidepressant chronic

therapy [232].

This seems to suggest a more complex picture in the

BDNF implications in the pathogenesis of depression-

related disorders and to probably open new potential

strategies for pharmacologic intervention.

The observations on all neuromodulatory peptides and

growth factors introduce into the depression field the

concept that has emerged in the case of neurodegenerative

diseases, that is, that besides the neurotransmitter deficits

also growth factors and protein/protein interaction mal-

functioning may lead to the disease [235]. This view is also

supported by recent observations on the erythropoietin

alterations in depression and on the experimental antide-

pressive effects of erythropoietin [236].

Depression: a body-brain dialogue

Is the female brain depressed? Depression and sex

hormones

Dysregulation of hypothalamic-pituitary axes affecting

adrenal, thyroid, and gonadal function have also been

associated with mood disturbance. In particular, the

hypothalamic-pituitary-gonadal (HPG) axis has been the

focus of interest concerning the study of gender-based

differences in depression at various points across the life

cycle [237].

The fact that men and women differ with respect to the

prevalence of several psychiatric disorders, certain aspects

of cognitive function, and certain personality traits may

possibly also reflect an influence of sex steroids on human

behavior. In addition on their actions on their classical

targets, sex steroids are able to exert important effects on

CNS, regulating neuronal structure and synaptic plasticity.

Furthermore, at a molecular level, steroids modulate syn-

thesis and release of several transmitters as well as the

expression of neuronal growth factors and their receptors

[238].

A close functional interaction between the HPA-axis

and the HPG-axis has been reported [229], based on the

effects of sex hormones on the HPA axis. Such interactions

may be a basis for the higher prevalence of mood disorders

in women compared to men [239]. The prevalence of MDD

increases during the reproductive years, mainly during

times when sex hormone levels show rapid fluctuations, as

observed in the premenstrual period or post partum or

during the transition phase to menopause or the oral con-

traceptive treatment [240–243]. In addition, women with

histories of depression appear to be more vulnerable to

recurrent episodes of depression during periods of signifi-

cant reproductive endocrine change. In depressed women

an increased HPA axis and a parallel reduced HPG-axis

activity has been observed, which is linked to lower plasma

levels of estrogen and higher levels of androgens [244].

Reduced plasma levels of estradiol could be related to the

inhibition of the reproductive axis by the HPA axis, which

is comparable to the situation during stress or after CRF

administration [244]. Sex hormone replacement therapy

indeed seems to improve mood in elderly people and may

make women with Alzheimer’s disease less vulnerable to

depression [245, 246]. However, to date, the exact mech-

anism for an involvement of sex hormones in mood

disorders has not been fully understood yet. Apart from the

effects on the HPA axis, an interaction between sex hor-

mones and the serotonergic system has also been proposed

[244]. In animal studies, differences in estrogen concen-

tration between the sexes may modulate increased 5-HT

activity seen in female rats, including higher 5-HT levels in

the brain stem and limbic forebrain [247], 5-HT synthesis,

and 5-HT turnover [248]. Human studies showing the

ability of estrogens to modulate 5-HT function are rela-

tively sparse. Women have decreased whole brain 5-HT

synthesis [249], increased CSF 5-hydroxyindoleacetic acid

levels [250], and decreased 5-HT2 receptor binding

capacity in specific brain regions [251] compared to men.
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Estrogen and other gonadal hormones have been reported

to facilitate down-regulation of 5-HT2 receptors [252] also

when associated with chronic administration of antide-

pressants, which has been linked to the mechanism of

delayed therapeutic action of antidepressants [237]. Inter-

estingly, the possible influence of polymorphisms in sex-

steroid-related genes on behavior and psychiatric morbidity

has been recently explored, suggesting that estrogen

receptor a polymorphisms may influence interindividual

differences, at least in women, in anxiety, depression, and

schizophrenia [253].

Emerging players involved in depression:

new therapeutic avenues?

With the development of neuroscience, a great deal of

success has been achieved in a better identification and

characterization of the networks involved in depressive

syndromes. As an example, searching for the genetic and

functional mechanisms underlying the HPA dysfunction in

depression, recent research has focused on genes involved

in HPA axis regulation, among which FKBP5, a cochap-

erone of HSP90 regulating glucocorticoid receptor (GR)

function, has gained growing interest as an important

regulator of GR sensitivity and HPA axis responsivity.

FKBP5 is located on chromosome 6p21, a chromosomal

region associated with bipolar disorder and psychosis [254]

and is mainly expressed in the brain and in a wide range of

human cell tissue, including muscle, liver and thymus. The

heatshock protein FKBP5 is a part of the mature GR het-

erocomplex reducing the receptor affinity for cortisol and is

thought to diminish the dynein binding and nuclear trans-

location of the GR complex [255]. The interest in this

protein has been recently reinforced by the observation that

genetic variants of FKBP5 have been reported to be asso-

ciated with adapatative changes in HPA regulation and to

be related to a different antidepressant response, suggesting

FKBP5 as an important target for further studies of

depression and treatment response [256].

Furthermore, important new literature has showed that

epigenetic mechanisms of gene regulation in neurons could

be involved in the regulation of psychiatric disorders such

as depression and mediate stable adaptations in brain

function [257, 258]. Changes in histone acetylation, histone

methylation, and DNA methylation have been documented

in specific brain regions both in animal models of stress,

depression, and antidepressant treatment and in human

brains and have been related to an altered behavior. In

particular, changes in histone modifications and DNA

methylation have been mainly documented at the promot-

ers of BDNF and GR genes and only on the hippocampus

[227, 259, 260]. These data suggest the involvement of a

chromatin remodeling in the formation of stable neuro-

biological adaptations in the hippocampus that could

explain some of the long-lasting changes in behavior

induced by chronic stress and reversed by chronic antide-

pressants. Moreover, these studies also suggest the

potential use of specific inhibitors for epigenetic regulators

(such as histone deacetylases or histone demethylases) as

antidepressant treatments. However, the problem of the

brain area selective effect of such drugs should be

considered.

Depression and antidepressant response:

a matter of molecular genetics?

Drugs interfering with the uptake of biogenic amines have

been used to treat depression for about 4 decades (see

Fig. 3 for an historical view). TCAs and MAOIs have

represented important drugs due to their clinical efficacy,

even if to date their usefulness is reduced because of many

side effects. SSRIs or selective NE reuptake inhibitors

(NRIs) were originally designed to find drugs as effective

as TCAs, but more selective towards a single monoamine

transporter and with fewer side effects. Recently, 5-HT and

NE inhibitors (SNRIs) (dual uptake inhibitors) have been

successfully introduced into the market. However, also

these drugs show a delayed onset of action and side effects

altering patients’ compliance. Moreover, the efficacy of all

Fig. 3 Historical perspective of the different hypotheses on depres-

sion ethiopatology and of related drugs. *See Table 2 for details
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currently used antidepressants has been questioned because

of the existence of a significant proportion of drug-resistant

patients and a debated drug/placebo effect. A recent

development has been obtained with the introduction of the

triple uptake inhibitors, designed to inhibit the uptake of all

three neurotransmitters, 5-HT, NE, and DA, mainly

involved in depression. Triple uptake inhibitors (SNDRIs)

are expected to be the next generation of drugs for the

treatment of MDD [261] (Table 2). Preclinical studies

indicate indeed that they could produce a more rapid onset

of action and possess greater efficacy than traditional

antidepressants [261]. DOV 216,303 [(±)-1-(3,4-dichloro-

phenyl)-3-azabicyclo-[3.1.0]hexane hydrochloride], the

prototype of the compounds referred to as triple uptake

inhibitors, has been demonstrated to be active in tests

predictive of antidepressant activity, such as the mouse

forced-swim test and locomotor depression [262] (Fig. 3).

To date, because of the less severe side effects than

those of other antidepressants, SSRIs represent the class of

drugs of choice for treating MDD. However, a substantial

number of patients benefit only partially or not at all from

treatment. Drug response can be influenced by genetic

factors and several physiological and environmental fac-

tors, including age, renal and liver function, nutritional

status, smoking and alcohol consumption. In particular,

genetic polymorphisms may play a major role in deter-

mining the response to SSRI treatment [263–266]. At

present the main focus of research is to gain greater

understanding of the functional polymorphism in the 5-HT

transporter (SERT) promoter region. SERT polymorphism

(referred as 5-HTTLPR) involves the presence or absence

of a 44 base-pair segment, which produces a long (L) or

short (S) allele; the short allele results in decreased trans-

porter expression and, hence, in a reduced uptake of 5-HT

[267]. 5-HTTLPR has been associated with susceptibility

to depression [268], although there is considerable heter-

ogeneity between studies [269]. The S allele has also been

associated with lower response to several SSRIs than the L

allele in several studies [270–272] and may also increase

vulnerability to SSRI side effects [273]. The large-scale

study referred as STAR*D confirmed the S variant of

5-HTTLPR to be predictive for the global burden of side

effects. Furthermore, Binder and coworkers examined 57

single nucleotide polymorphisms (SNP) in eight candidate

genes related to the HPA axis in patients afflicted with

depression searching for the SNP associated with antide-

pressant response. They observed that a polymorphism of

FKBP5, the cochaperone of HSP90 regulating glucocorti-

coid receptor function, was associated with rapid response

to antidepressants [256]. Another investigated polymorphic

gene is the 5HT2A-receptor gene. All antidepressants

induce a down-regulation of this postsynaptic receptor. The

C variant at 102T/C was found to be associated with less

antidepressant response. Murphy and coworkers observed

in elderly depressed subjects that this polymorphism may

be associated with sensitivity to the adverse effects of

mirtazapine, but was without influence on SSRI adverse

effects [273]. Antidepressants can also alter the synthesis

and release of CRF; polymorphisms in the CRF gene have

been described [274] and may be associated with MDD

[275]. For further genes, TPH1 and G-protein b3, initially

shown to be implicated in the modulation of antidepressant

response, no definite conclusions can be made [276].

Delineating the genes that are correlated to an antidepres-

sant response may be valuable in identifying the best

treatment specific for the patient.
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