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Abstract Megasatellites are DNA tandem arrays made of

large motifs; they were discovered in the yeast Candida

glabrata. They are widespread in this species (40 copies)

but are not found in any other hemiascomycete so far,

raising the intriguing question of their origin. They are

found mainly in genes encoding cell wall products, sug-

gesting that megasatellites were selected for a function

linked to cell–cell adhesion or to pathogenicity. Their

putative role in promoting genome rearrangements by

interfering with DNA replication will also be discussed.
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Megasatellites are a new class of DNA tandem repeats

In addition to its profound impact on evolutionary

genomics and on our understanding of complex genetic

networks, the systematic sequencing of whole eukaryotic

genomes has also led to the discovery of new genetic

elements. One of these discoveries was recently made in

the genome of the opportunistic pathogen Candida glab-

rata. C. glabrata is a hemiascomycetous yeast, often

involved in human candidiasis and bloodstream infections,

particularly in immunocompromised patients [1, 2].

C. glabrata is more resistant to fluconazole treatments than

other pathogenic yeasts [3] and has become the second

major causative agent of nosocomial infections due to yeast

species. The C. glabrata genome of the reference strain

(CBS138) has been completely sequenced [4], revealing

that it is phylogenetically closer to Saccharomyces cere-

visiae than to the other extensively studied pathogen

Candida albicans [5]. We recently investigated the genome

of C. glabrata, searching for minisatellites, a family of

tandem DNA repeats whose motif size ranges from nine

nucleotides to usually fewer than 100 base pairs (reviewed

in [6]).

Besides the presence of numerous minisatellites, the

C. glabrata genome also contains tandem repeats whose

motif size is much longer, ranging from 135 to 417

nucleotides. We called this new family of large tandem

repeats, megasatellites [7]. They harbor two remarkable

features: they are not found in any other sequenced living

species besides C. glabrata and Kluyveromyces delphensis

(two Saccharomycetaceae yeasts of the same clade [8]),

and they are mainly found in genes proven, or suspected, to

encode cell wall proteins, raising the possibility that

megasatellites could be directly involved in regulating cell

adhesion and pathogenicity. Altogether, 40 megasatellites

were found in 33 genes in C. glabrata and classified in

families.

Of these 40 megasatellites, 14 belong to the SFFIT

family and 20 belong to the SHITT family (family names

come from the conservation of five amino acids in each

motif of the megasatellite). Each tandem array contains

from 3 to 32 motifs and covers from 405 to 9,600 DNA

base pairs (Fig. 1). The remaining six megasatellites con-

tain motifs that do not show obvious similarities with

SFFIT or SHITT motifs. Megasatellites are distributed on

11 out of the 13 chromosomes but show some preferential
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bias toward the subtelomeric regions (Fig. 2), with the

right end of chromosome IX carrying seven such elements

within 65 kb, a density significantly higher than the gen-

ome average (one megasatellite per 224 kb). Subtelomeric

regions are highly flexible in Saccharomyces cerevisiae,

exhibiting a high level of inter-chromatid and inter-chro-

mosome recombination [9]. It is possible that C. glabrata

subtelomeres share similar properties, and that subtelo-

meric megasatellites recombine with each other, although

this remains to be demonstrated.

Possible involvement of megasatellites in pathogenicity

In S. cerevisiae, several genes involved in cell wall bio-

genesis contain minisatellites [10–12]. Some of them,

called the FLO genes, play a direct role in flocculation and

cellular adhesion. It was shown that cell adhesion and

flocculation are directly correlated with the length of the

minisatellite in FLO1 [12] and that cell–cell adhesion

leading to the formation of a biofilm at the surface of sherry

wine was directly dependent on the size of a minisatellite
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Fig. 1 Schematic representation of C. glabrata SHITT and SFFIT

megasatellites. Gene names are indicated to the left (http://www.

genolevures.org). Vertical lines near gene names indicate paralogous

gene families. The region of the gene containing the megasatellite is

represented by colored boxes. Orange SHITT motifs. Green SFFIT

motifs. The numbers in boxes correspond to the number of tandemly

repeated motifs (no number indicates the presence of only one motif).

Purple indicates degenerate SFFIT motifs. The degenerate SFFIT

motifs found within CAGL0J11924g and CAGL0J05170g are not

identical, although they both probably come from a SFFIT motif.

Light gray indicates sequences of variable length that are sometimes

tandemly repeated and found interspersed within some of the SHITT

and SFFIT megasatellites. Dark gray represents glycine- and serine-

rich motifs of variable length found only in CAGL0L00227g and

CAGL0J01774g. Their size (in amino acids) is indicated when too

long to be drawn to scale. Otherwise, boxes are drawn to scale.

Numbers shown before and after boxes represent the number of amino

acids before and after the repeated motifs. Given the lower sequence

coverage and unprecise assembly of subtelomeric regions, it is

possible that the number of motifs shown for the 11 subtelomeric

megasatellite-containing genes is different from what is represented

here (11 genes, from CAGL0A04873g to CAGL0L00227g). (1) The

subtelomeric sequence is interrupted within a megasatellite. Among

the genes harboring megasatellites, only two have a known function

and are involved in cell adhesion (EPA11, EPA13); the function of the

other genes is unknown
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in FLO11 [13]. In C. glabrata CBS138 strain, three EPA

genes (functional homologues of the FLO genes [14–17])

contain megasatellites (EPA2, EPA11, and EPA13), but

three other EPA genes contain simple minisatellites (EPA1,

EPA3, and EPA15), and three do not contain any kind of

tandem repeat (EPA6, EPA7, and EPA8). In addition, 30

other genes that are not part of the EPA family contain

megasatellites. Some of the proteins encoded by these

genes exhibit signatures of cell-wall proteins but experi-

mental evidence of their function or their localization is

lacking. Interestingly, in S. cerevisiae, three FLO genes

(FLO1, FLO5, and FLO9) contain a 135 bp motif, tan-

demly repeated 7–13 times [11]. This threonine-rich motif

shares no obvious similarity with any of the C. glabrata

megasatellites. However, it is the same size as the SHITT

motif. It is therefore possible that the optimal size for a

tandem repeat in these cell-wall embedded proteins is 45

amino acids (135 bp) and that the motif size is therefore

under strong selection, whereas the sequence itself is not

necessarily conserved.

In budding yeast, telomeric regions are silenced by a

multiprotein complex containing the SIR genes, RAP1,

ESC1, and the Ku complex [18]. These genes are con-

served in C. glabrata, with the exception of SIR1, which is

involved in silencing the silent mating-type loci, but not in

telomeric silencing [19]. The inactivation of SIR3 and

RAP1 was shown to increase the level of expression of

several EPA genes, including the megasatellite-containing

EPA2 gene [15, 20], suggesting that the mechanism of

subtelomeric silencing is probably similar in C. glabrata

and in S. cerevisiae. Subtelomeric megasatellite-containing

genes are therefore probably also silenced, although this

remains to be shown. Therefore, at the present time, the

possible role played by megasatellites in C. glabrata

pathogenicity is unclear and needs to be clarified in the

future.

Megasatellites and genome rearrangements

Given the repeated nature of the large arrays formed by the

megasatellites, one may wonder if they could behave like

fragile sites and thus induce genome rearrangements. In

humans, fragile sites are defined as chromatid constrictions

or breaks visible on metaphasic chromosomes when cells

are grown in the presence of drugs that impair replication

or DNA metabolism [6, 21–23]. Although the precise

molecular nature of all fragile sites is not known, some of

them have been sequenced. The FRA3B locus contains

numerous transposons and LTRs found in direct and

inverted orientations; FRA10B and FRA16D loci contain

AT-rich minisatellites (42 and 33 bp motif size, respec-

tively); FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A

contain CGG trinucleotide repeats.

Some of these fragile site loci are associated with can-

cer. FRA3B, the most common fragile site in humans, often
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Fig. 2 Distribution of

megasatellites in the C. glabrata
genome. The 13 chromosomes
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contains deletions in several gastrointestinal, colon, lung,

breast, and cervical cancers [24]. Loss of heterozygosity

and a recurrent translocation were also observed at

FRA16D in breast and prostate cancers and multiple

myelomas [25].

Interestingly, chromosomal translocations and chromo-

some losses in Candida albicans are often associated with

a large DNA tandem repeat, called the major repeat

sequence (MRS). It is a complex tandem repeat found at

nine different locations in the genome and composed of a

2 kb motif tandemly repeated (RPS), itself including sev-

eral tandem copies of smaller motifs (16 and 29 bp long).

Most chromosome length polymorphisms in this yeast are

due to size heterogeneity of the MRS [26].

When Muller and colleagues analyzed chromosomal

translocations among different strains of C. glabrata, three

major rearrangements, involving chromosomes IV, IX, XII,

and XIII were found [27]. The three breakpoints corre-

sponding to these three rearrangements were mapped and

sequenced, but they are not located in the proximity of

megasatellites, nor do they encompass any kind of repeated

element. However, in the same study, it was shown that

among 12 deletions ranging in size from 130 to 12 kb

detected in the C. glabrata genome, two were located

within two megasatellites (one of them being the longest

megasatellite of the genome). The probability of this hap-

pening by chance is low, suggesting that megasatellites

might be involved in the mechanism leading to these two

deletions. In a more recent study using a larger number of

probes, 11 reciprocal and nonreciprocal translocations

involving 11 out of the 13 C. glabrata chromosomes were

found [28]. The authors also detected five segmental

duplications, including four class III duplications leading to

the formation of new chromosomes [29]. In one of these,

the duplication breakpoint is located less than 10 kb from a

SFFIT megasatellite (MS#208), suggesting that it could be

involved in the rearrangement, although this was not for-

mally proven.

In conclusion, observations made on chromosomal

plasticity in C. glabrata suggest that some of the rear-

rangements observed might be triggered by the presence of

a megasatellite. However, the majority of megasatellites

are not associated with chromosomal rearrangements and

frequent rearrangements are observed far from any mega-

satellite, showing that megasatellites are not systematically

involved in rearrangements. Large-scale studies of
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Gene B with me gasatelliteGene A without meg asatel li te

Gene B duplication

Gene B paralogues
with me gasatellites

“Motif jump”

Intergenicgene conversion

Repeat contractions and expansions
Accumulation of point mutations

Intergenicgene conversion
or“motif jump”

Repeat contractions and expansions
Accumulation of point mutations

Gene A with one motif

Motif expansion

Fig. 3 Different mechanisms can lead to megasatellite spreading in

the C. glabrata genome. Left Gene A with no megasatellite may

acquire a motif by retrotransposition or another mechanism, followed

by expansion of the motif into a megasatellite. Right A gene already

containing a megasatellite may duplicate itself, leading to the

formation of two paralogues, each of them containing an identical

megasatellite. Contractions and expansions may now occur,

independently in both tandem repeats, and point mutations may

accumulate in one or several motifs, leading to slightly different motif

sequences (in green). These new motifs may propagate (or disappear)

by intergenic (or intragenic) gene conversion. New motifs may also

propagate by ‘‘jumping’’ into a megasatellite encoded by a nonpar-

alogous gene (bottom)
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replication and recombination in C. glabrata are now

needed to understand the precise role of megasatellites in

chromosomal replication and instability.

Evolution of megasatellites

The last intriguing question concerning megasatellites

relates to their mechanism(s) of formation. One simple way

to propagate megasatellites is to duplicate the gene(s) that

contain them. In C. glabrata, several megasatellites are

found in paralogous gene families. The largest of these

families encompasses 11 paralogues, each containing a

SHITT megasatellite and five of them also containing a

SFFIT repeat array (Fig. 1). However, six megasatellites

containing either SHITT or SFFIT motifs are found in

genes that are present in unique copies in the genome,

raising questions about their very origin. If point mutations

followed by replication slippage may explain how smaller

tandem repeats such as microsatellites are born, it is hard to

imagine the same mechanism responsible for the de novo

creation of larger tandem arrays. Haber and Louis proposed

that minisatellites are formed by replication slippage

between two short (5 bp) sequences flanking a 10–20

nucleotide unique sequence [30]. Most of the S. cerevisiae

minisatellites may actually be flanked by such short motifs

[11], but this does not seem to be the case for C. glabrata

megasatellites.

In silico comparisons of megasatellites with others in

the same strain (CBS138, the sequenced strain) show that

some motifs found in a given gene are actually phylo-

genetically closer to motifs found in another gene,

suggesting that some kind of genetic transfer exists

between megasatellites (Rolland, Dujon and Richard,

unpublished). This transfer may involve gene conversion,

or alternatively one may imagine that SHITT and SFFIT

motifs are able to ‘‘jump’’ from one megasatellite to

another one, using mechanisms that may be related to

transposition or retrotransposition (Fig. 3). There is only

one full-size retrotransposon in the C. glabrata genome, a

gypsy-like element (Tcg3, gene name CAGL0G07183g,

The Génolevures Consortium, http://www.genolevures.

org/), two degenerate copies, and two solo LTRs

(Cécile Neuvéglise, personal communication). Unless

there is another source of reverse transcriptase in this

genome, it is difficult to hypothesize that retrotransposi-

tion is involved in the spreading of megasatellites.

In conclusion, the question of the origin of megasatel-

lites is still completely open, but experiments designed

specifically to answer this question using molecular tools

available in this yeast species should give some answers

and may explain why SHITT and SFFIT megasatellites are

so widespread in C. glabrata.
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