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Abstract Human bone marrow-derived mesenchymal

stem cells (MSC) home to injured tissues and have rege-

nerative capacity. In this study, we have investigated in vitro

the influence of apoptotic and necrotic cell death, thus dis-

tinct types of tissue damage, on MSC migration. Concordant

with an increased overall motility, MSC migrated towards

apoptotic, but not vital or necrotic neuronal and cardiac

cells. Hepatocyte growth factor (HGF) was expressed by the

apoptotic cells only. MSC, in contrast, revealed expression

of the HGF-receptor, c-Met. Blocking HGF bioactivity

resulted in significant reduction of MSC migration. More-

over, recombinant HGF attracted MSC in a dose-dependent

manner. Thus, apoptosis initiates chemoattraction of MSC

via the HGF/c-Met axis, thereby linking tissue damage to the

recruitment of cells with regenerative potential.

Keywords Mesenchymal stem cells � Apoptosis �
Tissue regeneration � Chemotaxis � Cell migration �
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Introduction

Human mesenchymal stem cells (MSC) are adult multipotent

stem cells isolated from bone marrow (BM) and several other

tissues. Typically, they are plastic adherent, non-hemato-

poietic cells with fibroblastoid morphology, expressing

CD73, CD90, and CD105 but not the lineage markers CD14,

CD34, and CD45. They are capable of differentiating into

various types of mesenchymal cells, including osteoblasts,

adipocytes, and chondrocytes [1, 2]. Generation of other

tissue types including cardiomyocytes [3], neuronal cells [4],

and hepatocytes [5] has been reported as well. The multi-

potency of MSC and their beneficial effects on tissue repair,

which may also be due to paracrine mechanisms without

extensive engraftment and transdifferentiation, make MSC a

promising tool in regenerative medicine [6, 7].

In addition, MSC have stromal activity, support hemato-

poiesis, and may improve hematopoietic engraftment after

stem cell transplantation [8, 9]. Moreover, MSC have immu-

nosuppressive activities [7] which have already been exploited

therapeutically to reduce graft-versus-host disease after allo-

geneic hematopoietic stem cell transplantation [10, 11].

Although local transplantation of MSC under certain

conditions, like in the treatment of bone defects, may show

efficacy, homing to the respective tissues is key to the ther-

apeutic potential of MSC. Tissue injury appears to generate a

strong chemoattractive signal [12]. Irradiation damage [13],

ischemia of heart [14] and brain [15], chemically induced

renal failure [16], and allograft rejection [17] have been

reported to attract MSC. Furthermore, MSC home to various

tumors, an activity which can be increased by radiotherapy

and which may allow for tumor site-directed delivery of

cytotoxic therapeutics using MSC as vectors [18].

The mechanisms underlying homing of MSC to the

various target tissues are not entirely understood. MSC

express a multitude of receptors which have been impli-

cated in chemo-attraction, including most chemokine

receptors and receptors for growth factors like platelet-

derived growth factor (PDGF), insulin-like growth factor
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(IGF), and hepatocyte growth factor (HGF) [12, 18]. This

variety of receptors may allow MSC to respond to distinct

signals and home to different tissues [12]. However, the

events generating these signals initially in the injured tis-

sues are less well characterized.

The receptor for HGF, c-Met, is expressed on MSC [19].

HGF has been reported to be produced following tissue

damage [19], including ischemia of brain [20] and heart [21],

and it may become proteolytically activated in response to

tissue injury [22]. It exerts neuroprotective [23] and cardio-

protective activities [24] which are at least partially due to

anti-apoptotic signals. However, HGF has also been shown to

attract MSC [19], and a beneficial effect of MSC after

myocardial infarction or stroke has been established [25, 26],

implying that attraction of MSC may contribute to the tissue

protective effects of HGF after ischemic injury.

In the present study, we examined whether different

modes of tissue cell death, apoptosis and necrosis, are

involved in initiation of MSC homing to injured tissues,

and whether they differently affect MSC migration. Fur-

thermore, we analyzed the respective contribution of HGF.

Materials and methods

Mesenchymal stem cells

Bone marrow was obtained from volunteer donors after

informed consent. BM mononuclear cells (BM-MNC) were

isolated by Ficoll (Biochrom, Berlin, Germany) gradient sep-

aration followed by ammonium chloride lysis of residual red

blood cells. 1 9 107 BM-MNC were plated in 75-cm2 culture

flasks (Costar/Corning, Wiesbaden, Germany) and cultured at

37�C and 5% CO2 in a humidified atmosphere in DMEM

medium (Lonza, Verviers, Belgium) supplemented with

30% fetal calf serum (FCS; GIBCO/Invitrogen, Karlsruhe,

Germany), 100 U/ml penicillin, 100 lg/ml streptomycin and

2 mM L-glutamine (all from Lonza). Cells were left to adhere

for 48 h and then the non-adherent fraction was removed.

When adherently growing MSC reached 80% confluence, they

were detached with 0.25% trypsin (Lonza) and replated at 1:3.

All experiments were performed with cells from passages 3–9.

All MSC preparations used showed a typical [1, 2] CD10?,

CD13?, CD29?, CD44?, CD71?, CD73?, CD90?, CD105?,

Lin-, and CD45- immunophenotype (data not shown). Fur-

thermore, they differentiated along osteogenic and adipogenic

pathways upon induction [1, 2] (data not shown).

Induction and detection of apoptosis and necrosis

in neuronal and cardiac cells

HT-22 murine hippocampal neurons [27] were cultured in

DMEM medium supplemented with 10% FCS, antibiotics,

and L-glutamine. HL-1 murine cardiac myocytes [28] were

cultured in Claycomb medium (Sigma–Aldrich, Taufkir-

chen, Germany) supplemented with 10% FCS, antibiotics,

L-glutamine and 0.1 mM norepinephrine (Sigma–Aldrich).

All cultures were performed at 37�C and 5% CO2 in a

humidified atmosphere.

To induce apoptosis, cells were treated with 300 nM

staurosporine (Calbiochem, Bad Soden, Germany) [29] or

10 mM sodium azide (Sigma–Aldrich) for 3, 6 and 10 h or

with 100 lg/ml poly (I:C) (Sigma–Aldrich) for 10 and

24 h. Necrotic cell death was initiated by incubation with

40 lM H2O2 (Sigma–Aldrich) for 10 h [29], 25% ethanol

(Sigma–Aldrich) for 1 h, or by incubation at 56�C for

30 min. To confirm apoptosis/necrosis, annexin V/propi-

dium iodide (PI) staining and flow cytometry were

performed as recommended by the manufacturer

(Beckman-Coulter, Krefeld, Germany), using a FACS

Canto flow cytometer with Diva software (BD Biosciences,

Heidelberg, Germany). For detection of DNA fragmen-

tation, a terminal-deoxynucleotidyl-transferase-mediated

dUTP nick end labeling (TUNEL)-kit was used (Fluores-

cein In Situ Cell Death Detection Kit; Roche Applied

Science, Mannheim, Germany) and data evaluated on a

FACS Canto flow cytometer.

After induction of apoptosis or necrosis, cells were

washed with PBS (Lonza) and incubated with fresh culture

medium for 12 h to produce conditioned medium (CM).

Alternatively, cells were used directly for experiments.

Scratch assay

After MSC had grown to confluence in 6-well plates

(Costar/Corning), a scratch was made in the cellular layer

with a sterile pipette tip over the total diameter of each

well. Migration of adjoining MSC into this ‘wound’ was

documented photographically after 0, 6, 12, and 24 h.

Scratch assays were performed in the absence or presence

of 100% CM derived from apoptotic or necrotic HT-22 and

HL-1 cells.

Under-agarose chemotaxis assay

Migration of MSC towards apoptotic or necrotic brain and

cardiac cells was analyzed in an under-agarose chemotaxis

assay [29, 30]. 0.8% agarose (Eurogentec, Cologne, Ger-

many) in DMEM medium was boiled, mixed with 0.5%

bovine serum albumin (BSA; Roth, Karlsruhe, Germany)

after cooling and poured into the wells of a 6-well plate.

After the agarose had solidified, three 2-mm-wide and 5-

mm-long slots 5 mm apart from each other were cut in the

agarose of each well using a specifically designed stamp.

Amounts of 8 9 104 MSC were then added to the central

slot of each well and incubated for 2 h at 37�C and 5% CO2
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in a humidified atmosphere. During that time, left and right

slots of each well were filled with 0.5% BSA/DMEM to

prevent the agarose from drying-out; 70 ll of chemoat-

tractant were then added to the left slots. CM (100%) of

apoptotic and necrotic HT-22 or HL-1 cells, the cells

themselves (4 9 104 cells) or 20–60 ng/ml recombinant

HGF (R&D Systems, Wiesbaden, Germany) served as

chemoattractants. For certain experiments, 2 lg/ml of

neutralizing anti-mHGF goat polyclonal IgG antibody

(AF2207; R&D Systems) or normal goat IgG (Santa Cruz,

Heidelberg, Germany) were added; 0.5% BSA/DMEM in

the right slot of each well served as negative control. After

addition of chemoattractants, plates were incubated at 37�C

and 5% CO2 in a humidified atmosphere and migration of

MSC documented after 4, 8, and 12 h. For counting

migrated cells, the agarose between the center slot and the

left slot was divided into 4 equally sized segments, num-

bered 1–4 starting at the center slot. The total number of

migrated cells and the number of migrated cells in each

segment subtracted by the number of cells migrating to the

negative control slot/segments were documented. Only

those cells were counted as migrating cells that were

completely under the agarose.

RNA extraction and reverse transcription-polymerase

chain reaction (RT-PCR)

Total RNA was extracted using the RNeasy Mini Kit

(Qiagen, Hilden, Germany). Reverse transcription was

carried out with 1 lg of RNA using Transcriptor high

fidelity reverse transcriptase (Roche Applied Science) and

oligo-dT primers. Reverse transcription reactions without

the addition of enzyme served as negative controls. RT

reactions were carried out for 30 min at 50�C followed by

5 min incubation at 85�C. Resulting cDNA fragments were

amplified using Taq DNA polymerase (Qiagen) according

to the supplier’s instructions. The cycle profile was: 3 min

of denaturation at 94�C, 35 cycles of 30 s at 94�C, 30 s at

60�C, and 30 s at 72�C, followed by a final elongation step

for 7 min at 72�C and cooling to 4�C. Reactions were

carried out in a GeneAmp PCR System 9700 (Applied

Biosystems, Darmstadt, Germany). The following forward

and reverse PCR primers were used [29]: 50-GCACTGC

TTTAATAGGACACT-30 and 50-CCACAACCTGCATGA

AGCG-30 for human c-Met (215 bp fragment), 50-CAT

CAGCAATGCCTCCTGC-30 and 50-GTTCAGCTCAGGG

ATGACC-30 for human GAPDH (238 bp fragment),

50-GTGGACAAGATTGTTATCGTG-30 and 50-GTGTAG

TATCTCCTTCACAAC-30 for mouse HGF (264 bp frag-

ment) and 50-GCAGTGGCAAAGTGGAGATTG-30 and

50-ATTTGCCGTGAGTGGAGTCAT-30 for mouse GAP-

DH (96 bp fragment). Results were evaluated after agarose

gel electrophoresis and ethidium bromide staining. HepG2

cells served as positive control for c-Met.

Detection of c-Met expression and production of HGF

Expression of c-Met on MSC was determined by flow

cytometry. MSC were labeled with anti-c-Met monoclonal

antibody (5 lg/ml; clone 95106, IgG1; R&D Systems)

followed by FITC-conjugated F(ab)2-goat-anti-mouse

IgG ? M (Beckman-Coulter). Flow cytometric analysis

was performed on a FACS Canto flow cytometer.

HGF levels in conditioned media derived from vital

HT-22 and HL-1 cells or harvested 12 h after induction of

apoptosis or necrosis (see above) were determined using an

ELISA kit (Gentaur, Brussels, Belgium).

Statistical analysis

All data are presented as mean ± SEM for n C 3 unless

stated otherwise. Statistical significance was determined

with the Student’s t test using Graph Pad Prism software

(GraphPad, San Diego, CA, USA).

Results

Apoptotic but not necrotic neuronal and cardiac cells

increase overall motility of MSC

To investigate the influence of apoptotic and necrotic brain

and cardiac tissues on overall MSC motility, a scratch

assay was used. After a scratch was made in a confluent

layer of MSC, cultures were continued in the presence of

CM derived from either staurosporine-induced apoptotic or

H2O2-induced necrotic neuronal HT-22 or cardiac HL-1

cells. Recolonization of the scratch by adjoining MSC was

already observed after 6 h in the presence of CM derived

from apoptotic cells (data not shown), and after 24 h, MSC

completely covered the scratch (Fig. 1a, c). In contrast,

MSC cultured in the presence of CM derived from necrotic

HT-22 (Fig. 1b) or HL-1 cells (Fig. 1d) for 24 h failed to

recolonize the scratch.

MSC migrate towards apoptotic but not vital or necrotic

neuronal and cardiac cells

Using an under-agarose chemotaxis assay, the specific

target-directed migration of MSC was assessed. Treatment

of either HT-22 or HL-1 cells with staurosporine to induce

apoptosis resulted in a strong chemoattractive activity for

MSC (Fig. 2a). In contrast, CM derived from vital or

necrotic HT-22 and HL-1 cells obtained after treatment

with H2O2 induced no target-directed migration of MSC
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(Fig. 2a). Similar results were obtained when sodium azide

or poly (I:C) were used to induce apoptosis and ethanol or

incubation at 56�C to induce necrosis: only CM derived

from apoptotic HT-22 and HL-1 cells constituted a che-

moattractant for MSC (Fig. 2a). When the influence of the

length of induction of apoptosis on the migratory response

of MSC was evaluated, there was no difference between 3-,

6- or 10-h treatment with staurosporine or sodium azide

(Fig. 2b) or 12- and 24-h treatment with poly (I:C) (data

not shown) of HT-22 and HL-1 cells.

Total numbers of MSC migrating specifically towards

the chemoattractant continuously increased over the 12-h

investigation period (Fig. 2c). There was no difference

whether CM or the apoptotic cells themselves were used as

chemoattractant, neither in the total number of migrating

cells (Fig. 2c) nor in the fraction of cells covering a certain

distance within the 12-h period (Fig. 2d), indicating a

comparable speed of migration.

To assess the influence of passage number on the

migratory capacity of MSC, cells from passages 3, 6, and 9

were compared regarding their migration towards stauro-

sporine-induced apoptotic HT-22 cells. There was a

decrease in the total number of migrating MSC associated

with increasing passage number. After 3 passages, the

number of migrated MSC (1.330 ± 54 cells) was signifi-

cantly higher than after 9 passages (1.010 ± 62 cells,

n = 4; p = 0.008). Furthermore, the number of migrated

MSC in distant agarose segments (segments 3 and 4) was

higher for MSC with lower passage number. After 3 pas-

sages, 184 ± 22 MSC reached segment 4 compared to

91 ± 23 MSC (n C 3; p = 0.049) after 9 passages.

Extent of apoptosis and necrosis of HT-22 and HL-1

cells

To evaluate the extent of induction of apoptosis and

necrosis by the various procedures, annexin V/PI and

TUNEL staining were performed (Fig. 3). Induction of

apoptosis in HT-22 and HL-1 cells by staurosporine or

sodium azide for 10 h or by poly (I:C) for 24 h revealed

Annexin V?/PI- early apoptotic cells as well as a smaller

population ranging from 12.7 to 18.3% of Annexin V?/PI?

secondary necrotic cells. These secondary necrotic cells

were not observed at earlier time points of induction (data

not shown). At all time points analyzed, TUNEL staining

detected DNA fragmentation in the majority of apoptotic

cells, ranging from 90.0 to 97.3%.

Induction of necrosis by H2O2, ethanol or heat resulted

in Annexin V-/PI? necrotic cells (range 96.7–97.4%).

DNA fragmentation was only detected in a minor popula-

tion of the necrotic cells (range 0.3–7.1%).

The HGF/c-Met pathway mediates chemoattraction

of MSC to apoptotic brain and cardiac cells

To analyze the molecular mechanism underlying MSC

migration towards apoptotic brain and cardiac tissue, we

determined expression of HGF in HT-22 and HL-1 cells by

RT-PCR and HGF protein levels in CM derived from vital,

apoptotic, and necrotic cells. Only apoptotic but not vital or

necrotic HT-22 and HL-1 cells revealed HGF expression

(Fig. 4a). Consistent with this observation, significant

levels of HGF protein were detected only in CM of HT-22

Fig. 1 Motility of MSC in

response to apoptotic and

necrotic cells. A scratch was

made in a confluent monolayer

of MSC, and cells cultured in

the presence of conditioned

media derived from apoptotic

(300 nM staurosporine, 10 h;

a,c) or necrotic (40 lM H2O2,

10 h; b,d) HT-22 hippocampal

neurons (a,b) or HL-1 cardiac

myocytes (c,d). Recolonization

of the scratch by adjoining MSC

was documented after 24 h
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and HL-1 cells after induction of apoptosis with stauro-

sporine, sodium azide, or poly (I:C), but not for vital and

necrotic cells (Fig. 4b). Moreover, HGF levels only

slightly increased with increasing length of apoptosis-

inducing treatment (data not shown), and HGF levels

measured were in good agreement with the extent of

migration observed (compare Figs. 2a, 4b).

The respective receptor of HGF, c-Met, was detected in

MSC by RT-PCR (Fig. 5a) as well as by flow cytometry

(Fig. 5b).

Thus, there is a correlation between expression of HGF/

c-Met and the migratory response of MSC to apoptotic

cells. To confirm that this axis is responsible for chemo-

attraction of MSC to apoptotic cells, neutralization studies

were performed. In the presence of a neutralizing anti-HGF

polyclonal antibody, migration of MSC towards CM

derived from apoptotic HT-22 and HL-1 cells was inhibited

significantly (p \ 0.001; n C 3) irrespective of whether

staurosporine (78.4 ± 4.1 and 78.5 ± 5.6% inhibition,

respectively), sodium azide (80.1 ± 2.6 and 80.5 ± 2.7%

inhibition, respectively), or poly (I:C) (81.9 ± 2.2 and

81.7 ± 2.6% inhibition, respectively) were used to induce

apoptosis (Fig. 6a). Furthermore, CM derived from

apoptotic cells could be replaced by recombinant HGF.

Graded doses of HGF stimulated a dose-dependent

migratory response of MSC (Fig. 6b).

Discussion

MSC were shown to migrate towards apoptotic but not

necrotic brain and cardiac cells in vitro. Migration corre-

lated with c-Met expression on MSC and induction of HGF

by apoptosis in the target tissues. Vital and necrotic neu-

rons or cardiomyocytes showed no HGF expression.

Moreover, blocking of HGF with a neutralizing antibody

inhibited migration of MSC nearly completely. These data

indicate that the HGF/c-Met axis is a key pathway involved

in attracting MSC to damaged neuronal and cardiac tissues,

and that tissue apoptosis constitutes a requirement to

initiate these processes.

Homing of MSC to injured tissues is well established

[12]. Following ischemia of heart and brain, MSC

migrate to the injured tissue and contribute to tissue

regeneration, although the regenerative capacity may be

rather due to paracrine mechanisms than to a direct

Fig. 2 Chemoattractive activity of apoptotic and necrotic neuronal

and cardiac cells for MSC. Conditioned media derived from vital,

apoptotic [300 nM staurosporine, 10 h; 10 mM sodium azide 10 h;

100 lg/ml poly (I:C), 24 h] or necrotic (40 lM H2O2, 10 h; 25%

ethanol, 1 h; 56�C, 30 min) HT-22 hippocampal neurons (a–d) or

HL-1 cardiac myocytes (a,b) or the cells themselves (c,d) were used

as targets in an under-agarose chemotaxis assay. The total number of

specifically migrating cells (a–c) and the number of cells reaching the

migration segments 1–4 (d) were determined after 12 h (a,b,d) or

over a 12-h period (c). Data are presented as mean ± SEM for n C 3.

Vital, apoptotic, and necrotic cells are indicated by grey, black, and

white columns, respectively
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differentiation of MSC to the target tissue cell types [6,

14, 15, 25, 26]. HGF is produced and proteolytically

activated in response to tissue injury [19, 22]. During

cardiac damage, a rapid increase in HGF plasma levels

has been observed [31], and cardioprotective properties

of HGF have been attributed to anti-apoptotic and pro-

angiogenic activities [24, 32]. Similarly, HGF production

in the ischemic brain [20, 29] and neuroprotective

activity of HGF due to the protection against apoptotic

death of cerebral endothelial cells [33] have been

reported, and this may also be true for other tissues [19,

34]. However, HGF is a potent chemo-attractant for

MSC [19], and the c-Met/HGF axis is also used by other

cells contributing to tissue regeneration, including endo-

thelial progenitor cells [35], neural stem cells [36], and

cord blood-derived unrestricted somatic stem cells [29].

Moreover, up-regulation of the HGF receptor c-Met on

MSC, e.g., by hypoxia, is associated with increased

migration towards and accelerated restoration of hind

limb injury [37]. Therefore, the HGF-mediated guiding

of MSC towards sites of tissue damage may also con-

tribute to the cytoprotective activity of HGF.

Only apoptotic cells produced HGF and induced HGF-

dependent migration of MSC. Necrotic cell death failed to

result in HGF production and no migration of MSC

towards necrotic neurons or cardiomyocytes was observed.

Thus, the type of cell death, i.e., the type of tissue damage,

may allow for distinct cellular response patterns to occur.

Apoptosis resulted in production of HGF which on the one

side has anti-apoptotic activities and on the other side

attracts cells with regenerative potential, providing the

basis for limiting apoptosis and initiating tissue repair.

Different cellular responses on apoptotic versus

necrotic cell death have also been reported for the

immune system. Necrotic cell death constitutes an

immunostimulatory signal resulting in activation of den-

dritic cells (DC) and induction of immunity whereas

apoptotic cell death appears to be associated with

immunological tolerance although the microenvironment

may modulate this outcome [38]. HGF [39] and MSC [7]

Fig. 3 Extent of apoptosis and

necrosis in HT-22 and HL-1

cells. After induction of

apoptosis [staurosporine, 10 h;

sodium azide, 10 h; poly (I:C),

24 h] or necrosis (H2O2, 10 h;

ethanol, 1 h; 56�C, 30 min), the

frequencies of apoptotic

(annexin V?/PI-), necrotic

(annexin V-/PI?), and

secondary necrotic cells

(annexin V?/PI?) as well as of

cells showing DNA

fragmentation (fluorescein?)

were determined by flow

cytometry. Quadrants were set

according to isotype controls or

to untreated cells. FSC Forward

scatter
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have immunosuppressive properties and affect dendritic

cell as well as T-cell activation and function. Therefore,

apoptosis appears not only to set off processes to limit

apoptosis and to favor tissue regeneration but also

immunological tolerance. In contrast, necrosis is associ-

ated with pro-inflammatory signals which generate an

immunostimulatory microenvironment and result in

recruitment of dendritic cells, thereby laying the path to

immunity.

Interestingly, although in this study no migration

towards necrotic cells was detected, Meng et al. [40]

reported migration of MSC towards high mobility group

box 1 (HMGB-1), a nuclear protein passively released

upon necrotic cell death [41]. Whether this reflects heter-

ogeneity of MSC, subsets of cells responding to distinct

signals, or unique tissue-specific signals is currently

unknown. c-Met was expressed on all cells homogenously

and a negative subset was not identified. Nevertheless,

contribution of other factors cannot be ruled out com-

pletely, because neutralization of HGF bioactivity inhibited

migration of MSC only by about 75%. Other reports

indicated the CXCL12/CXCR4 axis to be involved in

homing of MSC to the injured heart [42] and brain [43].

However, blocking the CXCL12–CXCR4 interaction did

not inhibit homing completely either [42], or it caused no

inhibition at all [44]. Homing to tissue injuries is a complex

process which may use different pathways for distinct tis-

sues, and there may also be redundancy in chemoattractants

guiding MSC to individual tissues. MSC express a multi-

tude of chemokine and growth factor receptors involved in

chemo-attraction [12, 18], some of which are expressed on

subsets of cells only like CXCR4, CCR1, and CX3CR1

[45]. Other molecules including ligands of selectins may

also contribute to tissue-specific homing [46]. Furthermore,

culture-dependent differences in expression of receptors as

well as in migration of MSC [47] have been reported, and

the source of cells, e.g., bone marrow, placenta and cord

blood, influences migratory potential [48]. In the present

study after longer culture periods, MSC showed the same

chemotaxis pattern towards apoptotic neurons and cardio-

myocytes. However, a decline in migration with increasing

passage number was observed.

In conclusion, we have identified a mechanism, apop-

tosis, which initiates migration of MSC after neuronal and

Fig. 4 Expression of HGF in HT-22 and HL-1 cells. mRNA

expression of HGF in vital, apoptotic (300 nM staurosporine, 10 h)

and necrotic (40 lM H2O2, 10 h) HT-22 hippocampal neurons and

HL-1 cardiac myocytes was determined by RT-PCR (a). GAPDH

served as positive control, reactions without reverse transcriptase (all

negative, data not shown) served as negative controls. A 100-bp

ladder was used as size marker. HGF levels in conditioned media

derived from vital, apoptotic [300 nM staurosporine, 10 h; 10 mM

sodium azide 10 h; 100 lg/ml poly (I:C), 24 h] or necrotic HT-22 and

HL-1 cells (40 lM H2O2, 10 h; 25% ethanol, 1 h; 56�C, 30 min)

were measured by ELISA (b). Vital, apoptotic, and necrotic cells are

indicated by grey, black, and white columns, respectively. Data are

expressed as mean ± SEM for n C 2

Fig. 5 Expression of the HGF receptor c-Met in MSC. Expression of

c-Met in 4 MSC lines (MSC A–D) was detected by RT-PCR (a).

GAPDH and RNA from the cell line HepG2 served as positive

controls and reactions without reverse transcriptase (all negative, data

not shown) served as negative controls. A 100-bp ladder was used as

size marker. Surface expression of c-Met on MSC (b) was detected by

staining with a c-Met specific monoclonal antibody and flow

cytometry (open histogram). Negative control staining is indicated

by a gray histogram
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cardiac tissue injury and could show that the HGF/c-Met

axis is the key pathway involved.
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