
MULTI-AUTHOR REVIEW

Control of death receptor ligand activity by posttranslational
modifications

R. Weinlich • T. Brunner • G. P. Amarante-Mendes

Received: 20 January 2010 / Accepted: 20 January 2010 / Published online: 20 March 2010

� Springer Basel AG 2010

Abstract The death receptor ligands are involved in many

physiological and pathological processes involving trig-

gering of apoptosis, inflammation, proliferation, and

activation. The expression of these molecules is reported to

be tightly regulated at the transcriptional level. However,

over the last few years, an increasing number of data

demonstrated that the control of transcription is only one of

the mechanisms that manage the expression of the death

receptor ligands. Thus, this review is focused on post-

translational regulation of the three main members of this

family, namely FasL, TNF-a, and TRAIL. We discuss here

the importance of distribution, storage, and degranulation of

these molecules, as well as their shedding by proteases on

the control of death receptor ligands expression and activity.

Keywords FasL � TNF � TRAIL � Rafts � Lysosomes �
Degranulation � ADAM � Metalloprotease � Shedding

Introduction

The family of death receptors (DRs) belongs to the larger

superfamily of tumor necrosis factor (TNF) receptors.

Members of this subfamily, such as Fas (CD95/APO-1),

TNF-R1, TNF-R2, TRAMP (DR3), TRAIL-R1 (DR4),

TRAIL-R2 (DR5), DR6, EDAR, and p75NTR, contain an

exclusive a 80 amino acid-long domain called ‘‘death

domain’’, that is essential for apoptosis induction [1, 2].

They are activated by their cognate ligands, which belong

to the TNF-a protein family and are usually called ‘‘death

receptor ligands’’ [3, 4]. These molecules are comprised of

a C-terminal extracellular portion (which interacts with

DRs), a transmembrane domain, and an N-terminal domain

[5, 6]. An exception is lymphotoxin-a (LTa), which is

produced as a soluble protein. The most studied and well-

described members of the death receptor ligands family are

the FasL (CD95L), tumor necrosis factor alpha (TNF-a)

and the TNF-related apoptosis-inducing ligand (TRAIL).

FasL is the prototypical death receptor ligand. It is

mostly expressed in the hematopoietic compartment,

including dendritic cells and NK, B, and T lymphocytes but

can also be found in immune privileged sites, such as

retina, testis, and ovary as well as in chronically inflamed

tissues [7, 8]. FasL is a well-known apoptosis inducer and

therefore it is involved in many physiological and patho-

logical situations that result in cell death. FasL expression

on effector cells can trigger death of target cells. However,

when expressed in T cells, it can also induce a suicide

process called activation-induced cell death (AICD) [9],

involved in the deletion of autoreactive or chronically

stimulated T cells and thereby contributing to the mainte-

nance of the homeostasis of the immune system [10]. In

non-hematopoietic tissues, FasL expression is important

for the protection of immune privileged sites from damage
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inflicted by infiltrating immune/inflammatory cells [11]. In

addition to its proapoptotic role, FasL has also been shown

to induce T cell activation and proliferation [12].

TNF-a is better known for its pro-inflammatory activity.

It is involved in a myriad of physiological and pathological

processes, including inflammation, reproduction, metabo-

lism, and immune responses. TNF-a not only induces cell

death but also proliferation, differentiation, and activation

of immune and non-immune cells [13]. TNF-a expression

is tightly regulated and occurs mainly in hematopoietic

cells, such as macrophages, monocytes, neutrophils, and

lymphocytes, although it can also be found in some non-

hematopoietic cells, like the microglia, fibroblasts, and

muscle cells [13]. In regard to its pro-apoptotic function,

TNF-a is known to be the major mediator of macrophage-

induced cytotoxicity but is also important for T cell-

mediated killing [14] .

In contrast to FasL and TNF-a, TRAIL is widely and

constitutively expressed, both in non-hematopoietic tissues,

like colon, placenta, and small intestine, and in hemato-

poietic tissues including spleen, thymus, and lymph nodes

[15]. In some cell types, especially immune cells, TRAIL is

upregulated in response to diverse stimuli, such as TCR

stimulation and IFN type I for T cells, LPS for monocytes

and macrophages, and IFN type I, IL-12, and IL-15 for

NKs [16–19]. Although TRAIL is reported to have dif-

ferent functions, including inhibition of proliferation [20],

regulation of hematopoiesis [21], and killing of virus-

infected cells [22], the most studied role of this protein is

the induction of apoptosis in tumors. Differently from

TNF-a and FasL, TRAIL specifically induces apoptosis in

a vast number of tumors without killing non-transformed

cells [23–26]. Furthermore, it synergizes with radiotherapy,

chemotherapeutic drugs, and other death receptor ligands

to promote tumor cell death [27–30]. However, TRAIL

may induce liver damage under some stress and/or

inflammatory conditions [31, 32].

Although primarily produced as transmembrane pro-

teins, the death receptor ligands can be released by

proteolytic cleavage, which may alter their biological

activities. Whereas transmembrane ligands in general pos-

sess potent pro-apoptotic activities, soluble proteins may

maintain apoptosis activities, acquire antagonistic proper-

ties, or become pro-inflammatory cytokines [3, 6, 33, 34].

Thus, given the important biological functions of death

receptor ligands, it is not surprising that their expression and

availability are tightly regulated at both the transcriptional

and posttranslational levels. Besides the fundamental role of

death receptor ligands modulation at the transcriptional

level, there is an increasing body of evidence pointing

towards a critical role of posttranscriptional mechanisms in

the regulation of death receptor ligands’ availability and

activity. We will focus on posttranslational control of FasL,

TNF-a, and TRAIL, and discuss the role of sorting, storage,

and distribution of these proteins in the membranes, as well

as their shedding by proteolysis, on the regulation of death

receptor ligand activity. For transcriptional regulation of

death receptors ligands, please refer to [35–38].

Sorting and storage

In some cell types, de novo synthesized FasL is directly

targeted to the plasma membrane, as is the case in the

retina, placenta, testis, and tumor cells such as colon and

breast cancer cells. Direct translocation of de novo syn-

thesized FasL to the plasma membrane is normally

associated with immune privileged sites or malignancies

[39–43]. In other cells, mostly from the haematopoietic

lineages, like cytotoxic T cells and NK cells, FasL can

either be directly transported to the plasma membrane or

stored in granule-like structure, normally described as

secretory lysosomes [44–46]. Interestingly, intracellular

storage of FasL is usually observed in cell types with

inducible FasL expression, e.g., T cells and NK cells [45,

47, 48]. Stimulation of these cells not only induces de novo

synthesis and direct transportation of FasL to the cell sur-

face but also promotes degranulation of preformed FasL,

which further contributes to engagement of the Fas

receptor on the target cells and induction of target cell

killing [45, 49]. Thus, storage of FasL in secretory lyso-

somes adds an additional level of control of this dangerous

death-inducing ligand.

Secretory lysosomes are acidic double-membrane

organelles similar to conventional lysosomes in the sense

that they have all the protease machinery requested for

degradative processes [50, 51]; however, they also function

as storage compartments for secreted proteins, including

histamine, perforins, granzymes, and FasL [52–54]. Upon

appropriated stimuli, like the recognition of a target cell,

the vesicles are directed to the site of interaction where

they fuse with the plasma membrane, exposing previously

stored membrane-attached proteins and also releasing their

soluble content [55].

Although initial data indicated that storage and

degranulation of FasL is similar to the general mechanism

described for other lysosomal proteins, like granzymes,

currently it is accepted that FasL is sorted and released by

different mechanisms. In 1999, Bossi and Griffiths showed

that FasL usually co-localizes with markers of secretory

lysosomes––CD63, perforin, and granzyme––in CTLs and

NKs as well as in activated CD4? T cells [45]. Additional

support for the co-localization of FasL and perforin was

provided by Kojima et al. [56], who showed that FasL

stained at the periphery of the same granules whose cores

stained for perforin. However, later work by Kassahn et al.
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showed that ectopically-expressed FasL in Jurkat cells was

rarely found in the same granules as CD63 and CD107a,

both markers of secretory lysosomes [57], and the same

pattern was also described for a murine CTL clone [49].

Indeed, a recent paper from Schmidt et al. [58] revealed

that, upon extensive fractioning of the cytolytic granules,

FasL was enriched in a different fraction than perforin,

granzymes, and other conventional secretory lysosomes

markers. They speculated that distinct secretory lysosomes

subtypes may form from an initial multivesicular complex,

resulting in two independent compartments. The charac-

terization of specific markers for these lysosome subsets

might shed light on these contradictory data concerning

FasL subcellular localization.

In accordance with the distinct FasL storage site, FasL is

transported to secretory lysosomes by an unconventional

pathway, which is dependent on the FasL proline-rich

domain (PRD) and independent of the well-established

di-leucine/tyrosine-based domains, which are lacking in the

FasL cytoplasmic tail [44, 59, 60]. In the absence of the

PRD domain, FasL travels by default to the plasma

membrane indicating that this domain is critical for sorting

FasL to the secretory lysomes. While FasL devoid of this

PRD goes directly to the cell surface, its integration into

distinct sites of the plasma membrane (like membrane

rafts) is also disturbed (further discussed below) [44, 61].

Molecular modeling of FasL PRD predicted that this

domain could interact with proteins that contain

Src-homology 3 (SH3) domains or WW motifs [44], and

further studies showed that, at least in vitro, FasL PRD can

promiscuously interact with a large list of SH3 and/or

WW-containing proteins [62–64]. These include the Fyn,

Lyn, and Fgr kinases, the adaptor proteins Nck, Grb2, and

PSTPIP, and the Pombe Cdc15 homology (PHC) proteins

PACSIN1-3, FPB17, CIP4, and CD2BP1 [46, 64–67]. Thus,

overexpression of PHC proteins in nonhematopoietic cells

promotes, at least partially, the sorting of FasL to the

secretory lysosomes instead of to the plasma membrane

[46]. The same was found for PSTPIP, which also caused a

reduction of FasL-mediated cytotoxicity due to a reduced

FasL surface expression [68]. Interestingly, the internali-

zation of FasL to the secretory lysosomes is dependent on

SH3-containing Src kinases phosphorilation of FasL PRD

and also the mono-ubiquitylation of this domain [69].

Finally, FasL PRD also plays a role during degranulation.

Thornhill et al. investigated the participation of the adaptor

protein Grb2 and found that it is important to sort FasL to

the plasma membrane through its connection to adaptin-b, a

well-established molecule involved in protein trafficking. In

cells with reduced levels of GrB2, FasL accumulated in

intracellular vesicles [70]. Finally, Nck may be involved in

the degranulation of vesicle-stored FasL into the immuno-

logical synapse of TCR-stimulated T cells, by a mechanism

dependent on actin cytoskeleton and on WASP/WIP

proteins [67].

As TNF-a and TRAIL have a much smaller cytoplasmic

tail and do not present the PRD domain [63], it is believed

that they are not trafficked to secretory lysosomes the same

way as FasL. TNF-a is thought to be targeted to the

secretory lysosomes after a transient exposure in the

plasma membrane followed by re-endocytosis [71]. In

rodents, N-linked glycosylation of mannose-6-phosphate

residues is required for proper sorting [72], while in

humans, the TNF-a cytoplasmic tail is dispensable [71]. In

fact, the accumulation of TNF-a is practically restricted to

mast cells [73, 74], while in the other cell types, TNF-a is

synthesized as a 26-kDa transmembrane protein, and later

on proteolytically processed on the plasma membrane to a

17-kDa soluble form [75]. Although some papers have

shown that TRAIL accumulates in diverse granular struc-

tures, like secretory lysosomes, the mechanism of TRAIL

trafficking is still unknown [76–80]. Interestingly, de novo

synthesized TRAIL molecules in neutrophils are stored in

slightly different vesicles, indicating that more than one

mechanism is involved in TRAIL sorting [76, 77].

Distribution in the membrane

Membrane rafts are plasma membrane compartments

enriched for sphingolipids and cholesterol [81]. They are

less fluid and more ordered than the phospholipid-rich

portions of the plasma membrane, conferring them great

lateral mobility without losing their integrity [82]. They

usually contain various receptors and molecules involved

in several signaling pathways and, as they can aggregate in

larger structures, they are involved in controlling the

intensity and efficiency of the response to diverse cellular

stimuli, including TCR, BCR, and FceR engagement [83].

Thus, membrane rafts often represent signaling platforms.

They have also been reported to be involved in regulating

death-receptor-mediated induction of apoptosis [84, 85].

Recently, two independent groups demonstrated that

FasL recruitment to the membrane rafts is an important

posttranscriptional event, which strongly enhances the

killing activity of this molecule [61, 86]. Indeed, the dis-

ruption of membrane rafts in T cells by various means, e.g.,

cholesterol depletion, cholesterol sequestration, or inhibi-

tion of cholesterol synthesis, strongly inhibits FasL-

induced target cell killing [61]. Further support for these

results is provided by two other publications, which show

that enforced expression of FasL in HeLa cells resulted in

its translocation to the rafts [87], and in Jurkat cells, FasL

was recruited to the membrane microdomains upon apli-

din-mediated chemotherapy [88]. It is also important to

point out that high-stability supramolecular Fas–FasL
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clusters are formed in the contact site between effector and

target cells, which may be partially mediated by recruit-

ment of FasL into the membrane rafts [87].

The mechanism for enhanced FasL killing activity by

clustering in membrane rafts may be explained by the fact

that the proper formation of death-inducing signaling

complex (DISC) during Fas triggering is dependent on (at

least) two adjacent FasL molecules [89] and that, upon

interaction with Fas, FasL may become aggregated within

the membrane rafts [86]. In fact, different reports have

shown that raft localization is important for activation of

downstream signaling events and apoptosis induction

[90–92]. It is thus feasible to speculate that, in the absence

of proper clustering of FasL, killing of the target cell might

be limited. In contrast, the non-polarized distribution of

FasL throughout the plasma membrane could also result in

uncontrolled bystander killing of unrelated neighboring

cells. Thus, accumulation and aggregation of FasL in

membrane rafts of cytotoxic lymphocytes may assure

specific and efficient killing of the target cells by focusing

the signal towards them and by promoting, in target cells,

the clustering of Fas receptor in membrane rafts.

Substantial data relating to TNF-a and TRAIL distri-

bution in the different plasma membrane microdomains is

still lacking, but it is interesting to note that the recruitment

of the TNF-R1 into the membrane rafts results in the

opposite effect than Fas receptor clustering. Rather than

enhancing apoptosis induction, membrane raft-clustered

TNF-R1 preferentially induces NF-jB activation, resulting

in enhanced pro-inflammatory and pro-survival responses

[84, 91, 93]. Also, TRAIL-R1 and -R2 can be recruited to

the membrane rafts, enhancing the susceptibility to apop-

tosis induction [88, 94].

Different mechanisms for the recruitment of molecules

into the membrane rafts have been described, including

phosphorylation, myristoylation, palmitoylation, and dou-

ble acetylation [94–97], as well as the interaction with

trafficking proteins or proteins anchored in the rafts [70]. In

the case of FasL, the domain responsible for raft locali-

zation was mapped as being the proline rich domain (PRD).

Deletion of this domain strongly reduced the recruitment of

FasL into the rafts and, as a consequence, diminished FasL-

dependent killing of target cells. In contrast, the deletion of

a casein kinase II target site, named SxxS motif, did not

affect raft recruitment [61]. As described in the previous

section, the PRD domain is also involved in the trafficking

of FasL to secretory lysosomes and to the plasma mem-

brane, indicating that this domain has a broad role on FasL

transportation. The PRD domain enables interactions with

proteins containing SH3 or WW motifs. Among them Fyn

and Lck seemed to be the best candidates to modulate the

trafficking of FasL to the membrane rafts, since they

physically interact with FasL and reside inside this

structure [64, 66]. However, to date, none of these mole-

cules has been convincingly shown to be involved in FasL

recruitment to membrane rafts. On the contrary, Nachbur

and colleagues did not find more FasL in membrane rafts in

293T cells ectopically expressing Lck and Fyn [61].

Taking into the consideration that: (1) depending on cell

type, FasL can be mostly stored in secretory lysosomes,

distributed throughout the membrane or concentrated in

membrane rafts, (2) PRD domain seems to be involved in

all trafficking events, and (3) different maturation stages or

different stimuli can alter FasL distribution, we speculate

that different sets of PRD-interacting proteins may control

FasL storage and distribution, and that their expression and

availability will affect the final result. Therefore, further

studies, focusing on different moments in the differentia-

tion and/or maturation of a FasL-expressing cell as well as

different activating signals, are necessary to unravel the

underlying mechanisms that govern intracellular storage

and surface expression of FasL.

Shedding by proteolytic activity

Another critical aspect about the regulation of death receptor

ligand activity is the conversion of the transmembrane

molecule into a soluble ligand by a proteolytic process called

shedding. Membrane FasL (mFasL) is considered to be the

primarily pro-apoptotic version of FasL while secreted FasL

(sFasL) has either no activity or is rather anti-apoptotic

[6, 34, 98]. Still, some controversy remains, as sFasL is also

described as an inducer of cell death [99–101]. Recently, a

study by O’Reilly et al. [102] shone new light on this matter.

They generate gene-targeted mice that selectively lack

either secreted or transmembrane FasL and demonstrated

that, while the former is apparently normal and its cells

exhibit normal FasL-mediated cytotoxicity activity, the

latter develops lymphadenopathy and autoimmunity, similar

to the FasL-deficient gld mice. Moreover, the inhibition of

the proteases involved in FasL shedding enhanced CD4? T

cell-mediated cytotoxicity [103], and the expression of a

non-cleavable form of FasL in ovarian and cervical carci-

noma cells significantly decreased cell survival [104].

Although the first form of TNF-a discovered was the

soluble cytokine, subsequent studies identified the 26-kDa

transmembrane form of TNF-a as one of the cytotoxic

molecules used by activated T cells and macrophages to kill

target cells [14, 105]. In fact, similarly to FasL, TNF-a is

produced as a transmembrane molecule. Membrane bound

TNF-a is then converted to its soluble form by ADAM17

(TACE, TNF-alpha converting enzyme), a member of

the ADAM (a disintegrin and metalloprotease) family of

metalloproteases. Using a non-cleavable transmembrane,

TNF-a, Perez et al. [106] showed that processing of TNF-a
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is not required to the pro-apoptotic effect of this molecule

and that these cells could kill virus-infected target cells

by cell–cell contact. Also, transplanted T cells that express

only the noncleavable TNF-a presented a decreased graft-

versus-host disease without impairing its anti-tumor acti-

vity [107]. However, only sTNF-a sensitizes T cells for

enhanced AICD [108].

Shedding of death receptor ligands is not only important

to regulate their pro-apoptotic functions but it also modu-

lates the nonapoptogenic functions of these molecules.

sTNF-a is a pro-inflammatory cytokine involved in almost

all immune responses and also has a critical role in a great

variety of inflammatory and/or auto-immune diseases

[109]. For example, mTNF-a transgenic mice are protected

from LPS-induced death [110] similarly to the animals

treated with an inhibitor of TNF-a sheddase [111], high-

lighting the importance of a tight control of sTNF-a
generation. sFasL also has a pro-inflammatory and tumor-

igenic effect, as depicted by mice expressing only the

secreted form of FasL, which develop SLE-like syndromes

and histiocytic sarcomas [102].

To date, two members of the ADAM family of metal-

loproteases were described as being involved in shedding

of the death receptor ligands, namely ADAM17 and

ADAM10. ADAM17 and ADAM10 share the highest

amino-acid identity in comparison to the other ADAMs,

and both possess an extracellular zinc-dependent metallo-

protease catalytic domain, which is responsible for the

shedding activity [112, 113].

ADAM17 was implicated for the first time as the main

TNF-a sheddase in 1997 in a study that showed that mice

with non-functional ADAM17 lacks 90% of its ability to

process precursor TNF-a [112]. Since then, its role has

been confirmed by different groups, but it is still a matter of

debate whether ADAM17 is the sole TNF-a-processing

ADAM [113–115]. Antisense-mediated reduction of

ADAM10 expression in THP-1 cells did not alter the

quantity of secreted sTNF-a [116], and ADAM10 overex-

pression in MEFs and CHO cells did not enhance TNF-a
shedding [115]. On the other hand, human and bovine

ADAM10 can cleave recombinant TNF-a [117, 118], and

ADAM10 is the main TNF-a sheddase in ADAM17-defi-

cient fibroblasts [119]. Recently, Le Gall et al. have shown

that ADAM10 can, over time, compensate for ADAM17

activity in cells chronically treated with ADAM17-specific

inhibitors. They propose that the accumulation of some but

not all ADAM17 substrates could result in their leakage to

compartments where ADAM10 is more active [120], and in

this case, ADAM10 could act as a sheddase for these

molecules. Taken together, these observations may suggest

that ADAM10-dependent TNF-a cleavage depends on cell

type and TNF-a-inducing stimuli, and also on the subcel-

lular localization/storage of ADAM10 and TNF-a.

On the other hand, FasL shedding is totally dependent

on ADAM10. Incubation of FasL with recombinant

ADAM10 but not with ADAM17 resulted in FasL prote-

olysis and ADAM10-/- but not ADAM17-/- MEFs being

completely deficient in the generation of soluble FasL

[103]. Furthermore, CD4? T cells treated with ADAM10

inhibitors enhanced membrane FasL expression, increasing

FasL-mediated cytotoxicity and AICD [103]. ADAM10-

deficient mice die early during embryogenesis, probably

due to the lack of the Notch signaling pathway [121]; thus,

the relevance of ADAM10-mediated FasL shedding in vivo

has yet to be determined.

In addition to the ADAMs, some other metalloproteases

are also involved in FasL and TNF-a shedding, as is the

case for MMP7 (matrilysin) [122, 123] and MMP3

(stromelysin-1) [124]. However, this activity seems to be

accessory to ADAM-mediated FasL and TNF-a shedding

since ADAM ‘‘loss-of-function’’ promotes a complete

blocking of FasL/TNF-a cleavage while metalloprotease

inhibitors normally result in a smaller effect on death

receptor ligand shedding [103, 115, 124].

The modulation of the metalloprotease activity involved

in TNF-a and FasL shedding is still not completely

understood, but it seems that they are induced by addition

of phorbol esters and calcium influx [113, 125]. A family

of tissue inhibitors of metalloproteinases (TIMPs), which

comprises four different members TIMP-1, -2, -3, and -4,

seems to be the mainly endogenous inhibitors of MMPs

and ADAM metalloprotease activity [126]. TIMP-3 is

reported to be the major inhibitor of TNF-a processing by

ADAM17 [127]. While rADAM17 is blocked by TIMP-3,

neither TIMP-1 and TIMP-2 showed any effect on its

activity. Although the N-terminal domain of TIMP-4 has a

strong ability to inhibit TNF-a processing, the full-length

protein presents negligible activity in inhibiting ADAM17

[128]. TIMP-1 and TIMP-3 are capable of inhibiting

ADAM10 activity, although, to date, nobody has formally

demonstrated that TIMP-1 and TIMP-3 block ADAM10-

mediated FasL shedding.

In agreement with its ability to impair ADAM10 and

ADAM17 activities in the majority of in vitro models,

TIMP-3 induces apoptosis or renders the cells more sus-

ceptible to FasL/TNF-a/TRAIL-induced death [129–131].

This was not observed upon overexpression of TIMP-1,

which is normally described as an anti-apoptotic molecule

[132]. Its pro-survival effect is independent of the TIMP-1-

mediated MMP/ADAM inhibition [133, 134] and further

studies focusing on FasL-induced cell death may clarify

whether TIMP-1 has a pro-apoptotic role by its ability to

inhibit ADAM10-mediated FasL shedding.

To date, little is known about TRAIL shedding. Mariani

and Krammer showed that metalloprotease inhibitors did

not enhance surface TRAIL expression in any cell type
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tested [135], and that the TIMP-1-mediated inhibition of

TRAIL-induced apoptosis is independent of its ability to

inhibit MMPs and ADAMs [134], indicating that MMP and

ADAM are not the major players in TRAIL cleavage. In

vitro assays indicated that TRAIL shedding can be medi-

ated by cysteine proteases [135], but the identity of the

proteases critically involved in TRAIL shedding still

remains to be elucidated.

Conclusions and perspectives

Posttranslational mechanisms involved in modulation of

death receptor ligand activity comprise sorting to and

storage in different subcellular compartments, including

secretory lysosomes and specialized cell membrane

microdomains, as well as shedding from the cell membrane

by proteolytic activity. These multiple mechanisms are

predominant, and of particular relevance, in hematopoietic

cells, especially in T lymphocytes and NK cells, where

death receptors ligands are used as both death effector and

homeostatic mechanisms.

Death receptor ligands were shown to be important to

the immune response against tumors and intracellular

microorganism-infected cells and to participate in the

immune privilege and in the homeostatic control of the

immune response, as well as being involved in a diverse

array of pathologies, including autoimmune diseases. For

Fig. 1 The expression of death receptor ligands is tightly modulated

at different levels. 1 Transcription of death receptor ligands is

modulated by groups of transcriptional activators or repressors that

are activated and/or de novo expressed in response to a variety of

stimuli. 2 FasL is either sorted directly to the plasma membrane or

stored in secretory lysosomes. Sorting of FasL is dependent on its

cytoplasmic PRD domain, which interacts with proteins that contain

SH3 domains or WW motifs, including Nck, Grb2, PSTPIP and

members of the PHC family of proteins. Similarly, TNF-a, which is

normally delivered to the cell surface, can also be stored in secretory

lysosomes. However, TNF-a storage depends on a brief exposure at

the plasma membrane followed by re-endocytosis. TRAIL can also be

found in secretory lysosomes although its sorting mechanism still

remains to be elucidated. 3 Recruitment of FasL to membrane rafts

boost its killing potential, probably by enhancing the clustering of Fas

in target cells. Trafficking of FasL into the rafts is dependent on the

cytoplasmic PRD domain of FasL and independent of the SxxS motif.

To date, TRAIL and TNF-a redistribution to the membrane rafts is

still unclear. 4 Once in the cell surface, death receptor ligands can be

proteolytically shed, being converted into soluble molecules. The

soluble forms of these ligands can acquire different or even opposing

functions, including the induction of proliferation, inflammation and

survival. The main enzymes involved in TNF-a and FasL shedding

are ADAM-17, ADAM-10, MMP7, and MMP3. TRAIL shedding

seems to involve cysteine protease activity, although no specific

enzyme has been already described. Regulation of the shedding

activity involves a family of proteins called TIMP
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all these reasons, they have been the subject of much

attention aiming to develop novel pharmacological and

genetic therapeutic approaches to different diseases.

The systemic administration of recombinant FasL as an

antitumor treatment was proved to be unfeasible; even very

low doses of this molecule induced massive liver apoptosis,

and in many cases resulted in death [136, 137]. Recently, a

FasL-base pro-drug was described as a promising treatment

against transformed cells. This pro-drug consists of an

engineered inactive form of FasL which is activated by

tumor-expressed metalloproteases [138]. One of the major

difficulties with this treatment is the proper delivery to

tumor cells, which was achieved by addition of a tumor

antigen-specific single-chain antibody to the construct. The

obvious caveat is that the tumor cell has to express the

specific tumor antigen [139]. Also, this technique would be

useful not only for FasL but also for TRAIL-based treat-

ments. As the main concern about TRAIL-based therapy is

its potential hepatocytotoxicity, a tumor-directed TRAIL

may be a safer option for tumor treatment.

Shedding of death receptor ligands from the cell surface,

limiting their proapoptotic effect and/or changing their

range of action and functions, seems to be another relevant

point of therapeutical intervention. Indeed, ADAM17 has

been recognized as an important drug target, as TNF-a
is involved in a myriad of proinflammatory diseases

[140, 141]. Conditional ADAM17-deficient mice are

strongly protected against endotoxic shock by reduced

TNF-a release [142], and ADAM17 inhibition downmod-

ulates LPS-induced TNF-a secretion, reducing collagen-

and adjuvant-induced arthritis [143]. Also, inhibitors of

TNF-a-processing were already shown to ameliorate

diverse immunological diseases, like insulin resistance,

diabetes, myelodysplastic syndrome, cancer, and sepsis;

some of them are already being tested in clinical trials [111,

144–148]. ADAM10 is another interesting therapeutical

target due to its FasL sheddase activity. Many tumors

express relatively high amounts of the transmembrane form

of FasL and use this mechanism as a form of counter-

attacking the infiltrating T cells [149]. It would be attractive

to investigate if ADAM10 is downmodulated in these

malignant tissues and if the enforced expression of

ADAM10 in these cells would reduce their tumorigenic

potential. Another interesting idea would be to enforce the

expression of a FasL molecule resistant to ADAM10/MMP7

proteolytic cleavage in transplanted organs. This may

mimic immune privileged tissues, where immune responses

are abrogated due to the killing of infiltrating cells through a

FasL/Fas-dependent mechanism. In this sense, when

Langerhans cells were transplanted together with syngeneic

FasL-expressing myoblasts they survived longer [150].

Our present state of knowledge of posttranslational

modulation of death receptor ligands is summarized in

Fig. 1. Taken together, it is now clear that future studies

are needed to improve this knowledge, aiming to devise

novel molecular approaches that can be used for clinical

applications.
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