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Abstract

Generative artificial intelligence (AI) can exhibit biases, compromise data privacy, misinter-

pret prompts that are adversarial attacks, and produce hallucinations. Despite the potential

of generative AI for many applications in digital health, practitioners must understand these

tools and their limitations. This scoping review pays particular attention to the challenges

with generative AI technologies in medical settings and surveys potential solutions. Using

PubMed, we identified a total of 120 articles published by March 2024, which reference and

evaluate generative AI in medicine, from which we synthesized themes and suggestions for

future work. After first discussing general background on generative AI, we focus on collect-

ing and presenting 6 challenges key for digital health practitioners and specific measures

that can be taken to mitigate these challenges. Overall, bias, privacy, hallucination, and reg-

ulatory compliance were frequently considered, while other concerns around generative AI,

such as overreliance on text models, adversarial misprompting, and jailbreaking, are not

commonly evaluated in the current literature.

Introduction

Artificial intelligence (AI) systems have expanded in popularity in the past 2 years as hardware,

training, and methodological improvements result in better-than-human performance on

many tasks [1,2]. Generative AI tools that create text, images, and other content are already

being deployed in many medical settings, and anyone with an internet connection is able to

access ChatGPT. Simultaneously, many medical institutions are evaluating AI to assist with

tasks that humans find tedious or time-consuming. Current research underscores the produc-

tivity enhancements brought about by these generative AI tools, especially among new

employees [3–5].
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Despite the potential of generative AI for many applications in healthcare, digital health

practitioners must understand these tools and their limitations [6–8]. Generative AI can

exhibit biases [9,10], compromise data privacy [11,12], misinterpret prompts[13,14], and pro-

duce hallucinations [15]. Given the rapid uptake and integration of this technology, failure to

appreciate their current limitations can lead to misuse and, ultimately, patient harm and other

unintended consequences [6]. We conducted a scoping review on the state of generative AI for

medicine in March 2024, with the goal of identifying important areas of discussion in the liter-

ature. We chose this review format as it captures the overall trends in this rapid emerging area

with limited primary literature available. We specifically identified 6 challenges with generative

AI and sought to evaluate when, how, and why these were presented in the medical literature,

with the goal of unifying these multiple components and clarifying where the field might need

to place additional effort.

After first discussing general background on generative AI, we focus on collecting and pre-

senting these 6 challenges key for digital health practitioners and specific measures that can be

taken to mitigate these challenges. We summarize these challenges and some potential solu-

tions in Fig 1 and provide examples in Fig 2.

Background

Generative AI encompasses AI techniques designed to create new content [16]. This content

can range from images, videos, and text to more specialized outputs such as 3D models, geno-

mic sequences, or medical diagnostics. The basic idea of generative AI is to model the underly-

ing data distribution so that new instances can be generated that are statistically similar to the

original data [17]. A notable subset of generative AI technologies is large language models

(LLM). LLMs refer to a type of artificial intelligence model that has been trained on text data—

such as books, articles, and websites—to generate novel text.

Commonly used generative AI models have extensive tools developed around them, mak-

ing it easier for digital health practitioners to incorporate them into projects. GPT-4 (Genera-

tive Pre-trained Transformer 4) was developed by OpenAI [18]. It’s mainly used for text

generation but can also be fine-tuned for various tasks (for example, translation) and now

incorporates image generation. ChatGPT is a version of the GPT series fine-tuned specifically

for conversation and available via an online chat dialog interface. There are also models that

make use of more specialized data. One example is Med-PaLM from Google, which is trained

on medical data [19]. LLaMA (Language Model for Many Applications, an open-source LLM

from Meta) offers a resource-efficient alternative to GPT-4, compatible with less powerful

hardware. Because it is open source, analysts can control everything if they wish to fine-tune

the algorithm for specific data types. Being open source also decreases the risk of adversarial

attacks against the model by enabling end-to-end verification.

Generative AI has the potential to change many aspects of digital health. While the imple-

mentation of systems has rapidly progressed, a number of ethical and legal challenges remain

to the widespread, safe, and effective use of these tools. We performed a scoping review of chal-

lenges that may impact AI systems with proposed solutions for digital health practitioners. We

believe understanding the perceptions of challenges in the field and collecting solutions from

digital health practitioners and interdisciplinary collaborators will enable these technologies to

thrive.

Methods

We searched the PubMed database for articles that specifically discussed generative AI tech-

nologies and common challenges that have been discussed previously in review articles of
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challenges with AI technologies [20–22]. In early March 2024, we searched for all papers that

contained the following string in either the title or the abstract: ("GPT" OR "llama" OR "trans-

formers" OR "Generative AI" OR "Large Language Model" OR "ChatGPT" OR "Generative

Adversarial Networks" OR "Variational Autoencoder" OR "Multimodal model") AND ("Bias"

OR "Patient Privacy" OR "HIPAA" OR "Hallucination" OR "Prompting" OR "Jailbreaking" OR
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Fig 1. Six challenges for using generative AI in digital health. Despite the potential of generative AI for many applications in healthcare, experts must

understand these tools and their limitations. Here, we present an abstraction of an AI system (Training Data, Algorithm, and Interface) and key challenges with

each part of the system. All parts of the system must be evaluated for bias (Challenge 1). Most training data and model development have focused on text

(Challenge 5), potentially missing opportunities for multimodal model development and generative adversarial networks. The generative AI algorithm may

hallucinate or produce inaccurate or nonsensical output (Challenge 4). Finally, issues impacting interfacing with generative AI technologies include

maintaining privacy (Challenge 2), protecting the model from adversarial attacks (Challenge 4), and regulating dynamic behavior (Challenge 6). GAN,

Generative Adversarial Network.

https://doi.org/10.1371/journal.pdig.0000503.g001
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"Governance" OR "Oversight" OR "FDA" OR "GDPR") AND "Medicine". The general search

strategy requires that the article discuss generative AI technology, one of the common con-

cerns with these technologies, and medicine. We only reviewed articles in English and did not

restrict the time frame or article type. We excluded articles that were about medical education

or scientific writing, as they fall outside the scope of the study. Results without abstracts were

excluded. Each paper was reviewed by 2 independent reviewers using a standardized data col-

lection form available in S1 Appendix.

We extracted the following characteristics of the included articles: PubMed ID; challenges

discussed; the article type (primary literature, model validation, opinion, review); the specific

generative AI technology discussed (ChatGPT; GPT-3; GPT-3.5; GPT-4; OpenAI; MedPalm;

Llama 2; Bard/Gemini; LLMs (in general); generative AI (in general); generative adversarial

networks; variational autoencoder; multimodal models); if there was a specific use case or sub-

field of medicine; and we recorded if the paper suggests common recommendations for AI

best practices. Differences in reviewer responses were resolved by taking the union of their

responses. The scoping review plan was not preregistered in this study, and we provide other

reporting items in S1 PRISMA Checklist.

Because this is not human subjects research and was a review of previously published arti-

cles, the study did not require the approval of an Institutional Review Board.

Results

Our initial search yielded 173 unique papers (S1 Fig). We excluded 53 papers due to missing

abstracts or because the focus was off our topic of challenges in generative AI for the practice

of medicine. This process resulted in 120 papers being included in this review. We found that

52% (N = 62) were primary literature (e.g., a data collection effort, such as an audit), 28%

(N = 34) were review articles; 23% (N = 28) were opinion pieces, and 12.5% (N = 15) were

Fig 2. Examples of challenges and key questions to ask. This table presents examples of each challenge and questions to ask.

https://doi.org/10.1371/journal.pdig.0000503.g002
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model validation papers presenting a new generative AI model (S2 Fig). We classified 17% of

papers (N = 20) into multiple categories. Although we did not restrict the article publication

date, we found that the earliest paper was published in April 2021, and the majority of articles

were published after September 2023 (S3 Fig). We found the majority of articles addressed

model hallucinations (N = 77, 64%) and bias (N = 69, 58%), followed by privacy (N = 39, 33%),

regulation (N = 37, 31%), misprompting (N = 9, 7.5%), and, finally, overreliance on text mod-

els (N = 8, 6.7%) (S4 Fig). Bias and hallucination were the most likely to be mentioned together

in an article (N = 16), followed by bias and privacy (N = 8), regulation and hallucinations

(N = 8), and all 4 topics together (N = 8) (S5 Fig).

Challenge 1: Generative AI models are biased (interface/algorithm/data)

Understanding bias in machine learning is critical, particularly given the history of machine

learning models trained on biased data that lead to discriminatory and flawed medical recom-

mendations [10,23]. Early versions of LLMs such as GPT-2 displayed similar biases [24]. Dur-

ing our review of papers, we identified 69 papers (57.5%) that raised bias as a concern for

medical practitioners or patients using AI assistance for medical decisions.

To counteract this, model providers employed debiasing techniques by preprocessing

the training data to remove bigoted content, altering the algorithm itself to incorporate

human feedback, and postprocessing the model’s predictions. The efficacy of these tech-

niques is still a subject of debate [25–28]. For instance, certain debiasing methods might

correct for one form of bias but introduce another, largely because bias measurement and

evaluation can vary across methods. As an example, a proportional representation metric

may indicate that one group of individuals is underrepresented in training data. A reweight-

ing scheme might be used to mitigate bias due to this underrepresentation, but reweighting

may then degrade model performance for other groups, such as what happened with Gemi-

ni’s widely publicized image generation [29]. Moreover, debiasing techniques may not

account for more complex, intersectional forms of bias that involve multiple attributes like

race, gender, and age.

Opportunities

For digital health practitioners concerned about bias in AI, actionable steps include subjecting

algorithms to rigorous, multidimensional fairness evaluations and considering guidelines put

out by groups such as FaaCT (facctconference.org) and Coalition for Health AI

(coalitionforhealthai.org). In our review, we found a theme of researchers across a broad range

of medical subfields evaluating ChatGPT’s responses for the accuracy of its medical advice

across patient attributes, using varied audit methods and accuracy metrics [30,31].

Many papers that we reviewed (N = 49, 41%) called for cross-disciplinary collaboration

with ethicists, social scientists, and domain experts to provide important perspectives on

potential bias [32–35]. Incorporating human feedback, through reinforcement learning from

expert feedback (RLEF) and reinforcement learning from human feedback (RLHF) can also be

used to mitigate some of these concerns [36], though the potential for human biases in this

process should be carefully considered. Implementing regular audits of AI models focused on

ethical AI, such as one recently performed in PLOS Digital Health [37], could also help keep

the technology in check [38]. Many papers (N = 42, 35%) also called for transparency in meth-

odology and open sharing of debiasing techniques and evaluation metrics to foster collective

progress in building more equitable AI systems.
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Challenge 2: Generative AI can compromise data privacy (interface)

Generative AI models often contain billions of parameters that require significant computa-

tional power to generate accurate responses. As a result, resource-limited labs or healthcare

providers may be compelled to rely on external, third-party digital tools for computational

support. However, there are ethical, regulatory, and patient privacy concerns with using third-

party generative AI tools. Before sensitive data are uploaded into these tools, potential users

must conduct a thorough legal and data privacy review, which itself is resource-intensive.

Opportunities

Institutions face crucial trade-offs about the infrastructure they employ when it comes to pri-

vacy. On one hand, third-party "Software-As-A-Service" tools are easy to deploy, capable of

handling large models, and include continual updates. Additionally, these services are exter-

nally managed, alleviating pressure to set up and maintain infrastructure. However, there may

be fewer privacy concerns if institutions pursue local hosting of AI models due to significantly

more control over the data usage and compliance with law. However, this requires dedicated

infrastructure, security measures, and knowledgeable local personnel.

Only 7 papers (5.9%) suggested localized architecture as a specific opportunity to mitigate

privacy concerns in the context of generative AI. However, developers are creating "lighter"

architectures that have fewer than 10 million parameters, can run on local networks or mobile

devices, are optimized for specific tasks, and can be trained in less time than larger models,

using a combination of model compression and higher-quality training data [39–41]. Using

generative AI models locally lessens privacy risks, as the data never leave the secure local net-

work or device [13], though there are still many other concerns [11]. Hardware specialized for

these types of models (from graphical processing units to Internet of Things wearables) is also

being developed to optimize local model runtime and battery life [42]. While the adoption of

wearables for healthcare has been low [43], patients and physicians may increase adoption as

wearables offer more value in improved digital health and telemedicine.

In response to patient privacy concerns and acknowledgment that models may not perform

well in unique patient populations [44], there is interest in federated learning [45,46]. Feder-

ated learning is when multiple actors (for example, multiple independent hospital systems or

multiple Internet of Things devices) collaboratively train a model by exchanging model

updates without sharing patient data. This approach maintains data privacy and keeps patient

data local but enables clinicians to benefit from models trained on more patient records. There

were no studies in our review that mentioned federated learning as a key opportunity. Further

work is needed to develop federated learning methods for generative AI technologies in clini-

cal practice [47].

Challenge 3: Generative AI misunderstands prompts (interface)

Due to ChatGPT’s popularity and ease of use, the chatbot interface and the importance of

crafting effective prompts have reached mainstream attention (although not all generative AI

models are text-based). There remain gaps in knowledge on how to effectively prompt these

technologies, at both basic and advanced levels. For example, although patients may be able to

query ChatGPT about their health (thus democratizing access), they may be substituting that

for necessary medical advice [48,49]. Most current resources are commercial guides focused

on specific products, which may not address the unique requirements of prompting for medi-

cal practice.

Finally, both open-source and closed-source LLMs are vulnerable to specific character

sequences that can induce harmful, biased, or unintended content in response to user prompts
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(called adversarial attacks or jailbreaking). For example, some adversarial attacks can recover

training data (such as personally identifiable information [12]). It is uncertain if such behavior

can be mitigated by LLM providers [13].

Opportunities

Thirty-nine papers (33%) highlighted the importance of practitioners understanding some

heuristics for crafting effective prompts [50,51]. The specifics of prompting will continue to

evolve over the long term as we learn more about these models [52,53]. Eventually, LLMs may

become better at articulating what the user wants than the user [54].

Of the N = 120 papers that we reviewed for this analysis, only 3 mentioned jailbreaking as a

concern for generative AI technologies in medical settings. Jailbreaking has long been a con-

cern in fields such as cybersecurity, and practitioners of digital health need to be aware of this

threat. LLMs can be used to jailbreak other LLMs, and often due to the large size, retraining

models to patch vulnerabilities is nonfeasible [55]. Algorithms to reduce adversarial attacks

and ensure the responses align with human values should be deployed in medical settings

[56,57].

Challenge 4: Generative AI hallucinates (algorithm)

Many types of AI models generate outputs—or hallucinations—that are factually incorrect.

This may occur when the model emphasizes certain parts of the input while neglecting other

(potentially more relevant) parts or if there are errors in the training data. LLMs are funda-

mentally a series of mathematical transformations based on statistical patterns, not a conscious

process. Professionals embedded in clinical processes may lack foundational AI training to

adequately address hallucinations [58]. Conversely, those adept in AI often miss the nuanced

domain-specific knowledge crucial for crafting AI-assisted diagnostic tools. This disconnect

and lack of multidisciplinary expert review pose risks in creating systems that might misinter-

pret or inaccurately represent biomedical data due to these hallucinations.

Opportunities

Similar to papers evaluating model bias, there was a theme among papers evaluating model

hallucinations of researchers evaluating ChatGPT’s responses for accuracy across medical sub-

fields [59]. The consensus of these papers was that physicians should review medical advice to

patients and not rely on an AI for assistance. Similar to bias, the most recommended solution

to hallucinations was an external review by experts (N = 49, 41%). However, there were some

tasks where hallucination was less of a risk, and, thus, physician oversight was not needed: low-

ering the reading level of already approved medical advice for patients, finding and extracting

social determinants of health in the medical record, etc.

Only N = 11 (9.2%) of papers suggested modifying model parameters to address hallucina-

tion. Practitioners should be aware of the temperature parameter in GPT-4, which adjusts the

model’s output randomness; higher temperatures result in more “creative” responses (with

more potential for hallucination), whereas lower temperatures yield focused results closer to

the training data and prompts [60]. Adversarial testing or out-of-distribution evaluation can

be helpful in mitigating such hallucinations for developers. In applications such as AI-assisted

diagnosis, introducing an expert-in-the-loop can help in identifying and correcting

hallucinations.

There is demand for an AI that accurately searches a knowledge graph (e.g., academic

abstract databases like PubMed) and produces citations or linked references [61–63]. We
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further anticipate that integration with existing knowledge will become common in generative

AI systems.

Challenge 5: Most generative AI development is focused on language

models (algorithm/data)

Medical practice incorporates a wide range of data types, including imaging, genetic

sequences, biometric data, and more. Of the 120 papers that we reviewed, 81% (97 articles)

were about ChatGPT, GPT-4, or other LLMs produced by OpenAI (S6 Fig). However, other

generative models could be better for medical applications such as medical imaging or drug

discovery. By focusing mainly on LLMs, we might miss opportunities presented by these alter-

native models.

Opportunities

There are many emerging uses of generative AI with nontext data. In genetics and pharmaceu-

tical research, generative AI can analyze the chemical structures of existing drugs (using, e.g.,

SMILES [64], and generate new molecular structures that are likely to have desired therapeutic

effects. Generative adversarial networks can also generate synthetic data, helpful for protecting

patient privacy and harnessing the generative capabilities [65]. Despite the focus on OpenAI’s

models, our review also uncovered other models in development that may be of interest to dig-

ital health practitioners [66,67].

There is particular interest in multimodal foundations models—AIs that can interpret and

generate multiple types of data simultaneously—which may enhance clinical practice [68]. Cli-

nicians often dictate clinical notes during or after patient visits. Generative AI could take these

voice recordings and annotate them for specific medical terms or highlight potential areas of

concern. The annotations could then be used for coding diseases, generating billing informa-

tion, flagging potential conditions for further investigation, or quality assurance. It is also pos-

sible to generate text output from nontext input, which may aid in generating alt text

representations of images for accessibility [69,70].

Challenge 6: Generative AI systems are dynamic (interface)

Generative AI agents are being used in clinical practice for a wide variety of tasks [71,72]. Sys-

tems of AI agents working together may become common in the workplace [54]. These agents

do not follow hard-coded rules but rather adapt and make decisions based on their "experi-

ences" and "interactions" within the system [73]. This allows for more dynamic, emergent

behaviors and outcomes, which can provide deeper insights into complex systems, such as

oncology trials [74]. However, medical devices, including AI, need to be approved by regula-

tory bodies, which requires proving that they are safe and effective [75], yet many have not

been approved. If an AI system is continually changing, it might not remain within the

approved parameters. Ongoing evaluation is critical in applications where data drift may be a

concern [76–78].

Opportunities

Much has been written about the urgency of regulation. In short, there are issues of compli-

ance with the Health Insurance Portability and Accountability Act (HIPAA) and General Data

Protection Regulation (GDPR), as well as issues of responsibility in medical malpractice

[79,80]. Calling for regulation was a common recommendation of the literature we surveyed;

32% (N = 38) called for increased attention to HIPAA and GDPR compliance, and 35%
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(N = 42) called for greater transparency in the data inputs and outputs for regulation. While

many articles called for greater regulation, there is still much debate about how to regulate this

technology effectively [81]. We direct the interested reader to Bertalan Meskó and Eric Topol’s

review [79], which was identified during our search and details a plan to regulate companies

rather than specific models. We also direct the interested reader to the World Health Organi-

zation policy brief [82] and the United States government’s directive to the Food and Drug

Administration to regulate AI in medical settings [83–85].

A few articles that we reviewed (n = 16, 13%) called for not using private health information

to train models and, instead, using synthetic data sets (generated data that emulate real-world

data) [86–89]. These data sets are gaining popularity in biomedical settings because they can

facilitate research, including generative AI model training, in contexts where data are scarce or

sensitive. These also naturally fit into deep learning approaches, like generative adversarial net-

works, which are designed to synthesize new data sets. As they become more common, practi-

tioners need to know these data sets may be limited by the distributions observed in the

original data (for example, limitations due to small training samples). An open area of develop-

ment is how to replicate causal effects identified in the medical literature in synthetic data.

Conclusions

Generative AI can exhibit biases, compromise data privacy, misinterpret prompts, and pro-

duce hallucinations. In this article, we performed a scoping review of challenges that may

impact AI systems with proposed solutions for digital health practitioners. This review focused

on generative AI approaches in 2022 through early 2024 and focused specifically on applica-

tion areas that are already part of medical practice, as well as a subset of 6 core challenges that

emerged as repeated themes in the literature. We have attempted to convince domain experts

in digital health that, although there are challenges, with a grasp of these technologies, there

are also opportunities. Seeking out diverse data sets and robust fairness evaluations can miti-

gate biases. Localized, domain-specific AI models bolster data privacy, while innovations in

hardware and wearables may eventually enhance telemedicine. Adversarial testing, expert-in-

the-loop mechanisms, and knowledge integrations can enhance prompting and limit halluci-

nations, eventually enhancing the clinical processes. While much AI focuses on language mod-

els, huge potential lies in nontext data applications. Lastly, renewed attention on regulation

will both clarify appropriate use within clinical practice and encourage innovations around

synthetic data that are HIPAA compliant. Digital health technologies will likely improve by

understanding the perceptions of challenges in the field and collecting solutions from digital

health practitioners and interdisciplinary collaborators.

Supporting information

S1 Appendix. The structured data collection form used for recording information about

each paper evaluated in the scoping review, including the PMID, challenges addressed,

type, technologies used, field, and recommendations.

(DOCX)

S1 PRISMA Checklist. The Preferred Reporting Items for Systematic reviews and Meta-

Analyses extension for Scoping Reviews (PRISMA-ScR) checklist, indicating individual

document sections for reporting of each checklist item.

(DOCX)

S1 Fig. PRISMA statement flow diagram.
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S2 Fig. Classification of each paper found in the scoping review into primary literature,

review articles, opinion pieces, and model validation.
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S3 Fig. Time of publication of each paper found in the scoping review.
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S4 Fig. Classification of each paper found in the scoping review into the 6 challenges: bias,

privacy, hallucination, misprompting/jailbreaking, text models, and dynamics/regulation.
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S5 Fig. Overlap of challenges mentioned in each paper found in the scoping review.
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S6 Fig. Classification of each paper by type of generative AI technology evaluated.
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