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Abstract
This paper presents a modelling framework which can detect the simultaneous pres-
ence of two different types of spatial process. The first is the variation from a global
mean resulting from a geographical unit’s ‘vertical’ position within a nested hierar-
chical structure such as the county and region where it is situated. The second is the
variation at the smaller scale of individual units due to the ‘horizontal’ influence of
nearby locations. The former is captured using a multi-level modelling structure while
the latter is accounted for by an autoregressive component at the lowest level of the
hierarchy. Such a model not only estimates spatially-varying parameters according
to geographical scale, but also the relative contribution of each process to the overall
spatial variation. As a demonstration, the study considers the association of a selection
of socio-economic attributes with voting behaviour in the 2019 UK general election. It
finds evidence of the presence of both types of spatial effects, and describes how they
suggest different associations between census profile and voting behaviour in different
parts of England and Wales.

Keywords Spatial regression · Hierarchical model · Intrinsic conditional
autoregressive models · UK general election 2019 · Butler swing

Introduction

While it is common to capture spatially varying phenomena using models based on
a multi-level framework or using an autocorrelation component, the objective of this
study is to build amodel to test for the simultaneous presence of both of these processes.
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This is done by combining a nested tree-structure of administrative boundaries with
an additional spatially autocorrelated process at the lowest level of the geographical
hierarchy. This framework makes it possible to allocate spatial variation according to
process and geographical scale. The output of such amodel is a set of spatially-varying
coefficients at different hierarchical levels, a spatially autocorrelated random compo-
nent at the lowest level of the hierarchy, and an estimation of the relative contribution
of each to overall variance. The autocorrelated component can take the form of a col-
lection of random intercepts, random coefficients, or both, according to specification.

It thus falls into the category of hierarchical spatial autoregressive modelling
(HSAM) introduced by Dong and Harris (2015), except that it uses a frequentist
rather than a Bayesian approach.

The model is applied to a case study of voter behaviour, examining the association
of census variables which have been used by Beecham et al. (2018) to study spatial
variation in recent voting patterns, with voters’ tendency to change allegiance from
Labour to the Conservative Party in the 2019 UK general election. By combining hier-
archical and autocorrelated processes, it finds that at different levels of geographical
hierarchy, the association of these variables with voting outcomes varies in magnitude
and direction across the study area. A constituency with a greater ethnic diversity, for
example, has markedly different associations with voting behaviour in London and
parts of the East Midlands than it does in the North East. It also finds evidence of
spatial effects reflecting a similarity among neighbouring locations, which are free to
operate across administrative boundaries. Certain places have an additional tendency
to vote a certain way which cannot be explained by census profile or nested location.
Overall, it estimates that approximately 27% of the variation between constituencies
is accounted for by the spatial hierarchy, while a further 41% can be attributed to
constituency level ‘spillover effects’ from adjoining constituencies.

This multilevel spatial approach to analysis is suitable not only for the study of
elections, but can be easily adapted to any context or distributional family where a
combination of spatial processes are hypothesised to be at play simultaneously, such
as disease mapping (Vranckx et al., 2019) and survival models for businesses (Bivand
& Gómez-Rubio, 2021).

Spatial Processes

The incorporation of spatial processes intomodels is a generic issue across quantitative
human geography (Fotheringham&Brunsdon, 1999). Firstly, human geography is not
like physical geography in that it does not necessarily obey universal laws. While it
may be possible to identify associations of certain covariates with an outcome, it
is not always the case that these associations will be the same in different places.
Furthermore, the observations within a dataset which has a geographic component
can not be seen as independent. As Tobler’s First Law of Geography (Tobler, 1970)
states, “everything is related to everything else, but near things are more related than
distant things”. These additional realities should be reflected in the structure of a spatial
model.
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Hierarchical Process

One way to account for location is by using hierarchical or multi-level models, which
model different spatial units at different levels. Much of the work done by Goldstein
(1987) in the development of multi-level models was focused on education research.
In such a context, pupil outcomes could be seen as depending not only on the various
decisions of local education boards (highest level), but within each of those, on the
policies of different head-teachers in each school, and subsequently on the skills of or
decisions made by each teacher within each school. The lowest level would then be the
individual pupil. These different levels, however, could also be nested geographical
divisions, such as regions, counties and electoral constituencies. The introduction
of geographical levels was developed by Jones (1991), and such a framework has
previously been applied to voting behaviour (Jones et al., 1998). This nested process
can be characterised as ‘vertical’ in the sense of correlations extending up and down
through a branching tree.

This structure, however, requires us to know a priori what the appropriate scales
are and to introduce hard boundaries accordingly. Standard mixed modelling assumes
that beyond the random effects at these scales, no further correlation exists. In a geo-
graphical context, while this may explain a certain amount of the process, there could
be a further spatial process which is better described using a spatially-autocorrelated
framework.

Spatial Autocorrelation Process

Spatial processes can manifest themselves in a manner which is not consistent with
discrete hard boundaries but is instead a continuous process where the value of each
unit is related to that of its neighbours. Such modelling is long-established and com-
monplace in human geography, beginning with Geary (1954)’s discussion of issues
of spatial autocorrelation, or contagion, when examining Irish agricultural data, and
the introduction of kriging (Krige, 1966), where point data is used to predict values
of other unknown points based on proximity as measured by distance. Metrics such
as Geary’s C and Moran’s I use different approaches to quantify this phenomenon.

For aggregated areal data, a similar principle to kriging can lead to the construction
of contiguity matrices to capture proximity not in terms of distance, but whether or not
areal units are adjacent. Unlike the hierarchical framework, this process can be seen
more as a moving focal point. In any particular location, it is the places immediately
adjoining it which influence it the most. As the moving-window of focus shifts to
the next location, it will in turn share many of the same influences but will gain
some new ones. In this sense, it can be seen as capturing ‘horizontal’ correlations
between adjoining units at the same level. When this process is extended across the
study area, a different type of spatial effect is captured. In this framework, a priori
groupings are irrelevant and correlation between spatial units is based only on their
proximity.
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ICAR Models

This process in areal data can be captured by conditional autoregressive (CAR) struc-
tures, first introduced by Besag (1974), of which intrinsic conditional autoregressive
(ICAR) models are one type (Besag & Kooperberg, 1995). A CAR model captures
spatial relationships using a contiguity matrix where all pairs of spatial units are clas-
sified as either neighbours or not neighbours. The conditional expected value for each
unit then depends only on the values of adjacent units. In this way, it is an example
of a Markov random field. An ICAR model assumes complete correlation between
all units, the strength of which is based on their degree of contiguity. This broader
dependence allows it to capture more extensive spatial relationships than the CAR
structure.

Combination of Both Processes

But it can certainly be the case that both hierarchical and autoregressive processes are
operating simultaneously.

In the hierarchical education context discussed above, a policy enacted by one
education board could lead to an increase in school funding for a certain sport within
their zone of governance. Such a policy would cease immediately upon crossing over
into the neighbouring authority. However, the effects would not necessarily be so rigid.
Should this sport prove popular, it is likely that the children will begin playing it more
with their friends, regardless of what school their friends may attend. The same could
then be true for friends of friends and this process would follow a contagion-like
autocorrelated spatial pattern consistent with the distribution of children’s friendship
groups. Thus the process can propagate in ways which are not defined by the arbitrary
borders of school administration policy.

Contribution

Our contribution is to outline an easily implementable methodology which incorpo-
rates both types of process simultaneously. It combines a hierarchical approach with
a spatially autocorrelated component at the lowest level, which can not only model
the process more accurately, but also allocates estimated variance according the level
and type of spatial process. This aspect can be seen as analogous to an analysis of
variance for different causes of spatial variability. Unlike a similar model applied
to travel satisfaction in Beijing by Dong et al. (2016), this model is fitted within a
frequentist framework, using the well-established mgcv package in R (Wood, 2011).
It can be easily adapted to a range of different outcome distribution types beyond
the Gaussian structure of the following example. While lme4 (Bates et al., 2015)
and nlme (Pinheiro et al., 2023) are popular R packages designed specifically for
multi-level modelling, they are limited in their ability to take geography into account.
The mgcv package is primarily used for constructing a range of generalised additive
models (GAMs), but it also contains functionality to create multilevel models equiv-
alent to those in more specialised packages by using random effects splines. It has
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the further capability to combine these with Gaussian processes and Markov random
fields, which are suitable for the type of spatial autocorrelation proposed above.

We demonstrate the implementation of such a model using a case study based on
the UK general election of 2019.

Data

The data used for this example are drawn from the parlitools R package (Odell,
2017), which includes a number of useful resources for analysing UK politics. It
provides, among other features, convenient access to the British Election Study’s
record of recent published election results, and information from the 2011 census
aggregated to the constituency level.

The 2019 UK election saw a large gain in support for the Conservative Party, often
at the expense of the Labour Party. Many of their seat gains occurred in constituencies
which they had not recently won, despite substantial improvements over the previous
two election cycles. The Labour Party, the second largest party by a substantial margin
and their principal competitor, received its lowest number of MPs since 1935. This
contrasts with the Conservatives gaining a majority of 80 seats, their largest since
1987. Often referred to as the collapse of Labour’s ‘red wall’ (Kanagasooriam &
Simon, 2021), many of its losses followed a geographical pattern, notably in a col-
lection of constituencies in the North and Midlands (Rycroft, 2020) which had been
traditional Labour strongholds for many decades, albeit with declining majorities in
recent elections.

In the context of UK voter behaviour, as with any data which has a geographical
component, it is reasonable to hypothesise that there would be spatial processes at
play in addition to differences which might be associated with socio-economic factors
alone. Constituencies with similar types of census profile but in different locations do
not necessarily produce similar election results. We further suspect that these spatial
processes might occur in the form of both a ‘vertical’ hierarchical process and lowest
level ‘horizontal’ neighbourhood effect. Dorling (2010) has described howUK society
has become ever more geographically fragmented since the 1970s. If the symptoms of
this were a factor in voting allegiance, we could expect a spatial hierarchical structure
to pick up on this. It is also well-established that voter behaviour is often subject to a
neighbourhood effect, which Pattie and Johnston (2000) summarised with the phrase
“people who talk together vote together”, referencing work done by Miller (1977).
The presence of such an effect would take the form of positive spatial autocorrelation
among neighbouring constituencies.

The specific change in voting behaviour which we seek to model in this example
is the shift in allegiance from one party to another, referred to as ‘swing’.

Geographical Context

Before discussing the dependent and explanatory variables of the proposed model,
the geographical context is set. Data is restricted to England and Wales in this study.
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Fig. 1 (L) Values of dependent variable, Butler swing to the Conservatives, mapped across constituencies
of England and Wales. The vast majority of constituencies recorded a positive swing. Figures projected
as Dougenik cartograms such that equal populations occupy equal area while maintaining constituency
contiguities. (R) Guide map of the regions of England and Wales under a similar projection

The reason is that, while Scotland and Northern Ireland saw interesting dynamics
of their own in the 2019 election, the Conservatives and Labour were not the two
primary competing parties in these parts of the UK. Neither party features to any
extent in Northern Ireland, while the Scottish National Party (SNP) has dominated
recent elections in Scotland.

Boundaries

The multilevel component of this model consists of three levels. The lowest level is
composed of 571 individual constituencies in England and Wales.1 This is the level at
which election results are officially reported and, due to the secrecy of the ballot, is the
lowest available unit of published voting data. Each of these is nested within one of 53
counties. London ismodelled as both a region and county. The highest level considered
is the region, although a still higher level of nation has been implicitly accounted for
given the exclusion of Scotland and Northern Ireland, and the classification of all
of Wales as a single region. The region level has 11 components. These are Wales,
Merseyside, and the nine regions of England. With the exception of Merseyside, these
are essentially the NUTS level 2 administrative divisions, and coincide more or less
with the former European Parliament constituencies. These regions are shown in a
guide map in Fig. 1.

1 There are actually 573 constituencies in England and Wales but two have been excluded as they were
held by the respective Speakers of the house in 2017 and 2019, and are traditionally not contested. In all
constituency-level maps in this paper, these seats are coloured black.
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Merseyside has been extracted from the North West region and treated as a region
in its own right for the purposes of this study. As it is well-known that Merseyside
has consistently shown distinctive voting patterns in the past (Johnston et al., 2018;
Kanagasooriam & Simon, 2021), particularly in respect of the Conservative party, it
is here given the opportunity to show variance in its own right. Such separation has
become common in recent analyses of the Brexit vote (see Gordon, 2018).

Contiguities

The spatial autocorrelation process at the lowest (constituency) level is based on
whether or not constituencies are neighbours. Here, this structure is represented by
first order queen contiguity (see Fig. 2), where a constituency is considered a neigh-
bour of another if they share at least one common point of boundary. Some additional

Neighbourhood
structure:                    

first−order
queen contiguity

Speaker seats

Fig. 2 First order queen contiguity structure of constituencies in England and Wales, shown as edges
radiating from nodes at the centroid of constituencies. Non-contiguous constituencies with bridge, ferry or
tunnel services are also considered neighbours. Contiguity occurs regardless of region or county boundaries

123

709Multilevel Spatial Model



contiguities have been added to account for invisible connectivity due to bridges and
ferry crossings.

Dependent Variable

Election swing is typically expressed as a positive or negative percentage point change.
In the context of this analysis, the phenomenon under examination is the apparent
change in voter preference in favour of the Conservatives and at the expense of Labour
from the 2017 to the 2019 elections. The measurement of swing used here to represent
this process is the ‘conventional’, ‘uniform’, or ‘Butler’ swing (Butler & Van Beek,
1990), which is commonly utilised in popular discourse concerning election results.
It is well-known to the public as it has been used in national television coverage of
election results in the UK formany decades. The Butler swing is defined as the average
of the percentage point gain of party A and the percentage point loss of party B. Thus
the swing to the Conservatives in the context of this election can be represented as
follows:

Butler Swing = (Con2019 − Con2017) − (Lab2019 − Lab2017)

2

where Con2019 and Con2017 represent the percentage of votes which were cast for
the Conservative party in 2019 and 2017 respectively, while Lab2019 and Lab2017
correspond to the equivalent for the Labour party. It is calculated on the basis of total
number of votes cast, including those cast for candidates other than Conservative or
Labour. For example, an increase of Conservative vote share by 4.9%, combined with
a decrease in Labour vote share of 7.9% would lead to a swing from Labour to the
Conservatives of

4.9% − (−7.9%)

2
= 6.4%

Put another way, if the Conservatives benefited from a two-percentage point swing
having initially had an equal vote share, they would now have a four-percentage point
majority over Labour.

British politics has traditionally been dominated by two parties which has made this
measure of swing particularly suitable. In other situations, an alternative known as the
‘Steed’ swing can be used (Curtice & Steed, 1986). This follows an identical formula
except that the percentage point scores are calculated relative to the total votes received
only by the two parties of interest, rather than the total number of votes cast. However,
when the same two parties occupy the first two places at successive elections, as is the
case in the vast majority of seats in England andWales, the Butler swing is considered
a meaningful measure of change in support (Uberoi & Baker, 2023).

Such was the strength of the Conservatives’ performance in 2019 that they only
experienced negative swing in 25 constituencies, almost half of whichwere in London.
This dominance is represented by the Dougenik cartogram in Fig. 1, a style of map
which is used throughout this study. It is a distorted map of England and Wales where
constituency sizes are inflated or deflated, while maintaining contiguities, such that
equal population is represented by equal space on the map (Dougenik et al. 1985,
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implemented by the cartogram R package by Jeworutzki 2020). Such a map is
particularly informative in this case becausemost small constituencies are very densely
populated and vice versa. A heavily populated part of London would be virtually
invisible on a standard choropleth map projection. These maps overcome this problem
in that every unit area contains exactly the same number of people.

Explanatory Variables

The explanatory variables chosen for this study come from the 2011 census, the most
recent prior to the election. They are based on those proposed by Beecham et al. (2018)
in their examination of spatial variation of voter behaviour in the 2016 Brexit refer-
endum. They considered covariates based on “the media discourse around the Leave
vote: that of the ‘left-behind’ and of the varying experiences of de-industrialisation”
(Cox, 2016). This is consistent with the aforementioned spatial fragmentation process
(Dorling, 2010). Places described as ‘left-behind’ are often characterised by “chronic
low skills, socially conservative and nativist values”, as opposed to other areas with
“more affluent, highly-educated and diverse populations” (Goodwin & Heath, 2016).
The candidate variables and their thematic groupings considered by Beecham et al. are
reproduced in Table 1.

Preliminary models showed that those variables in the metropolitan / “big-city”
category were not significant in the context of swing in the 2019 election. For this
reason, the have been omitted from this study.

Upon examination of the remaining variables, shown in Table 2, three groups can
be discerned. Each contains highly correlated variables which also show similar asso-
ciations with swing. In order to mitigate against multicollinearity, one variable was
chosen from each of these groups for this model as representative of this category.
Table 3 shows how these three explanatory variables are calculated.

The variable degree educated is the percentage of the population of a constituency
with at least a level 4 qualification (such as undergraduate degrees or similar qual-
ifications). Figure 3 shows that the highest levels of this measure are concentrated
overwhelmingly in London and its environs. Small pockets of high values can also be
seen in other core cities such as Manchester and Bristol. The lower scores are found
in areas which might be considered more peripheral, in particular a strip from South
Wales to the Humber estuary.

Table 1 Explanatory variables considered byBeecham et al. (2018), separated into three thematic groupings

post-industrial / knowledge-economy diversity / values / outcomes metropolitan / big-city

degree educated english-speaking EU born, not UK

professional occupations single-ethnicity own home

younger adults health not good don’t own car

white private transport to work

christian
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Table 2 Reduced list of relevant explanatory variables grouped by justification, and the choice of one
representative variable from each group for subsequent models

grouped candidate variables justification / theory representative variable

1

degree educated post-industrial / knowledge-economy / degree educated

professional occupations peripherality

2

younger adults life outcomes / health not good

health not good young people

3

english-speaking ethnic / cultural diversity / white

single-ethnicity values

white

christian

Table 3 Description of
explanatory variables used in
subsequent models

explanatory variable calculation from census

degree educated percentage of population with level 4 qualifi-
cation or higher

health not good percentage of the population self-reporting
‘poor’, ‘bad’, or ‘very bad’ health

white percentage of population of white ethnicity

20

30

40

50

Degree
educated
(%)

15

20

25

Health
not good
(%)

40

60

80

White
(%)

Fig. 3 Values of independent variables mapped across England and Wales. Figures projected as Dougenik
cartograms such that equal populations occupy equal area while maintaining constituency contiguities
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The variable health not good is the percentage of the population in the census
who self-report their health as ‘poor’, ‘bad’, or ‘very bad’. It is assumed that there
is a strong association between health outcomes and overall quality of life. It is also
biologically more likely that areas with a higher proportion of younger people will
have lower levels of poor health, other things being equal. Looking again at Fig. 3, this
variable shows the strongest indication of a north-south divide in England and Wales.
It suggests a stark difference between values either side of a line drawn from the Bristol
Channel to the Lincolnshire coast. Areas with particularly poor health outcomes can
be seen in parts of South Wales, Merseyside and the North East. Unlike many of the
other variables, London does not score at either extreme of health not good. Instead,
it is areas to the West of London, stretching across to Bristol which show the lowest
levels of poor health.

The final independent variable is white. This is the percentage of a constituency’s
population who identify as being of exclusively white ethnicity. Figure 3 shows that
this measure of ethnic diversity has a different pattern again. While the areas below
50%white are predominantly urban constituencies, it is notable that not all large cities
fall into this category. Some cities are composed of a much more ethnically diverse
population than others.

Prior to constructing models, these explanatory variables are scaled such that they
exhibit mean of zero and standard deviation of one. This means that units of increase in
a dependent variable refer to unit changes in standard deviation of percentage points
of that variable, which makes comparability of effects more interpretable. Further-
more, the mean of zero allows intercepts in regression models to be viewed as the
estimated level of a dependent variable with all explanatory variables held at their
mean value.

Model

A simple linear regression using these three explanatory variables and no spatial com-
ponent, that is without hierarchy or spatially autocorrelated effects, produces residuals
as shown in Fig. 4. It is clear that swing in certain regions is predominantly over or
under-estimated. These can be observed as block patterns of red or blue respectively.
For example, the South West are Merseyside are overwhelmingly ‘red’ indicating
that Labour actually performed better than would be predicted by this model. It also
suggests lower level county variations in places such as the North East where there
are major blocks of both ‘red’ and ‘blue’, again indicative of systemic error in one
direction or another. All of this is suggestive of the presence of unaccounted-for hier-
archical spatial processes. There are also clusters of similarly coloured constituencies
which cross over regional boundaries, most notably between Yorkshire and the Hum-
ber and the East Midlands. These suggest autocorrelated processes, operating beyond
a hierarchical structure, which have not been captured.

Our proposedmodelling framework allows for the inclusion of both hierarchical and
autocorrelated effects, both of which are suspected to be present from a theoretical
perspective and from examination of the residuals in Fig. 4. The model described
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Fig. 4 Map of residuals from a simple linear model which does not take geography into account. Regions
such as the South West and Merseyside appear to be almost completely red (overprediction of swing), the
North East show a block of red alongside a block of blue, while a blue pattern of underprediction spreads
across the boundary between the East Midlands and Yorkshire and the Humber

below, a hierarchical model with a spatially autocorrelated random component for
each constituency, is calibrated to test for the presence of such processes and estimate
them at different scales.

Hierarchical Component

The form of the hierarchical model is as follows: Butler swing is taken as the response
variable, and is assumed to have a linear relationship with each explanatory variable,
controlling for the others. The three explanatory variables are degree educated, health
not good, and white, as discussed earlier. The level of swing for any individual con-
stituency ismodelled as an intercept plus a linear combination of these three covariates.
Each intercept and slope coefficient is composed of the overall mean slope and inter-
cepts for England andWales, plus a differential of intercept and slopes for each region
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relative to the overall means, and another differential for each county relative to the
means of the region in which it is nested.

The hierarchical structuremeans that, for example, a county intercept of zero would
indicate that the county’s mean is no different than the mean of the region in which it
lies, controlling for the independent variables. Similarly, a regional level slope coeffi-
cient of zero for a particular explanatory variable would indicate that the association
of that variable at the regional level is no different than the overall mean coefficient
level, again holding other components constant.

In mixed models, the random intercepts and coefficients are not modelled directly.
Instead, they are assumed to be normally distributed with mean zero and their vari-
ance and covariances are estimated using, in this case, restricted maximum likelihood
(REML). By examining whether confidence intervals around these variances include
zero, hypotheses can be tested as to whether the slopes and coefficients vary signifi-
cantly relative to the higher administrative level. The ‘best linear unbiased predictors’
(BLUPs) of slope and intercept for individual regions and counties can then be cal-
culated from the estimated variance components using the empirical Bayes method,
which involves computing the posterior distribution of the random effects at each level
of the hierarchy and taking the conditional mean as the BLUP for each unit at that
level.

ICAR Component

In addition to this, a spatially smoothing intrinsic conditional autoregressive (ICAR)
component, as discussed earlier, is added at the lowest level to account for spatial
dependence between adjacent constituencies which is not captured by the nested
structure. The degree to which each neighbour of a given constituency influences it is
proportional to the total number of neighbours of that constituency. Neighbours are
defined by adjacency in this example but it could equally represent degree of connec-
tivity by infrastructure, patterns of commuting, location of population concentrations,
etc. A constituency is not considered to be its own neighbour, and each constituency is
considered to be a neighbour of another if their boundaries share at least one common
point. In the case of our model, the set of values generated by this component can be
seen as random effects for each individual constituency.

Finally, there is an error term for each constituency which has mean zero and
variance σ 2. This term accounts for differences in swing which can not be attributed
to the three chosen independent variables, their nested location within county and
region, or the constituency neighbourhood structure.

Model Structure

The structure of the model is outlined below:

yi jk = β0 + β1degreei jk + β2healthi jk + β3whitei jk

+b0i + b1i degreei jk + b2i healthi jk + b3iwhitei jk
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+b0i j + b1i j degreei jk + b2i j healthi jk + b3i jwhitei jk

+γl |γm, l �= m

+εi jk

where yi jk is the swing in constituency k in county j in region i for

• i = 1, ..., 11 regions,
• j = 1, ..., Ji counties within region i ,
• k = 1, ..., Ki j constituencies within county j within region i , and
• l = 1, ..., 571 individual constituencies.
• β0, β1, β2, β3 are fixed effects.
• b0i , b1i , b2i , b3i are the random effects (intercept and three slopes) associated with
region i ,

• b0i j , b1i j , b2i j , b3i j are the random effects (intercept and three slopes) associated
with county j in region i .

• εi jk are independent normally distributed error terms.

Rather than estimate each of the random effect coefficients directly, the variance
of each random effect is instead estimated. For the region and county level random
effects, each is assumed to be independent of the others within its level, and to be
normally distributed with mean of zero. This independence is a key restriction in
multi-level modelling with mgcv as opposed to other packages.

The γl ’s are constituency level random effects which model the spatial interactions
at the lowest level of the model, based on an ICAR distribution. Let there be m =
1, ..., M potential neighbouring constituencies, where M = L = 571. Each γl is
conditional on the sum of the weighted values of its neighbouring γm’s (wlmγm) and
has unknownvariance.As a constituency is not a neighbour to itself, the full conditional
distribution can be written as follows:

γl |γm, l �= m ∼ N
(∑

l �=m γl

dl
,
σ 2

l

dl

)

where the term dl represents the number of neighbours. Thus the mean of each γl is
equal to the average of its neighbours, while its variance decreases as the number of
neighbours increases.

The joint specificationof the ICARrandomvectorγ whencentred at 0with common
variance 1 rewrites to the pairwise difference formulation:

γ ∝ exp

(
− 1

2
�l �=m(γl − γm)2

)

To overcome the problem of unidentifiability, the constraint �Lγl = 0 is added to
centre the model.
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Fig. 5 Plot of fixed or global intercept and coefficients from combined model, coloured according to direc-
tion of association with swing. A higher proportion of people of white ethnicity in an average constituency
is associated with a swing to the Conservatives while the opposite is true for increases in the proportion of
degree-educated

Results

The aim of this modelling structure was to enable us

1. to test for the presence of spatial effects resulting in different associations between
covariates and the dependent variable according to geography, taking into account
both hierarchical and autoregressive spatial processes (spatial heterogeneity),

2. and also to estimate the relative variance associated with each type of process at
different spatial scales (‘analysis of variance’ of spatial processes).

Firstly, the global intercept and coefficients, having controlled for region, county
and constituency spatial effects, are shown in Fig. 5. They suggest that on average, an
increase in thewhite proportion of a constituency by one standard deviation, which can
be interpreted as lower diversity, is significantly associated with a 1 percentage point
swing to the Conservatives. In contrast, an increase of similar size in degree educated
people among a constituency’s population is associated with a 2.1 percentage point
swing away from them. However, these mean global effects do not tell the full story.

Region Level

Looking at the random effects at the region level in Fig. 6, it is clear that divergences
in association occur. This is not the case, however, for variable 1, degree educated.
At this level, its association with swing does not vary significantly from the global
mean (β̂1) of −2.1. An increase in the percentage of degree educated voters within a
constituency is associated with a swing away from the Conservatives.

Looking at the various random coefficients for health not good (β̂2i ’s for i regions),
not only do they operate in different directions, the negative values are often sufficiently
large to counteract the positive global effect (β̂2) of 0.564. Thus, while a higher
proportion of a constituency’s population with poor health is generally associated
with an increase in swing to the Conservatives, this effect is much stronger in the
Midlands regions and the North East, but is reversed in Merseyside, and neutralised
in the East and the South East.

A similar process occurs for the third covariate, although the heterogeneities occur
in different regions. The global association of a higher proportion of white ethnicity
in a constituency and swing to the Conservatives (β̂3) is positive. This is much more
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Fig. 6 Regions of England and Wales, coloured according to direction and magnitude of region-level
random effects of each covariate with swing to the Conservatives. The global fixed effect from which these
divergences occur is shown above each map. Unlike ‘health not good’ and ‘white’, ‘degree educated’ does
not show significant divergence at this level from its global coefficient

strongly the case in the North East and Yorkshire and the Humber. However, in the
East Midlands, London and Merseyside, the counter-acting negative random effect is
enough to reverse the direction of association. It is also drawn closer to zero for Wales
and the South West.

Table 4 shows that these region-level hierarchical effects account for 18.5% of total
variance in the data.

Table 4 Variance explained by model, with associated measures of significance, at different levels and for
different spatial processes

Level Variance Variance % Cumulative
variance %

F test p-val

Region

σ 2
region,int <0.01 <0.01 <0.01 0.074 .

σ 2
region,degree <0.01 <0.01 <0.01 0.344

σ 2
region,health 0.63 7.2 7.2 0 ***

σ 2
region,white 0.99 11.2 18.5 0.001 ***

County

σ 2
county,int <0.01 <0.01 18.5 0.082 .

σ 2
county,degree 0.44 5 23.5 0 ***

σ 2
county,health <0.01 <0.01 23.5 0.54

σ 2
county,white 0.34 3.9 27.4 0.045 *
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Table 4 continued

Level Variance Variance % Cumulative
variance %

F test p-val

Constituency (ICAR)

σ 2
consti tuency,I C AR 3.63 41.3 68.7 0 ***

Residuals

σ 2 2.74 31.3 100 ***

There is significant variation in the association with ‘health’ and ‘white’ at region level, while at county
level ‘degree’ and ‘white’ show significant divergence
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

County Level

Looking at the county level random effects of the first covariate, degree educated (Fig.
7), we can see within-region deviations. These are particularly pronounced in the East.
However, while they do strengthen or weaken the negative association (-2.1) of this
covariate with swing to the Conservatives across all regions, they are not sufficient at
any location to alter its direction.

Table 4 shows that there is no further significant random effect divergence at county
level for the second variable, health not good.

Similarly to degree educated, the white covariate (Fig. 8) shows strong within-
region county level variation, particularly in Nottinghamshire and Leicestershire in the
East Midlands, which show a strengthening and a reversal respectively of the positive
association between low ethnic diversity and swing to the Conservatives within this
region.

Referring again to Table 4, these county-level hierarchical effects account for 8.9%
of total variance in the data and are much less impactful than those at the region level.

Net Hierarchical Effects

These hierarchical random effects at region and county level can be added to the
global coefficients to show a picture of the net associations and their variability across
England and Wales (Fig. 9). In the case of degree educated, for instance, this is the
sum of the global coefficient (β̂1) and the random effects for region (b̂1i ) and county
(b̂1i j ).

As discussed above, the level of degree educated in a constituency is negatively
associatedwith swing to theConservatives in all locations, but less so in some counties.
Looking athealth not good, higher levels of poor health outcomeswithin a constituency
are associatedwith a swing to theConservatives to varying degrees, except forMersey-
side and the East and South East where it is reversed or negligible. Finally, the white
covariate suggests that lower levels of ethnic diversity in a constituency are associated
with swing to the Conservatives in most of England and Wales. This is particularly
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Fig. 7 Random effects of ‘degree educated’ variable at the county level of England and Wales. Particularly
strong within-county variation can be observed in the East

strong in certain counties of the North East and Yorkshire and the Humber. However,
the reverse is also observed in London, Merseyside and part of the East Midlands.

Constituency Level

The final component of the model is the set of spatially autoregressive terms which,
according to Table 4, account for 41.3% of the variance. They can be interpreted as
random constituency-specific effects which account for further differences in voting
behaviour which are not associated with the chosen census variables, nor with location
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Fig. 8 Random effects of ‘white’ variable at the county level of England and Wales. Particularly strong
within-county variation can be observed in the East Midlands

within a region or county. Instead, they exhibit a pattern consistent with the defined
neighbourhood contiguity structure and the resultant expected diffusion of political
attitudes across nearby constituencies.

As can be seen in Fig. 10, the pattern of the outcome does not align with the regions
and county boundaries. Instead, we see a large and generally blue central area which is
surrounded by a paler white section. This blue area, lying within parts of the East and
West Midlands and Yorkshire and the Humberside, displays an increased tendency
to swing to the Conservatives in 2019, over and above what the census variables and
hierarchy would predict. There are patterns of particularly strong blue within this area
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Fig. 9 Net hierarchical effects of each variable. These are the sum, for each coefficient, of its fixed effect
and two random effects (at region and county level), showing the spatial heterogeneity accounted for by
the hierarchical component of the model. ‘Degree educated’ is negatively associated with swing to the
Conservatives across England and Wales, albeit to different extents. ‘Health not good’ and ‘white’ show
not only different magnitudes but also different directions of association with swing in different regions
and counties across the study area

which cross directly over regional boundaries (as highlighted by the circled areas of
the map).

Conversely, across southern England, through Wales, and into parts of the far-
north, the predominant trend is a lower level of swing to the Conservatives than would
otherwise be predicted.

While the model does not specify what the driving forces for these divergences
above and below the expected levels of swing might be, it does detect their presence
in the form of a hypothesised pattern of spatial diffusion. Such an insight could be
useful to political scientists. It is, for example, consistent with how a set of shared
attitudes or political culture in one part of the country would change gradually across
neighbours. Similarly, support for a party due to local policy proposals, the benefits or
drawbacks of which would not be restricted to that location alone, could be expected
to show similar autoregressive patterns.

Alternative Autoregressive Components

The model presented above features a multilevel structure with an autocorrelated
random effect at the lowest level for each constituency. This framework, however,
also allows for more complex structures than this. For example, in addition to the
random intercepts and slopes provided for in the hierarchical component, we have the
option of using either

1. a spatially autocorrelated random intercept at constituency level (as we did in this
model),

2. spatially autocorrelated random slopes for each covariate in each constituency, or
3. both together.
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Fig. 10 The spatially autoregressive (in this case, ICAR) component at the lowest level (constituency) of
the model. It shows a blue area of increased tendency to swing to the Conservative party, surrounded by a
paler band, and red areas to the south, west and parts of the north where the tendency is to swing to Labour,
controlling for the covariates and hierarchical effects. Areas of clear cross-regional spillover of effects are
highlighted with red circles

To decide which of these three options was most suitable for this particular dataset,
their performances can be compared. The fitting of such spatial models using the
mgcv package requires the tuning of a parameter k which is the number of basis
functions used to generate the autoregressive smoothing. Lower values of k lead to
a smoother result. This is because k represents the number of components from the
eigen decomposition of the variance-covariance structure which are to be used. Not
all can be used because there are not enough data points for this to be computable. The
k value has been optimised for each model such that the Akaike information criterion
(AIC) is minimised, striking a balance between goodness of fit and model complexity.

Shown in Table 5 are performance metrics for each of these model combinations,
named models 1-3. Of these three potential structures, model 1, which we have been
discussing, has the best performance metrics and was deemed the most suitable struc-
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Table 5 Performances of a hierarchical structure with different combinations of spatial autocorrelation
processes at lowest constituency level

Model Autoregressive spatial process(es) AIC RMSE adjR2 Loglik

1 constituency component 2336 1.43 0.76 −1015

2 varying coefficients 2373 1.62 0.73 −1086

3 constituency component + varying coefficients 2381 1.64 0.73 −1094

Models 1 and 2 each incorporate one type of process while Model 3 includes both. Model 1 performs best
on all metrics

ture for modelling this particular dataset. Such a process can be used to find the most
suitable structure for any potential dataset.

Spatial Diagnostics of Model

Finally, unlike the pattern previously observed in Fig. 4, the residuals from our model,
mapped in Fig. 11, show no evidence of any remaining unaccounted-for spatial pro-
cesses. The spread of positive and negative residuals across the study area appear
random by visual inspection, and a Moran’s I test of randomness supports this obser-
vation.
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Fig. 11 (L) Residuals from model, mapped by location, which appear by visual inspection to be randomly
distributed, and (R) dot-plot of residuals of constituencies against their spatially lagged neighbours which
shows neither a positive nor negative association between a constituency’s residuals and those of its neigh-
bours
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Discussion and Conclusion

This study presents a framework for analysing spatial data which takes account of the
differentways inwhich these spatial processesmaybe likely to occur. It simultaneously
incorporates a ‘vertical’ set of relationships between nested geographical areas with
certain hypothesised shared characteristics, and a ‘horizontal’ covariance among the
lowest level units according to contiguity.

In the context of analysing elections, the model structure described above not only
succeeds inmodelling voting behaviourmore accurately than less complexmodels, but
also provides insight into the processes generating the results. It supports the hypothesis
of different patterns of association of socio-demographic profile with voting behaviour
in different parts of the study area.

It also identifies patterns of places which are more or less likely to swing to the
Conservatives for reasons which can not be attributed to the census explanatory vari-
ables or hierarchical location, but which are consistent with a neighbourhood effect.
These patterns are not immediately obvious from the raw data or from models which
do not account for location in this way. Insights such as these could be valuable for
political theorists.

The framework allows for the testing of different combinations of autocorrelation
structure to find which types of spatial processes are most appropriate in a given
context. Here, we chose what was essentially an autocorrelated random intercept for
each constituency, but we could also fit a set of random slopes if the data suggested that
such a structure was more appropriate. The model is fitted in a frequentist restricted
maximum likelihood framework using the well-established mgcv package.

Another feature is the ability to estimate the relative contribution of each spatial
process to overall variation. In this example, it apportions about 27% of variance to
hierarchical processes, two-thirds of which occur at the region level, and a further
41% to spillover effects at the lowest constituency level. Furthermore, the spatial
heterogeneity of the three covariates is shown to operate at different levels within the
hierarchy. The variance in association of swing with degree educated occurs at the
smaller-scale county level, while that of health not good and white is stronger at the
region scale. Such patterns, which again are not otherwise immediately apparent, can
contribute to the research of political scientists who are interested in understanding
the geography of voting patterns.
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