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Host factors are associated 
with vaginal microbiome structure 
in pregnancy in the ECHO Cohort 
Consortium
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Using pooled vaginal microbiota data from pregnancy cohorts (N = 683 participants) in the 
Environmental influences on Child Health Outcomes (ECHO) Program, we analyzed 16S rRNA gene 
amplicon sequences to identify clinical and demographic host factors that associate with vaginal 
microbiota structure in pregnancy both within and across diverse cohorts. Using PERMANOVA 
models, we assessed factors associated with vaginal community structure in pregnancy, examined 
whether host factors were conserved across populations, and tested the independent and combined 
effects of host factors on vaginal community state types (CSTs) using multinomial logistic regression 
models. Demographic and social factors explained a larger amount of variation in the vaginal 
microbiome in pregnancy than clinical factors. After adjustment, lower education, rather than 
self‑identified race, remained a robust predictor of L. iners dominant (CST III) and diverse (CST IV) 
(OR = 8.44, 95% CI = 4.06–17.6 and OR = 4.18, 95% CI = 1.88–9.26, respectively). In random forest 
models, we identified specific taxonomic features of host factors, particularly urogenital pathogens 
associated with pregnancy complications (Aerococcus christensenii and Gardnerella spp.) among other 
facultative anaerobes and key markers of community instability (L. iners). Sociodemographic factors 
were robustly associated with vaginal microbiota structure in pregnancy and should be considered as 
sources of variation in human microbiome studies.

Keywords Vaginal microbiota structure, Pregnancy, Host factors, 16S rRNA gene amplicon sequence data, 
Meta-analysis, ECHO cohort

Our understanding of the relationship of the human microbiome to health has expanded greatly, including its 
role in a range of conditions with developmental  origins1–6. The vaginal microbiome, in particular, has been 
associated with clinical outcomes such as infections in the reproductive tract and preterm birth, although not 
all studies have been  consistent7–10. Beyond the long-term health sequelae associated with preterm birth, the 
human microbiome in pregnancy shapes the acquisition of the infant microbiome, which is seeded at birth 
and undergoes rapid assembly in early life with implications across the life  course1–4. The vertical transmission 
of vaginal microbiota may play a role in the acquisition of both the offspring gut  microbiome11 and immune 
development with effects on airway allergic  responses2,4,12.
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Both culture and culture-independent methods have demonstrated that Lactobacillus spp. dominate the 
vaginal microbiome in many (but not all)  women13,14. Lactobacillus spp. dominance has been consistently associ-
ated with the lowest levels of genital tract inflammation across various populations  studied13,15,16. Among some 
women, vaginal microbiota appear to be highly dynamic communities that are relatively stable over  time17, 
particularly during pregnancy, with increased proliferation of L. crispatus and decreased  diversity18–21.

Host factors may shape the microbiome in pregnancy and could provide insight into modifiable targets for 
intervention. However, few studies have evaluated environmental and clinical factors shaping the structure of 
the human vaginal microbiome across multiple diverse cohorts. Furthermore, integrating the microbiome into 
population-based research across multiple studies is challenging because of the variety of methods used to assess 
microbial communities. Results of microbiome studies in relation to preterm birth, for example, have been vari-
able across populations, which may be driven by differences in host characteristics.

Although host factors have been shown to confound gut microbiome  studies22, relatively little is known about 
host factors and the vaginal microbiome in pregnancy. One exception is self-reported  race14,23, which has been 
related to community state types (CSTs) in single-cohort  studies14. Specifically, individuals who self-identify 
as Black are more likely to exhibit diverse microbial profiles than those who identify as  White24,25. Although 
consistently documented, the social patterning of microbiome composition research to date has not accounted 
for potential host confounders or the ways in which it self-identified race may be a proxy for unmeasured host 
exposures. Studies of large and diverse populations are thus needed to disentangle the many social determinants 
of health that are closely linked to self-reported race.

Meta-analysis can be used to overcome sources of bias in single site studies. However, aggregating microbi-
ome studies can be difficult due to the heterogeneity in methods for sample collection, DNA isolation, and DNA 
sequencing, as well as varying bioinformatics approaches. With the recent advent of publicly available large 16S 
gene amplicon libraries, understanding how host factors may affect the vaginal microbiome in pregnancy will 
facilitate the precision and validity of large-scale population-based  studies22,26. Therefore, we sought to identify 
host factors associated with vaginal microbiome structure in pregnancy by leveraging existing 16S rRNA gene 
amplicon sequence data from a diverse set of cohorts with well-characterized clinical, demographic, and bio-
logical data.

Results
Participant and sample characteristics
We utilized vaginal 16S rRNA gene sequence data from samples collected from the National Institutes of Health-
funded Environmental influences on Child Health Outcomes (ECHO) cohort, which includes caregivers and 
children participating in multiple existing longitudinal birth cohort studies. ECHO was designed to evaluate the 
impact of early life exposures on child health outcomes and includes survey, medical record, and biospecimen 
 collections27,28, as well as a subset of cohorts with vaginal 16S rRNA gene sequence data (Table 1).

Overall, we analyzed vaginal 16S sequence data from 683 pregnant participants across several geographically 
distinct areas of the United States. Based on self-report, 63% of the participants were non-White (of whom 97% 
self-identified as Black); 37% were White; and 1.9% were Hispanic. The distribution differed across the ECHO 
participating cohorts along with receipt of public insurance and maternal education (Table 2). The mean age 
was 28 years (SD = 5.4), 43% had a normal body mass index (≥ 18.5 and < 25 kg/m2); 42% were nulliparous; and 
12% smoked during pregnancy. Antibiotic use in pregnancy was common (38%) in all trimesters of pregnancy. 
Approximately 12% of women had hypertension during pregnancy; 3.7% were diagnosed with gestational dia-
betes; and 11% had a preterm birth (Table 2).

Maternal factors varied by cohort (Table 2), most notably for race, as the Emory Atlanta African American 
Maternal-Child Cohort (hereafter the ‘Atlanta cohort’) is composed entirely of Black women, while fewer than 
1% of the Wisconsin Infant Study Cohort (WISC) participants are Black. The subset of the Michigan Archive 
for Research with Mothers on Child Health (MARCH) cohort with vaginal microbiome data was 13% Black and 
87% White. Samples were independently collected at each site using study-specific protocols, stored, isolated, 

Table 1.  Overview of cohorts and collected samples. ATLANTA  Emory Atlanta African American Maternal-
Child Cohort, MAAP Microbes, Allergy, Asthma, and Pets, MARCH Michigan Archive for Research on Child 
Health, WISC Wisconsin Infant Study Cohort.

Cohort Sample type and collection Sequencing, DNA isolation

MARCH (U-M sites)
Recruited from University of Michigan clinics

Self-collected vaginal Starplex star dual-headed swabs 
at 3 times across gestation beginning at 7 to  > 28 weeks 
gestation
Clinic sample preserved in All-Protect upon collection

16S rRNA gene (V4 region)
Qiagen PowerMicrobiome DNA/RNA EP kit

MARCH (non-U-M sites)
Recruited from 9 other
non-UM sites across Michigan

Self-collected vaginal Starplex star dual-headed swabs and 
fecal (no preservative) > 28 weeks gestation
Mail collection

16S rRNA gene (V4 region)
Qiagen/Mobio power soil DNA extraction kit

Atlanta
Recruited from prenatal public/private clinics in Atlanta

Vaginal (self-collected, mid-vaginal), along with oral and 
rectal Epicentre Catchall swabs, collected at 8–14 and 
24–30 weeks gestation

16S rRNA gene
(V3–V4 region)
Qiagen/Mobio power soil DNA extraction kit

CREW (WISC and MAAP)
WISC recruited farm and rural-nonfarm families in Wis-
consin. MAAP recruited families in Detroit

Vaginal-rectal swabs sampled from clinic at > 28 weeks 
gestation

16S rRNAgene (V4 region)
SequalPrep Normalization Plate Kit (Thermo Fisher 
Scientific)



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11798  | https://doi.org/10.1038/s41598-024-62537-7

www.nature.com/scientificreports/

Overall, N = 683 Atlanta, N = 396 MAAP, N = 48 MARCH, N = 123 WISC, N = 116 p-value

Community state type  < 0.001

 Non-L. iners Lactobacillus dominant 
(I, II, V) 180 (26%) 60 (15%) 14 (29%) 59 (48%) 47 (41%)

 L. iners dominant (III) 294 (43%) 188 (48%) 15 (31%) 42 (34%) 49 (42%)

 Diverse (IV-B, IV-C) 207 (30%) 146 (37%) 19 (40%) 22 (18%) 20 (17%)

 (Missing)  < 5  < 5 0 0 0

Self-reported race*  < 0.001

 Non-White 428 (63%) 396 (100%) 15 (32%) 16 (13%) 1 (0.9%)

 White 250 (37%) 0 (0%) 32 (68%) 106 (87%) 112 (99%)

 Unknown or (missing) 5 0  < 5  < 5  < 5

Hispanic 0.002

 Hispanic 13 (1.9%) 3 (0.8%) 3 (7.7%) 6 (4.9%) 1 (0.9%)

 Non-Hispanic 661 (98%) 393 (99%) 36 (92%) 117 (95%) 115 (99%)

 (Missing) 9 0 9 0 0

Maternal age  < 0.001

 Mean (SD) 27.7 (5.4) 25.4 (4.8) 30.4 (3.9) 31.4 (4.8) 30.8 (3.7)

 (Missing)  < 5  < 5 0  < 5 0

Education  < 0.001

 BA or higher 253 (37%) 65 (16%) 21 (44%) 85 (70%) 82 (71%)

 HS/GED 171 (25%) 153 (39%)  < 5 (8.3%) 8 (6.6%) 6 (5.2%)

 Less than HS 64 (9.4%) 59 (15%)  < 5 (4.2%)  < 5 (2.5%) 0 (0%)

 Some college 193 (28%) 119 (30%) 21 (44%) 26 (21%) 27 (23%)

 (Missing)  < 5 0 0 1 1

Public insurance  < 0.001

 No 229 (41%) 88 (22%) 42 (93%) 99 (81%) NA

 Yes 334 (59%) 308 (78%)  < 5 (6.7%) 23 (19%) NA

 (Missing) 120 0  < 5 1 116

Private insurance  < 0.001

 No 320 (57%) 308 (78%) 6 (13%) 6 (4.9%) NA

 Yes 243 (43%) 88 (22%) 39 (87%) 116 (95%) NA

 (Missing) 120 0  < 5 1 116

Gestational diabetes 0.6

 No 604 (96%) 383 (97%) NA 115 (95%) 106 (95%)

 Yes 24 (3.8%) 13 (3.3%) NA 6 (5.0%) 5 (4.5%)

 (Missing) 55 0 48  < 5 5

Antibiotics ever in pregnancy  < 0.001

 No 322 (62%) 215 (54%) NA 107 (87%) NA

 Yes 196 (38%) 180 (46%) NA 16 (13%) NA

 (Missing) 165  < 5 48 0 116

Antibiotics in first trimester  < 0.001

 No 428 (83%) 310 (78%) NA 118 (96%) NA

 Yes 90 (17%) 85 (22%) NA 5 (4.1%) NA

 (Missing) 165  < 5 48 0 116

Antibiotics in second trimester 0.001

 No 436 (84%) 321 (81%) NA 115 (93%) NA

 Yes 82 (16%) 74 (19%) NA 8 (6.5%) NA

 (Missing) 165  < 5 48 0 116

Antibiotics in third trimester 0.001

 No 456 (88%) 338 (86%) NA 118 (96%) NA

 Yes 62 (12%) 57 (14%) NA 5 (4.1%) NA

 (Missing) 165  < 5 48 0 116

Infant sex 0.7

 Female 347 (51%) 204 (52%) 27 (56%) 57 (47%) 59 (51%)

 Male 335 (49%) 192 (48%) 21 (44%) 65 (53%) 57 (49%)

 (Missing)  < 5 0 0  < 5 0

Smoking in pregnancy  < 0.001

 No 588 (88%) 322 (82%) 41 (85%) 116 (97%) 109 (98%)

Continued
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and sequenced using a range of methods prior to bioinformatic processing. Table 1 lists details of the cohorts’ 
sample types and collection, DNA isolation method, and sequencing used.

16S rRNA gene amplicon data
After removing one low-quality sample, the total number of reads per sample ranged from 2629 to 406,377, 
with a mean of 63,704 (SD = 63,970). Reads from 683 samples were denoised into amplicon sequence variants 
(ASVs), from which a total of 5232 phylotypes were constructed after mapping to a common phylogenetic tree 
constructed from full-length vaginal 16S rRNA encoding alleles. As evident in ordination plots shown in Fig. 1A, 
B, phylogenetic placement of the sequences (Fig. 1B) removed much of the variation that was evident across sites 
prior to processing in MALiAmPi (Fig. 1A), although some of the remaining site variation may also be due to 
inherent differences in host factors across the cohorts.

The prevalence of CSTs varied by cohort
Vaginal phylotypes were classified using the VAginaL community state typE Nearest CentroId clAssifier (VALEN-
CIA)11. Four CSTs were Lactobacillus dominant: CST I, L. crispatus; CST II, L. gasseri; CST III, L. iners; and CST V, 
L. jenseni. The remainder were diverse polymicrobial communities: CST IV-B, characterized by high Gardnerella 

Overall, N = 683 Atlanta, N = 396 MAAP, N = 48 MARCH, N = 123 WISC, N = 116 p-value

 Yes 84 (12%) 71 (18%) 7 (15%) 4 (3.3%) 2 (1.8%)

 (Missing) 11  < 5 0  < 5 5

Hypertension  < 0.001

 No 551 (88%) 333 (84%) 0 (NA%) 110 (91%) 108 (97%)

 Yes 77 (12%) 63 (16%) 0 (NA%) 11 (9.1%) 3 (2.7%)

 (Missing) 55 0 48  < 5 5

Early pregnancy BMI (kg/m2) category 0.075

 Normal (≥ 18.5 & < 25) 272 (43%) 161 (41%) 10 (37%) 63 (52%) 38 (45%)

 Obese (≥ 30) 192 (31%) 138 (35%) 6 (22%) 25 (20%) 23 (27%)

 Overweight (≥ 25 & < 30) 143 (23%) 82 (21%) 11 (41%) 29 (24%) 21 (25%)

 Underweight (< 18.5) 22 (3.5%) 15 (3.8%) 0 (0%) 5 (4.1%) 2 (2.4%)

 (Missing) 54 0 21  < 5 32

Parity category  < 0.001

 < 1 291 (43%) 187 (47%) 19 (40%) 52 (43%) 33 (28%)

 1 221 (32%) 114 (29%) 23 (48%) 45 (37%) 39 (34%)

 2 101 (15%) 58 (15%)  < 5 (2.1%) 16 (13%) 26 (22%)

 > 3 69 (10%) 37 (9.3%) 5 (10%) 9 (7.4%) 18 (16%)

 (Missing)  < 5 0 0  < 5 0

Table 2.  Characteristics by ECHO cohort. Data shown (except maternal age) are n (%). BA or higher college 
degree or higher, HS/GED high school or general equivalency degree, BMI body mass index. *Self-identified as 
a proxy for lived experiences. Fisher’s exact test; Kruskal–Wallis rank sum test; Pearson’s chi-squared test.
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Figure 1.  (a) Principal coordinates (PCoA) analysis of Bray–Curtis distances between samples based on 
amplicon sequence variants (ASVs) and (b) phylotypes demonstrating that using phylogenetic placement of 
ASVs on a reference tree removed a large degree of variation by site.
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spp., low Candidatus Lachnocurva vaginae (formerly known as BVAB1), and moderate relative abundance of 
Fannyhessea vaginae (previously known as Atopobium vaginae), and CST IV-C, characterized by a diverse array 
of facultative and anaerobic bacteria and low relative abundances of Lactobacillus spp., G. vaginalis, Fannyhes-
sea vaginae, and Ca. L. vaginae. While almost all CSTs were found in each cohort, the prevalence of each CST 
significantly varied by cohort (Fig. 2). For the Atlanta cohort, the most common was CST III (47.6%), followed 
by CST IV-B (34. 9%), whereas in the MARCH cohort, the most prevalent was CST I (38.2%), followed by CST 
III (34.1%). Although CST III and CST I were also the most common in WISC, the distribution was distinct from 
that in the MARCH cohort (Fig. 2). In contrast, non-L. iners Lactobacillus-dominant CSTs were less prevalent 
in the Atlanta cohort (Fig. 2).

Host factors associated with vaginal microbiota structure across cohorts
In single-factor, unadjusted permutational multivariate analysis of variance (PERMANOVA) models, both 
education and self-reported race accounted for the largest variance explained (4.28% and 4.26%, respectively; 
false discovery rate (FDR)-adjusted p-value < 0.001) in vaginal microbiota structure in pregnancy, followed by 
public insurance receipt (3% variance, FDR-adjusted p-value < 0.001) (Fig. 3). Antibiotics in pregnancy and age 
significantly contributed to 2% of the variance in vaginal microbiota structure (FDR-adjusted p-value < 0.01, 
each), while parity and smoking in pregnancy explained smaller amounts (Fig. 3). Although still significant after 
adjustment for multiple comparisons, early pregnancy BMI and hypertension each accounted for less than 1% 
of the variance in community structure. Self-reported Hispanic ethnicity, gestational diabetes, and sex of the 
infant were not associated with global community structure in pregnancy (Fig. 3).

Host factors independently associated with vaginal microbiota structure
We next used multifactor PERMANOVA models to assess the independent effects of host factors on vaginal 
communities. In aggregate, host factors accounted for nearly 12% of the overall variance in vaginal microbiota 
structure in pregnancy. Education and self-reported race remained the most robust host factors associated with 
vaginal microbiota structure in pregnancy (4% of variance for each, FDR-adjusted p < 0.01) (Fig. 3). Parity, anti-
biotic use in pregnancy, and age remained independent predictors of vaginal microbiome structure in pregnancy 
but slightly less so after accounting for other host factors (FDR-adjusted p-values 0.01 to  < 0.05, respectively). 
The effects of early pregnancy BMI, hypertension, and public insurance receipt, in contrast, became attenuated 
after adjustment (Fig. 3).

Host factors associated with vaginal microbiota structure were largely conserved across 
cohorts
We next generated cohort-specific PERMANOVA models to visualize results for each cohort independently 
(Fig. 4). The results were largely consistent, especially in the MARCH and Atlanta cohorts in which data on the 

Figure 2.  Community state types (CSTs) by ECHO cohort. CST I, Lactobacillus crispatus dominant; CST II, L. 
gasseri dominant; CST III, L. iners dominant; CST IV-B, diverse, characterized by high relative abundance of 
Gardnerella spp., low relative abundance of Candidatus Lachnocurva vaginae (formerly known as BVAB1), and 
moderate relative abundance of Fannyhessea vaginae (previously Atopobium vaginae); CST IV-C, diverse array 
of facultative and strictly anaerobic bacteria, with low relative abundance of Lactobacillus spp., G. vaginalis, 
Fannyhessea vaginae, and Ca. L. vaginae); CST V, L. jenseni dominant.
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Figure 3.  Single-adjusted (left) and multifactor-adjusted (left) permutational multivariate analysis of variance 
(PERMANOVA) pooled estimates of vaginal microbiota structure in pregnancy using Bray–Curtis distances 
across all cohorts. Only factors that were significantly associated with composition (p < 0.05) in single-factor 
models were retained for inclusion in the multifactor model using backward selection. FDR false discovery rate.

Figure 4.  Associations between vaginal microbiota community structure and host factors across cohorts. 
Single-adjusted (left) and multifactor-adjusted (left) PERMANOVA estimates of vaginal microbiota structure 
in pregnancy using Bray–Curtis distances by individual cohort. Only factors that were significantly associated 
with composition (p < 0.05) in single-factor models were retained for inclusion in the multifactor model using 
backward selection.
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host factors were well-aligned, further validating their independent effects on microbiome variation. Specifi-
cally, education and parity exhibited consistently robust associations with the vaginal microbiota community 
structure within each cohort (Fig. 4). Of note, self-reported race was significant in the pooled PERMANOVA 
model but not in the cohort-specific models, likely due to the substantial differences in its distribution between 
cohorts (Fig. 4 and Table 2). Some of the associations with host factors in the other cohorts were diminished in 
the WISC cohort, and others, such as antibiotic use in pregnancy, were not available.

Taxonomic differences associated with robust host factors in pregnancy
We also examined taxonomic differences associated with host factors in pregnancy that may drive variation in 
vaginal microbiota structure. For each host factor that remained robust in the fully adjusted models of global 
community variance, we used random forest models to rank the most predictive phylotypes, which were clas-
sified to the species level. Of the taxa most predictive of educational attainment, L. iners was the most discri-
minant, followed by A. christensenii, Streptococcus oralis, and G. vaginalis (Fig. 5). The taxa most predictive of 
self-identified race were S. oralis followed by Lactobacillus gallinarum (Fig. 5). Fannyhessea vaginae (previously 
Atopobium vaginae) was the most predictive of antibiotic use in pregnancy followed by A. christensenii, L. iners, 
and G. vaginalis (Fig. 5). Staphylococcus epidermidis, Parvimonas micra, and L. iners were among the most 
predictive of parity. Staphylococcus epidermidis, P. micra, and L. iners were among the most predictive of parity, 
while Dialister micraerophilus was most predictive of host age (Fig. 5). Receiver operating curves (ROCs) for the 
top 20 taxa from the random forest models demonstrated areas under the curve (AUCs) ranging from 0.973 for 
self-identified race to 0.6114 for parity (Supplementary Fig. 1).
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Vaginal CSTs were associated with host factors
Due to their clinical relevance, we also tested the independent and joint associations between host factors and 
vaginal CSTs using a series of nested multinomial logistic regression models. CSTs were collapsed into three 
categories: L. iners-dominant (CST III), diverse (CST IV-B and IV-C) and non–L. iners Lactobacillus-dominant 
(i.e. CST I, II, V) CSTs, with the latter serving as the reference category. Prior to multivariable adjustment, we 
assessed the associations between host factors and CSTs for model selection (Supplementary Table 1). In the 
unadjusted model, self-identified White race was associated with a reduced odds of L. iners dominant (OR = 0.28, 
95% CI = 0.19–0.42) and diverse CSTs (OR = 0.21, 95% CI = 0.14–0.32) compared to that of non-L. iners Lacto-
bacillus-dominant CSTs (Table 3, Model 1). However, after adjustment for maternal education, the effect of race 
became attenuated and was no longer significant (Table3, Model 3). After adjustment for age, antibiotic use in 
pregnancy, and self-identified race, less than high school education was associated with L. iners dominant and 
diverse CSTs (OR = 7.81, 95% CI = 2.21–27.5 and OR = 8.84, 95% CI = 2.46–31.7, respectively) (Table 3). Other 
host factors that remained significantly associated with L. iners CSTs compared to non-L. iners Lactobacillus-
dominant CSTs included parity and antibiotic use. Antibiotic use in pregnancy was also associated with increased 
odds of having both L. iners-dominant and diverse CSTs compared to non-L. iners Lactobacillus-dominant CSTs 
(CSTs (OR = 3.24 95% CI = 1.66–6.30 and OR = 4.24. 95% CI = 2.15–8.35, respectively).

Discussion
Our results identified new associations between microbiota structure and host factors overall as well as with 
specific taxonomic signatures. We also verified some associations, such as host self-identified race and age, that 
had been previously described and further tested their independent effects after adjustment for other factors. 
The most robust factors associated with vaginal microbiota structure in pregnancy were education, parity, and 
self-identified race, followed by prenatal antibiotic use. Together, education, age, self-identified race, antibi-
otic use, and parity explained a moderate amount of variance in prenatal vaginal community structure. Our 
results corroborate single-site studies linking vaginal community patterns and maternal education and age and 
 parity23,29–32. They are also consistent with prior smaller studies on host socio-demographics and the structure 
of other microbial niches as well as those among non-pregnant populations.33

While self-identified race remained significantly associated with global microbiome structure, which was 
consistent with prior research,14,25, it was no longer significantly associated with vaginal community states in fully 
adjusted models. Race may reflect a range of unmeasured exposures, including maternal stress exposures related 
to discrimination and structural racism. In a recent paper, combined effects of individual and neighborhood-
level measures of socioeconomic status were associated with vaginal microbiome  composition30. Similar to our 
results, social host factors (i.e., education and self-identified race) were more closely related to the pregnancy 
microbiome than clinical factors (i.e., gestational diabetes, hypertension, early-pregnancy BMI, and antibiot-
ics during pregnancy). These results suggest that exposures that occur over a longer period of time, compared 
to the relatively short period of gestation, have greater effects on the microbiota in pregnancy. Alternatively, 
social factors may be more influential because they reflect the physiological effects of multiple interacting host 
factors and unmeasured environmental factors, including  urbanicity34, pollution, racial segregation, diet, and 
chronic  stress35,36. Host factors associated with vaginal microbiota structure were also largely conserved across 
the MARCH and Atlanta cohorts, which are demographically and racially diverse.

Taken together, our results suggest that it is important to account for host factors in vaginal microbiota stud-
ies, as they may drive specific facets of community structure. The taxa most predictive of level of education, L. 
iners, is clinically relevant as a marker of instability of vaginal microbiome structure as well as bacterial vaginosis 
and pregnancy  complications37–40. The other most discriminant taxa inversely associated with lower education 
were pathogens previously associated with pregnancy complications: Aerococcus christensenii, S. oralis, and G. 
vaginalis41–44. Taxa most discriminant of host factors across all cohorts were consistent with polymicrobial vagi-
nal communities and bacterial vaginosis in contrast with the hallmarks of highly stable L. crispatus-dominant 
 communities15,45,46, which confer pathogen resistance through the production of lactic acid and hydrogen per-
oxide by lowering vaginal pH and inflammation and which are critical for pregnancy maintenance. Our results 
also indicate that when phylogenetic distance is used to cluster and taxonomically classify 16S rRNA gene data, 
the effect of host factors on the vaginal community structure are remarkably consistent across populations. Fur-
thermore, the distribution of CSTs varied by cohort, and such variation could be explained by the differential 
distribution of host factors, which should be considered in the design and analysis of future studies.

Strengths of the study include the large size and inclusion of well-characterized ECHO cohort metadata. 
We attempted to removed site-specific biases by using a common bioinformatic pipeline that included phylo-
genetic mapping and well-curated full-length 16S rRNA gene vaginal references. While we acknowledge that 
some technical sources of variation may have remained using this approach to harmonizing different cohorts’ 
16S rRNA gene sequence data, the magnitude of variation across sites appeared to be less than it was prior to 
phylogenetic scaffolding. Limitations include some differences in sample collection protocols i.e., WISC and 
Microbes, Allergy, Asthma, and Pets (MAAP) samples, collected at group B streptococcus screenings in the third 
trimester, were drawn from recto-vaginal samples, which may have explained some of the differences between 
the host factors that remained consistent between the MARCH and Atlanta cohorts but were more attenuated 
in the WISC and MAAP cohort. There were also site differences in sequence length and primer kits, which may 
have resulted in some artifacts in the taxa we identified with host factors. In addition, limited data availability for 
some factors that likely affect vaginal microbiome structure precluded comparisons, such as prenatal antibiotic 
use in the WISC, as well as measures of diet, cohabitation/marital status, and douching  practices23. Since data 
were sequenced prior to this study, we were not able to harmonize and account for the effect of gestational week 
at sample collection. Therefore, we aligned the sequence data to the first collection in pregnancy, although this 
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varied from the first to the third trimester, which also may have explained some of the different results observed 
in the WISC and MAAP sites.

We disentangled host factors that may drive differences in microbial signatures across populations when 
their underlying distributions are differential. Our results suggest that host factors are plausible explanations 
for some of the inconsistent results in previous smaller studies, most of which, to date have failed to account for 
host factors. As such, our results have important implications for the design and analysis of future population-
based studies of the vaginal microbiome in pregnancy and underscore the need to fully account for the complex 
relationships between host factors and the microbiome.

Methods
Study population
The ECHO cohort is a consortium of birth cohorts from across the United States designed to evaluate the impact 
of in utero and early-life exposures on child health outcomes and includes detailed survey, medical record, and 
bio-specimen collections. The design and purpose of the ECHO cohort have been previously  described27,28. 
All ECHO cohorts with available vaginal samples that had previously undergone 16S rRNA gene amplicon 
sequencing were included in the present study (Table 1), which meta-analyzed 16S rRNA gene amplicon data 
where available (Supplementary Materials, Fig. 2) from ECHO across a diverse set of sites and populations. The 
Atlanta cohort participants were recruited between 8 and 14 weeks gestations from prenatal clinics affiliated 
with two hospitals in Atlanta, GA. The MAAP cohort recruited pregnant women during their second and third 
trimesters from two hospital systems in metro Detroit, MI, to understand how exposures in early life modify 
risk for  asthma47. The Children’s Respiratory and Environmental Workgroup (CREW) includes both the WISC, 
drawn from rural medical centers in north-central  Wisconsin48, and the MAAP cohort, drawn from urban metro-
Detroit sites. The MARCH) a population-based cohort that recruited from initial prenatal appointments; for this 
study, we used a subset of the entire MARCH cohort that included both University of Michigan sites (MARCH 
U-M) and remote collection of samples from nine other sites across the state of Michigan. For this study, only 
those participants who provided informed consent for providing at least one vaginal swab sample during their 
pregnancy were included, and we analyzed the first sample collected in pregnancy.

Clinical and demographic measures
At all sites, demographic data and health-related practices were collected from prenatal surveys, and health 
conditions, infection, delivery information, and antibiotic use were abstracted from the medical record. In 
MARCH, detailed information, including the infant’s sex, infant’s birth weight, complications of pregnancy, 
and pre-pregnancy BMI and gestational age, was derived from the birth certificate. Host factor metadata were 
harmonized to include self-reported White versus non-White race, any antibiotics in pregnancy, and public 
insurance as a proxy for socioeconomic status since household income was collected differently across sites.

Vaginal sample collection
At the MARCH U-M sites, vaginal dual-headed dry swabs (Starplex™ Scientific S09D, Fisher Scientific) were 
self-collected in clinics. Immediately upon collection, AllProtect (Qiagen) preservative was added to the swabs, 
and they were stored for 24–48 h at −20 °C before being transported on ice for long-term storage at -80 °C. In the 
other MARCH sites, vaginal dual-headed dry swabs were self-collected at home, mailed to the laboratory, and 
archived at −80 °C. Similarly, in the Atlanta cohort, vaginal swabs were self-collected using the Sterile Catch-All 
Sample Swab (Epicentre), placed immediately in MoBio bead tubes, and transported on ice for archival storage 
at −80 °C. For both the MARCH and Atlanta cohorts, the first vaginal swab collected in pregnancy was analyzed. 
At the WISC and MAAP sites, vaginal/rectal swabs (Epicentre Catch-All) were collected by a provider within 
6 weeks of delivery at the time of group B streptococcus screening. Swabs were stored in RNAlater (Thermo 
Fisher Scientific) at 4 °C for at least 24 h and then transferred to −80 °C. Prior to DNA extraction, swabs were 
thawed on ice and transferred to Lysing Matrix E (LME) tubes. RNAlater was transferred into a sterile tube and 
centrifuged at 16,000×g for 5 min at 4 °C. Pellets were re-suspended using cetyltrimethylammonium bromide 
buffer and transferred to the LME tube containing the  swab47.

DNA extraction, library preparation, and sequencing
MARCH
DNA was extracted from the MARCH U-M samples using the PowerMag kit (Qiagen; MoBio Laboratories) 
optimized for the epMotion 5075 TMX (Eppendorf). DNA samples were quantified using the Quant-iT Pico-
Green dsDNA Assay kit (Thermo Fisher Scientific). The V4 region of the 16S rRNA gene was amplified using 
the dual-index sequencing strategy outlined in the MiSeq  SOP49 at the MARCH U-M Microbiome  Core50. 
Amplicons were sequenced using 250 bp Illumina MiSeq (MiSeq Reagent 222 kit V2) for 500 cycles according 
to the manufacturer’s instructions with modifications for the primer set. Libraries and sequencing reagents with 
custom read 1/read 2 and index primers added were prepared according to Illumina’s protocol for 2 nM libraries. 
The final load concentration was 4 pM, spiked with 15% PhiX.

DNA was extracted from the other MARCH samples also using the DNEasy Powersoil DNA Isolation 
kit (Qiagen) per the Human Microbiome Project’s  protocol51 and MiSeq  SOP49. Polymerase chain reaction 
(PCR) amplification was performed on the V4 region of the 16S rRNA gene following the mothur wet lab 
 documentation52, using primer sets SB501-SB508 and SA701-SA712 ordered from IDT. Successfully amplified 
triplicate PCR reactions were pooled and purified using Agencourt AMPure XP (Beckman Coulter), and the 
concentration of 16S rRNA gene amplicons was quantified using the Quant-IT dsDNA assay kit (Invitrogen). 
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The purified 16S rRNA gene pool was submitted to the Michigan State University Research Technology Support 
Facility Genomics Core for paired-end 250 bp sequencing on the Illumina MiSeq platform using V2 chemistry.

Atlanta
Samples underwent amplification of the V3-V4 region of the 16S rRNA gene following a two-step PCR  protocol53. 
Amplicons were sequenced on the Illumina HiSeq 2500 modified to generate 300 bp paired-end reads. Additional 
details have been published  elsewhere8.

WISC and MAAP
The V4 region of the 16S rRNA gene was amplified in triplicate reactions per sample using 515F/806R prim-
ers and PCR conditions previously  described12,54. Pooled amplicon reactions with 5 ng were purified using the 
SequalPrep Normalization Plate Kit according to the manufacturer’s specifications, quantified using the Qubit 
dsDNA HS Assay Kit (Thermo Fisher Scientific), and pooled at equimolar concentrations. The amplicon library 
was constructed using the Agencourt AMPure XP system (Beckman-Coulter), quantified using the KAPA Library 
Quantification Kit (APA Biosystems), and diluted to 2 nM. Equimolar PhiX was added at 40% final volume to 
the amplicon library followed by sequencing on the Illumina NextSeq 500 platform employing a 2 × 150 bp 
sequencing run. Additional details have been published elsewhere for WISC38 and MAAP32.

Bioinformatics
De-duplication was performed using the dual bar-code approach. We processed raw sequences from all sites 
together using the DADA2 Workflow for Big Data v.1.5.2 in order to cluster them into ASVs (https:// benjj 
neb. github. io/ dada2/ bigda ta. html)55  . For the Atlanta and MARCH cohorts, forward and reverse reads were 
trimmed using lengths of 255 and 225 bp, respectively, and filtered using a minimum quality score of 2. For the 
WISC and MAAP cohort, reads were maintained if they exhibited a maximum expected error of 2 and a read 
length of at least 150 bp. We then processed the ASVs using  MaLiAmPi56,57, a computational tool designed to 
robustly combine 16S amplicon data for meta-analysis using phylogenetic placement. Sequences are mapped to 
a common tree, which we constructed from full-length 16S rRNA allele data from NCBI (cached as a repository 
on  Zenodo58). We employed a minimum overlap at six for read-joining and removed Chimeras following the 
dada2 protocol.

Given that samples had previously undergone isolation and sequencing at each site (Table 1), we harmo-
nized 16S rRNA gene sequences using  MaLiAmPi56,57. We used the “refpkg.nf ” module in MaLiAmPi to recruit 
alleles from this repository and assemble them de novo via  RAxMLv859. Finally, the amplicon sequence variants 
from  DADA255 were placed onto this phylogenetic tree via pplacer60, and metrics including alpha-diversity, 
pairwise phylogenetic distance, and taxonomic composition were derived via the pplacer utility guppy, per the 
pplacer_place_classify.nf module of MaLiAmPi.

After filtering of non-bacterial taxa, the relative abundance of a total of 5,232 phylotypes was  estimated61,62. 
With mothur (version 1.48.0)63,64, we calculated Bray–Curtis distances and principal coordinates (PCoA) plot-
ted with RStudio (version 2023.06.0 + 421), R (version 4.3.1), and the  tidyverse65 (version 2.0.0) library, which 
includes ggplot2 (version 3.4.2). One sample with low counts was excluded. We also classified vaginal samples 
into CSTs using  VALENCIA11, based on similarity to reference centroids.

Statistical analysis
Demographic and clinical characteristics across cohorts are summarized in Table 2. To test for significant differ-
ences in the distribution of participant characteristics, we used chi-square or t-tests as appropriate. To identify 
host factors associated with vaginal microbiota structure in pregnancy, we generated single-factor PERMANOVA 
models based on Bray–Curtis distances overall and separately for each cohort using adonis2 implementation in 
R’s vegan package and dispersion using betsdispr based on 100,000 permutations.

We also used multifactor PERMANOVA models to examine the independent effects of host factors using a 
backward variable selection approach. We adjusted p-values for multiple comparisons using a Benjamini and 
Hochberg FDR criterion of p < 0.0566. To test the independent effects of host factors on vaginal CSTs, we con-
structed a series of nested multinomial logistic regression models from the most robust predictors of vaginal 
microbiome variation identified from the PERMANOVA results. In these models, we collapsed the six VALEN-
CIA classifications into three categories: non-L. iners Lactobacillus dominant (CSTs I, II, and V [reference]), 
L. iners dominant (CST III), and diverse (CST IV). Covariates were selected using a criterion of p < 0.2 in the 
PERMANOVA models including self-identified race, education level, maternal age, receipt of antibiotics in 
pregnancy, and parity category. Using a stepwise forward selection approach beginning with self-identified race, 
we compared parameter estimates as host factors were added to subsequent models to test whether the effect of 
self-identified race became attenuated after adjustment for each host factor or remained independently associated 
with vaginal CSTs. Models were run for the pooled cohort data as well as for each cohort individually using the 
R multinom() function from the nnet package.

We next examined how the factors retained in the multiple adjusted models associated with the relative 
abundance of specific taxa within communities. Using a machine learning approach utilizing a random forest 
classifier for each robust host factor in the PERMANOVA models, we ranked specific taxa that contributed the 
largest amount of homogeneity in the nodes and leaves of the forest trees by estimating the mean decrease in 
Gini index and increase in node purity coefficients for categorical and continuous predictors, respectively. Gini 
coefficients are estimated each time the tree is split on each feature, with higher values ranking greater discrimi-
nation. Random forest classifiers were run using a test and train validation set approach, splitting the data to 
set aside 20% for testing (80/20 split). We generated supervised random forest model plots and validated them 

https://benjjneb.github.io/dada2/bigdata.html
https://benjjneb.github.io/dada2/bigdata.html
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using ROCs with AUCs using “randomForest” based on Breiman’s random forest algorithm for classification 
and  regression67 and “pROC” package in R. Multidimensional scaling plots of the proximity matrix were also 
used to rank taxa between samples. Models were tuned focusing on the optimal number of variables randomly 
sampled as candidates at each split (“mtry”) and the optimal number of trees (“ntree”) in R. Default values for 
number of variables randomly sampled as candidates at each split were the square root of the number of vari-
ables in the model from 5,228 taxa. We set the hyperparameter nTree to 500, and tuned with “caret” until the 
out-of-bag error stopped decreasing.

Missing data in the outcome variables were imputed by calculating the variable median for the numeric vari-
able and the mode for the categorical variables by cohort except when it was not missing at random (i.e., for an 
entire cohort). All statistical analyses were conducted using R version 4.2.368. The University of Michigan IRB 
approved the research, which was deemed exempt and performed in accordance the Declaration of Helsinki. 
Informed consent was obtained from all participants.

Data availability
The unprocessed 16S rRNA gene amplicon data are publicly available for the Atlanta cohort (https:// www. ncbi. 
nlm. nih. gov/ sra, PRJNA725416), MARCH (https:// www. ncbi. nlm. nih. gov/ sra, PRJNA1041860) and MAAP/
WISC (European Nucleotide Archive: PRJEB46659). Select de-identified data from the ECHO Program are avail-
able through the Eunice Kennedy Shriver National Institute of Child Health and Human Development’s Data and 
Specimen Hub (DASH). Code for the study can be accessed  publicly69. Information on study data not available 
on DASH can be obtained by contacting the ECHO Data Analysis Center at ECHO-DAC@rti.org with inquiries.
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