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Abstract

Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility
and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational
signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial
cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids
(PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole
genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We
report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may
induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures
between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature
assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis
on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational
signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature
contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate
the impact of distinct computational workflows on mutational signatures.
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Introduction
Genetic instability fuels tumor initiation and progression, and
mutations represent the primary source of genetic variation.
There is increasing evidence that a variety of factors can damage
DNA and induce specific patterns of mutations in the genome,
also known as mutational signatures [1–4]. Currently, there is

no gold standard for mutational signature analysis. Since their
initial discovery, more than thirty different bioinformatic tools [5]
have been developed to extract de novo mutational signatures
or to perform fitting analysis to estimate the prevalence of
already characterized signatures in individual samples [1, 6].
This lack of standardization and the use of multiple analytical

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5511-1555

 15660
19162 a 15660 19162 a
 
mailto:giovanni.crisafulli@ifom.eu
mailto:giovanni.crisafulli@ifom.eu
mailto:giovanni.crisafulli@ifom.eu

 26938 20214 a 26938
20214 a
 
mailto:alberto.bardelli@ifom.eu
mailto:alberto.bardelli@ifom.eu
mailto:alberto.bardelli@ifom.eu


2 | Battuello et al.

approaches may result in discrepancies. Furthermore, the number
of signatures is continuously increasing: for example, the
Catalogue Of Somatic Mutations In Cancer (COSMIC) [7] contained
30 single base substitution (SBS) mutational signatures as of
March 2015 (v2) [1], while the latest version (v3.3) of July 2023
includes 79 SBS mutational signatures [8, 9]. Importantly, the
inclusion of a low number of signatures in the analysis could lead
to underestimation of active mutational processes in a tumor;
while performing mutational signatures fitting on a large number
of signatures could result in signal dilution and overfitting,
as previously reported [10]. Furthermore, most of the reported
signatures and the available tools for mutational signature
profiling were designed to work with whole exome (WES) or
whole genome (WGS) data [1, 8, 11]. Indeed, the extent to which
next-generation sequencing (NGS) data from targeted gene panels
(such as those used for clinical diagnosis or predictive purposes)
can be exploited to reliably identify mutational signatures is
largely unknown.

In this study, we assessed the impact of several arbitrary
parameters on mutational signature analysis of human tumor
samples. To this end, we focused on colorectal cancer (CRC) as
a paradigmatic example of a common malignancy. According to
their molecular profiles, most CRCs are classified as microsatellite
stable (MSS) tumors, are characterized by chromosomal instabil-
ity and are usually associated with a proficient mismatch repair
machinery (MMRp). In contrast, microsatellite instable (MSI)
tumors, representing a minor fraction of CRCs, generally display
mismatch repair deficiency (MMRd) leading to a hypermutated
phenotype [12, 13]. These molecular subtypes are associated
with defined clinical features, such as anatomic site, treatment
response and prognosis [14–19]. Notably, a small fraction of MSS-
MMRp samples (1–2%) harbors mutations in the exonuclease
domain of the DNA polymerase epsilon (POLE), resulting in a
hypermutated phenotype paralleled by a good responsiveness to
immune checkpoint blockade [16, 20]. As for other cancer types,
the mutational signature profiles of CRC can be exploited for
stratification purposes and to guide therapeutic decisions [21–26].
In this work, we evaluated how the choice of sequencing workflow,
computational tools and mutational signature references affects
signature analysis, both in terms of technical validity and the
effectiveness of the resulting signatures in stratifying molecular
subtypes of CRC. We exploited WES, WGS and the TruSight
Oncology 500 targeted gene panel (TSO-500 from Illumina)
[27] data, gathered by sequencing genomic DNA from CRC
datasets, including 230 cell lines [28–31], 152 patients from The
Cancer Genome Atlas (TCGA) [32] and validating our results
in three independent datasets. Finally, to make our workflow
accessible and usable, we developed CoMSCER (Comparative
Mutational Signature analysis on Coding and Extragenic Regions),
a bioinformatics tool capable of assessing the impact of multiple
parameters on the robustness of the results to identify the most
appropriate bioinformatic workflow.

Methods
Datasets
The preclinical dataset comprises a collection of CRC cell lines
(Table S1) maintained as previously reported [29] and a publicly
available clinical datasets from Genomic Data Commons (GDC)
data portal repository under the TCGA project (TCGA-COAD).
We validated our findings in independent datasets: a cohort of
483 endometrial cancer patients (TCGA-UCEC), 35 lung cancer
patients (TCGA-LUAD and TCGA-LUSC) and 12 CRC PDOs [33].

Genetic analysis
Maxwell RSC Blood DNA Kit was used for DNA extraction from
cell lines and the preparation was performed following the
manufacturer’s protocol. Starting from 400 ng of DNA from cell
lines, WGS libraries were prepared using Nextera DNA Flex Library
Preparation Kit according to the manufacturer’s protocol. For
the preclinical dataset, fastq files were generated from Illumina
Novaseq6000 and processed using the genomic analysis workflow
as previously described [34, 35]. BWA-mem algorithm [36] was
used to map reads to the human genome version 38 and PCR
duplicates were removed using the RMDUP function in the
SAMtools [37]. Mutations supported only by alteration in the
first/last read position were filtered and strand bias correction
was applied as previously described [34]. Starting from mutational
files containing genetic alterations, only genetic alterations
with fractional abundance ≥ 10% were used for mutational
signatures analysis. VCF files of samples in the clinical dataset
(Table S1) and UCEC cohort were downloaded and filtered for the
availability of clinical information concerning microsatellite and
POLE status. ‘MAF’ files from the GDC lung cancer dataset were
downloaded and filtered for genetic alterations with fractional
abundance ≥ 10% and clinical annotation concerning smoking
status.

Mutational signature analysis using genomic
data of different size
Mutational signature fitting analysis was performed using R
(version 4.1.2), the ‘MutationalPatterns’ version 3.4.0 package
and COSMIC v3.2 as a signatures reference in three different
datasets: 230 WES CRC samples, 63 WGS and 230 NGS targeted
panel sequencing (Table S1). Concerning NGS targeted panel
sequencing, TSO-500 from Illumina was chosen due to its
large applicability in clinical settings and for its large size
(523 genes). The TSO-500 dataset was created in silico from
WES data upon mutations extraction based on the coding
region of TSO-500 gene list. Mutational fitting was performed
using ‘fit_to_signatures’ function with standard setting. Cosine
similarity was assessed with the R function ‘cos_sim_matrix’ from
MutationalPatterns package between the original mutational
matrix (from SigProfilerMatrixGenerator) and the reconstructed
matrix obtained using custom script publicly available on Github
(https://github.com/pbattuello/MutationalSignatures). Cosine
similarity distribution was plotted with ‘ggplot2’ R-package. Each
mutational signature contribution was normalized ranging from
0 to 1, representing the percentage of mutations assigned to that
specific mutational signature. As a percentage, this contribution
resulted to be normalized also to the genomic size of the reference
dataset: whether it was WGS, WES or TSO-500. Normalized
contributions for the mutational signatures reported on COSMIC
with ‘defective DNA mismatch repair’ as aetiology (SBS: 6–15–20-21-
25-26-44) were taken into consideration and used for sample
stratification. SBS10a-b were used instead for POLE-mutated
sample stratification. ‘Flat signatures’ (SBS: 3–5–8-40-89) were
defined, as previously proposed [10], as signatures in which
the 96-mutational profile shows relatively even contribution of
each trinucleotide context (<0.05%). �MMR was defined as the
difference between the median contribution of MMRd-associated
signatures between MSS-MMRp and MSI-MMRd samples. In the
same manner, �POLE was defined as the difference between
the median contribution of POLE-associated signatures between
POLE wild-type MSS-MMRp and POLE-mutated MSS-MMRp
samples.
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Metanormal creation
The metanormal sample was created from WES data from
21 peripheral blood mononuclear cells (PBMCs) as previously
reported [22]. For the metanormal generation, an equal number of
reads were randomly taken from each of the samples and merged
in a single fastq file. All the genetic analysis was repeated as
described in the previous section using the metanormal sample
as a matched normal.

Systematic review of bioinformatic tools to
analyse mutational signatures
We conducted a literature systematic review from the publicly
available repository PubMed Central (PMC) database (https://
www.ncbi.nlm.nih.gov/pmc/), using as the searching key ‘muta-
tional signatures’ in the title or the abstract section. The literature
search cut-off date was July 31st, 2023. From the SigProfiler suite
SignatureProfilerAssignment was chosen as the most recent tool
for mutational signature fitting analysis. SomaticSignatures tool
was not available for fitting analysis. The five tools with most
occurrences were included in the manuscript analysis unless
the software was not available for use. Table S2 provides a
comprehensive overview.

Mutational signature analysis—algorithms
comparison
Starting from mutational call files from WES, mutational matrices
were generated using SigProfilerMatrixGenerator version 1.1.31.
Then, mutational signature fitting was evaluated using five algo-
rithms from current literature: ‘signature.tools.lib’ version 2.1.2,
‘SignatureAnalyzer’ version 0.0.8, ‘SigProfilerAssignment’ version
0.0.7, ‘deconstructSigs’ version 1.9.0 and ‘MutationalPatterns’ ver-
sion 3.4.0. All algorithms were run in standard settings or fol-
lowing authors guidelines to minimize differences due to arbi-
trary settings and highlight differences due to different fitting
approaches. Cosine similarity was calculated between the original
mutational profile and the one reconstructed upon mutational
signature fitting analysis using ‘cos_sin_matrix()’ function from
‘MutationalPatterns’ R-package. 230 cell lines from CRC cell bank
and 132 samples (20 samples annotated as MSI-L were excluded
from the analysis) from the clinical dataset were used in this
analysis. Based on both mathematical and biological evaluations
‘MutationalPatterns’ was chosen as the tool most suited for CRC
samples and therefore used in the other results and as part of
CoMSCER analysis.

Mutational signature analysis—reference
evaluation
Mutational signature analysis was performed on WES data using
‘MutationalPatterns’ and COSMIC v2, v3.2 and CRC-specific as
reference dataset [8].

Inferring a minimum number of mutations
We performed random sampling by 5% using the ‘shuf’ function
version 8.30 from ‘GNU coreutils’ for each sample of the two
datasets (Table S1). 19 subgroups of mutations (from 5% to 95%
using 5% interval) were identified for each sample; five different
replicates were created for each subset and mutational signatures
fitting analysis was performed for each subset as described in the
previous methods section. Cosine similarity was calculated for
each sample as reported and the median value was plotted using
R-package ggplot2 version 3.3.5.

Statistical analysis
Statistical analysis was performed using R version 4.1.2. The
individual statistical tests are specified in the results section and
figure legends. Wilcoxon rank sum test was performed using R
function ‘wilcox.test’ and ‘∗’, ‘∗∗’, ‘∗∗∗’, ‘∗∗∗∗’ footnotes were used
to mark significance level, respectively P < 0.05, P < 0.01, P < 0.001,
P < 0.0001.

Data/code availability
All the code and data necessary to reproduce the study are
available on GitHub repository (https://github.com/pbattuello/
MutationalSignatures). NGS data are available at the European
Bioinformatics Institute in the European Nucleotide Archive
(ENA) with PRJEB33045, PRJEB33640, PRJEB57691 and PRJEB61897
accession codes. Cell lines were selected based on the availability
of genomic data from NGS (Table S1). Compared to the datasets
we reported previously [28–30], additional cell lines WGS were
included in the current cohort. Idea tool for mutational calling
pipeline is available at (https://bitbucket.org/irccit/idea/src/
master/) [34]. CoMSCER is available at https://github.com/
pbattuello/CoMSCER.

Results
Identification of the main variables for
mutational signature analysis and workflow
design
As a starting point, we reasoned that defining the key steps of
a ‘standard’ bioinformatic pipeline would allow identifying the
main variables of the analysis. We identified three key parame-
ters: the NGS workflow, the bioinformatic tool for the signature
fitting analysis and the reference catalogue of mutational sig-
natures (Fig. 1A). For the first parameter, we performed muta-
tional signature analysis on three different types of NGS data:
the TSO-500 pan cancer panel, WES and WGS data (Table S1).
For the second variable, we performed a systematic review of the
literature which resulted in determining the five most commonly
used bioinformatic software for mutational signature profiling
(Table S2) including: MutationalPatterns [38], deconstructSigs [39],
signature.tools.lib [40], SigProfilerAssignment [41] and Signature-
Analyzer [8]. Finally, we evaluated how the reference mutational
signatures could influence the overall results considering two
versions of the COSMIC mutational signatures catalogue (v2 and
v3.2) and a tissue-specific signature reference [1, 7, 8] (Fig. 1A).
Next, we designed a computational workflow to evaluate how
each parameter could influence the overall signature analysis,
using two different readouts (Fig. 1B). The first is a mathematical
readout, assessing how fitted mutational signatures recapitulate
the mutational landscape of individual samples. This is measured
by calculating the cosine similarity between the mutational pro-
file of each sample and the profile reconstructed using the fitted
mutational signatures, considering 0.9 as the cosine similarity
threshold as previously reported (‘not assigned’ < 0.9) [42]. The
second is a biological readout, defined as the ability of the fitted
mutational signatures to properly stratify two biologically rele-
vant CRC subtypes: MSI-MMRd and POLE-mutated hypermutant
CRCs. To assess the ability of the fitted signatures to discriminate
MMRp from MMRd tumors, we calculated the median �MMR
parameter, defined as the difference of the median contribu-
tion of fitted MMR deficiency signatures between MSI-MMRd and
MSS-MMRp samples: the higher the value, the higher the ability
of fitted signatures to discriminate MSI-MMRd and MSS-MMRp
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Figure 1. Graphical representation of the experimental workflow used to determine key variables for mutational signature analysis. (A) A prototypic bioinformatic
pipeline for mutational signature profiling is graphically represented. (B) Experimental workflow of the study. (C) The CoMSCER workflow is graphically
represented. NGS, Next Generation Sequencing; WES, Whole Exome Sequencing; WGS, Whole Genome Sequencing; VCF, Variant Call Format; COSMIC, Catalogue
Of Somatic Mutations In Cancer; CRC, Colorectal Cancer; MP, MutationalPatterns; DS, deconstructSigs; STL, signature-tools.lib; SPA, SigProfilerAssignment; SA,
signatureanalyzer.
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Figure 2. Molecular features of the preclinical dataset. Upset plots of the preclinical dataset reporting the genetic features of the CRC cell lines cohort. Cell
lines are divided by genetic subtype: MSS-MMRp, MSI-MMRd and POLE-mutated. MSS, Microsatellite Stable; MSI, Microsatellite Instable.

samples. Similarly, we calculated the median �POLE parameter,
defined as the difference of the median contribution of fitted POLE
signatures between POLE-mutated and POLE wild-type samples,
to assess the ability of signatures to classify CRC based on POLE
mutational status (Fig. 1B).

Comparative mutational signature analysis on
coding and extragenic regions
We considered that a bioinformatic tool which comprehensively
and systematically performs the above-mentioned analyses in
multiple datasets originating from distinct tumor types is not
available. To address this knowledge gap, we developed CoM-
SCER, a freely available bioinformatic tool. By specifying the SBS
mutational signatures of interest (e.g., MMRd, treatment induced)
and two given conditions (e.g., MMRp versus MMRd, pre ver-
sus post treatment), CoMSCER evaluates the mathematical and
biological readouts from multiple bioinformatic tools, reference
datasets and differential signature contribution between coding
and non-coding regions for the identification of the most suited
bioinformatic workflow (Fig. 1C, https://github.com/pbattuello/
CoMSCER).

Datasets for comprehensive mutational
signature analyses
We focused our analysis primarily on a preclinical dataset of CRC
cell lines. This dataset comprises 187 CRC cell lines previously
genotyped by our research group [28–31]. Additional genomic data
from CRC cell lines were incorporated through this study, expand-
ing the dataset to a total of 230 genomically annotated cell lines
encompassing all the main CRC subtypes such as MSS-MMRp
(145/230, 63%), MSI-MMRd (78/230, 34%) and POLE-mutated sam-
ples (7/230, 3%). Detailed genetic characteristics of the dataset are
summarized in Fig. 2 and Table S1.

Identification of mutational signatures using a
targeted sequencing panel
To assess the impact of NGS workflow choice, we investigated how
different sequencing data, namely WGS, WES and the targeted
pan-cancer panel TSO-500 (performed on the same samples)
affect mutational signatures (Table S1). When considering the
mathematical readout, cosine similarity reached the reliability
threshold of 0.9 with all three NGS types of data, supporting the

technical feasibility of the analysis spanning from WGS to gene-
targeted panels. However, the three outcomes were significantly
different when compared using the Wilcoxon rank test (Fig. 3A).

Concerning the biological readout (definition of CRC molecular
subtypes), the median �MMR was >0 both using TSO-500,
WES and WGS (Fig. 3B), suggesting that the use of all three
data types allows significant stratification of MSS-MMRp from
MSI-MMRd CRCs (Wilcoxon rank test, WES, TSO-500 and WGS,
respectively P < 2.2e-16, P < 2.2e-16 and P = 1.03e-04, Fig. 3B).
A similar scenario was observed when considering sample
stratification based on POLE mutational status assessed by
median �POLE parameter (Fig. 3C).

However, when the median �MMR was higher than 0 with
all three sequencing workflows, the value was unexpectedly
lower using WGS data (0.11 WGS < 0.26 WES < 0.32 TSO-500).
We hypothesized that this could be due to the dilution of the
MMR signature signal with larger genomic sources such as WGS.
Therefore, we investigated the contribution of different classes
of mutational signatures in our databases of MSI-MMRd CRC
cell lines. Specifically, we considered: MMRd related signatures,
a specific signatures often referred to as ‘f lat signatures’ [10],
artefact-associated signatures and mutational signatures asso-
ciated with unrelated biological processes. This analysis showed
an increased signal for ‘f lat signatures’ in WGS data (Fig. 3D), thus
suggesting a possible explanation for the previously observed
signal dilution. Additionally, to elucidate the possible source
of the increase of ‘f lat signatures’ signal, we asked whether
distinct genomic regions may contribute differently to mutational
signature contribution. We performed mutational signature
analysis considering mutations derived from the exonic, intronic
and extragenic regions extracted from WGS. The analysis showed
lack of ‘f lat signatures’ in the exonic regions, confirming the results
from WES, while intronic and extragenic regions exhibited an
increment of the ‘f lat signatures’ contribution of 11,6% and 36%,
respectively (Fig. 3D). To further support and extend these results,
we evaluated the median �MMR in each specific genomic region.
As highlighted in Fig. S1, median �MMR between MSI-MMRd and
MSS-MMRp CRC cell lines of the extracted exonic regions aligns
closely with that observed from WES data.

Overall, these results indicate that mutational signature anal-
ysis may be feasible not only using WES and WGS data but
also large pan-cancer NGS panels such as the TSO-500. Notably,
increasing the genomic size evaluated in the analysis was only
partially helpful in improving signature accuracy.

https://github.com/pbattuello/CoMSCER
https://github.com/pbattuello/CoMSCER
https://github.com/pbattuello/CoMSCER
https://github.com/pbattuello/CoMSCER
https://github.com/pbattuello/CoMSCER
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data


6 | Battuello et al.

Figure 3. Impact of the Next Generation Sequencing Workflows on Mutational Signature Profiling. (A) Distribution of cosine similarity values in the preclinical
CRC dataset, using WGS, WES and the TSO-500 pan-cancer panel. (B) Overall contribution of MMR associated mutational signatures in MSI-MMRd
and MSS-MMRp CRC preclinical samples. (C) Overall contribution of POLE mutation-associated signatures in POLE-mutated and POLE wild-type CRC
preclinical samples. (D) On the left, median contribution of artefact-driven, MMRd-associated and ‘f lat signatures’ in the MSI-MMRd CRC cell lines. On
the right, pie charts of the contribution of ‘f lat signatures’ in exonic, intronic and extragenic regions from WGS data. NGS, Next Generation Sequencing;
MSS, Microsatellite Stable; MSI, Microsatellite Instable; WT, Wild-Type; MUT, Mutated; MMR, Mismatch Repair; WES, Whole Exome Sequencing; WGS, Whole Genome
Sequencing.
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Impact of computational algorithms on
mutational signature analysis in CRC
We conducted a literature systematic review on PMC using as
search key ‘mutational signatures’. From the initial 831 entries,
128 manuscripts were available for download and are listed
Table S2. From this pool, we identified 70 papers that referenced
algorithms for fitting mutational signatures that were both
available and installable. From this list, we selected the top five
most referenced tools (Fig. 4A). We next performed mutational
signature fitting using the five bioinformatic tools identified:
MutationalPatterns (MP), deconstructSigs (DS), signature-tools.lib (STL),
SigProfilerAssignment (SPA) and SignatureAnalyzer (SA) on the CRC
preclinical and clinical datasets [32].

In the preclinical dataset, four out of five tools reached a
median cosine similarity of 0.9. Differences in cosine similarity
distribution among the five software were statistically significant
(Fig. 4B, upper panel). We highlighted that, among the five tools
evaluated, SPA and SA did not allow the assignment of more
than 20% of the samples (1/230, 0.4% with STL, 48/230, 20.9%
with SPA and 217/230, 94.3% with SA). Notably, only MP and DS
allowed mutational signature fitting for all 230 samples (Fig. 4B,
lower panel). Results from the clinical dataset were comparable:
four out of five software reached a median value of cosine simi-
larity above the technical reliability threshold, with only limited
samples not reaching the threshold. Similar to what we observed
in the preclinical dataset, cosine similarity distributions were
significantly different (Fig. S2A, upper panel). Also in this case,
multiple samples were not assigned by different tools: 1/152,
0.66% with MP, 10/152, 6.6% with DS, 12/152, 7.9% with STL, 25/152,
16.4% with SPA 116/152, 76.3% with SA (Fig. S2A, lower panel).
Of note, the trend between the median value of cosine similarity
among the five different algorithms was maintained across the
preclinical and clinical datasets.

Next, we evaluated the ability of each bioinformatic tool to
correctly stratify MSS-MMRp and MSI-MMRd tumors (Fig. 4C). In
the preclinical dataset, the MMR deficiency signature contribution
between MSS-MMRp and MSI-MMRd samples was significantly
different for all five software (Wilcoxon rank sum test, P < 2e-
16). Nevertheless, SPA proved to have the highest MMRd sig-
nature fitting ability as indicated by the highest median MMR
signature contribution obtained in MSI-MMRd samples with this
tool (Fig. 4C). Furthermore, to properly compare the tools perfor-
mance in discriminating MSS-MMRp and MSI-MMRd tumors, we
analysed the �MMR distribution between MSI-MMRd and MSS-
MMRp samples. This analysis highlighted significant differences
between the contribution of MMR signatures in MSS-MMRp and
MSI-MMRd using different algorithms. Notably, SPA provided the
highest median separation between the two subtypes (MP = 0.34,
DS = 0.28, STL = 0.31, SPA = 0.67, SA = 0.28, Fig. 4D).

Finally, to evaluate how mutational signatures stratify CRC
POLE-mutated phenotype, we considered the POLE-related signa-
ture SBS10 (Fig. 4E) and �POLE distribution (Fig. 4F). In the pre-
clinical datasets, a significant difference was reported for all five
algorithms. Considering POLE related signatures contribution, SPA
showed again the highest values (MP = 0.59, DS = 0.58, STL = 0.59,
SPA = 0.7, SA = 0.57).

The analysis of the clinical dataset revealed similar results
for both MSI-MMRd/MSS-MMRp and MSS POLE-mutated/MSS
POLE wild-type stratification. Genetic stratification of MSI-
MMRd and MSS-MMRp patients was statistically significant for
all algorithms (�MMR MP = 0.61, DS = 0.67, STL = 0.77, SPA = 1,
SA = 0.26, Fig. S2B–C) and concordant results were also obtained

for POLE stratification (�POLE clinical dataset: MP = 0.59, DS = 0.68,
STL = 0.77, SPA = 0.71, SA = 0.85, Fig. S2D–E).

To assess if software dependent differences persisted across
different tumor types, we extended the analysis to an independent
dataset comprising samples from endometrial tumors of 483
patients. These additional analyses confirmed the consistency of
our results (Table S3). These findings highlighted that, depending
on the tool of choice, more than 30% of samples remain ‘not
assigned’ (Table S3). Finally, an additional validation of these
divergent software performances was conducted using a different
biological readout and tumor type. We focused on a dataset
of lung tumors, classifying them based on smoking status, the
outcome of these analyses further confirmed the results obtained
in the CRC dataset (Table S3).

Impact of different reference mutational
signatures on CRC genetic characterization
Following the same strategy as above, we assessed how the muta-
tional signature reference impacts mutational signature fitting
and CRC molecular stratification. We selected three distinct refer-
ences: COSMIC v2 (C2), COSMIC v3.2 (C3) [1, 8] and a CRC tissue-
specific signature catalogue (TS) [40], each containing a different
number of mutational signatures (30 in C2, 72 in C3 and 26 in TS).

Cosine similarity analysis showed values above the reliability
threshold with all references, with higher values corresponding to
larger references. Differences were statistically significant in both
the preclinical (Wilcoxon rank sum test, C2vsTS, C2vsC3, C3vsTS,
respectively P = 1.2e-13, P < 2.2e-16, P < 2.2e-16) and the clinical
dataset (Fig. 5A).

With respect to the ability to define CRC molecular subsets, all
references obtained a significant �MMR, thus allowing proper
identification of MSS-MMRp and MSI-MMRd (Wilcoxon rank
sum test, C2vsTS, C2vsC3, C3vsTS, P < 2e-16, Fig. 5B–C) even
if minor differences were present (preclinical dataset: �MMR
C2 = 0.34, �MMR C3 = 0.26, �MMR TS = 0.27; clinical dataset:
�MMR C2 = 0.61, �MMR C3 = 0.41, �MMR TS = 0.56). To further
investigate if the reference choice could alter the contribution of
a distinct mutational signature associated with MMR deficiency,
we compared the contribution of each MMR deficiency signature
in the MSI-MMRd cohort of the preclinical dataset. Of note, a
certain variability was present, particularly in case of SBS6 (46%
in C2, 13% in C3 and 24% in TS), SBS15 (3% in C2, 19% in C3 and
9% in TS) and SBS26 (5% in C2, 0% in C3 and 25% in TS, Fig. 5D).
Comparable results were obtained when we evaluated the
contribution of specific MMRd signatures in the clinical dataset
(Fig. S3A).

We further performed the analysis in an independent dataset
of 167 endometrial cancers annotated for MSI-MMRd status. Even
in this scenario, the use of different mutational signature refer-
ences led to changes in the contribution of individual signatures:
SBS6 decreased from 73% in C2 to 43% and 32% respectively in C3
and in the TS references; while SBS21 emerged only in C3, SBS26
and SBS44 emerged only using the TS reference (Fig. S3B).

Finally, we considered POLE genetic stratification: in both CRC
datasets, all references led to effective discrimination of POLE-
mutated from POLE wild-type CRCs (Wilcoxon rank sum test,
C2vsTS, C2vsC3, C3vsTS, P < 2e-16) (preclinical dataset: respec-
tively �POLE = 0.59, �POLE = 0.47, �POLE = 0.51; clinical dataset:
�POLE = 0.59, �POLE = 0.59, �POLE = 0.61, Fig. 5E–F).

In summary, the size of the mutational signature reference can
impact the molecular stratification of CRC samples, specifically
when distinct mutational signatures are considered.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae249#supplementary-data
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Figure 4. Impact of algorithm choice on mutational signatures analysis in the preclinical dataset. (A) Graphical representation of the systematic review
utilized to identify the 5 most used tools. (B) Distribution of cosine similarity values obtained with MutationalPatterns, deconstructSigs, signature-tools.lib,
SigProfilerAssignment and signatureanalyzer in the preclinical dataset. (C) Overall contribution of MMRd-associated signatures in MSI-MMRd and MSS-
MMRp cell lines according to the indicated algorithms. (D) Distribution of �MMR values according to the indicated algorithms (E) Overall contribution
of POLE associated mutational signatures according to the indicated algorithms. (F) Distribution of �POLE values according to the indicated algorithms.
PMC, PubMed Central; MP, MutationalPatterns; DS, deconstructSigs; STL, signature-tools.lib; SPA, SigProfilerAssignment; SA, signatureanalyzer; n.s., not significant.
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Figure 5. Impact of the reference on mutational signatures analysis. (A) Distribution of cosine similarity using three different signatures references in the
clinical and preclinical datasets. (B) Contribution of MMRd-associated signatures in the CRC cell line dataset using three different signature references.
(C) Contribution of MMRd-associated signatures in the clinical dataset using three different references. (D) Normalized contribution of single MMR-
associated signatures in the MSI-MMRd subset of the CRC cell line dataset. (E) Contribution of POLE-associated signatures in the clinical dataset using
three different references; Red line represents �POLE (F) Contribution of POLE associated signatures in the preclinical dataset using three different
references; Red line represents �POLE. COSMIC, Catalogue Of Somatic Mutations In Cancer; SBS, Single Base Substitution; MSI, Microsatellite Instable; MSS,
Microsatellite Stable; C2, Cosmic v2; C3 Cosmic v3.2; TS, Tissue Specific.
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Inferring a minimum number of mutations for
reliable mutational signature analysis
The discrepancy observed in the WGS based analysis between
its high technical reliability (Fig. 3A) and its lower effectiveness
to stratify CRC samples when compared to smaller size NGS
workflows (Fig. 3B–C) was unexpected. To further investigate this
aspect, we inferred the minimum number of mutations required
to achieve a reliable mutational signature fitting. In particu-
lar, using both the CRC cell lines and the clinical dataset, we
performed random sampling from 5 to 95% of all the muta-
tions in each sample. Next, to establish the minimum number
of mutations required to obtain technically robust results, we
evaluated the cosine similarity. In the CRC preclinical dataset, 323
mutations were needed to reach the cosine similarity reliability
threshold (Fig. 6A). The value plunged to 64 mutations for the
clinical dataset (Fig. 6B). We reasoned that this discrepancy could
be related to the specific features of the two datasets. Indeed,
whilst the clinical datasets contain CRC versus matched healthy
tissue, the preclinical CRC dataset lacks a non-malignant control
line. To understand the impact of this discrepancy, we investigated
to what extent the use of a matched normal affect mutational
signature calling by decreasing the background originating from
germinal variants and sequencing artefacts. For this purpose,
we established a ‘metanormal’ obtained from 21 PBMCs of CRC
patients and performed the mutational calling of the entire CRC
cell line dataset using the metanormal as a normal sample [22].
In this instance, the number of mutations required to reach the
cosine similarity threshold decreased from 323 to 145 (−55%,
Fig. 6C).

Finally, we investigated how the use of a metanormal could
impact the occurrence of mutational signatures associated
with artefacts: the overall signal of artefact SBS signatures
dropped from 0.30 to 0.15, thus confirming the effectiveness
of this approach (Fig. 6D). To facilitate the reproducibility of
this approach, the list of the genomic position for filtering was
included in CoMSCER.

Discussion and conclusion
Assessing the mutational signatures that characterize cancer
genomes has biological and clinical implications, as reported in
melanoma breast and colorectal tumors [22, 25, 43]. When our
group started exploiting mutational signatures to interrogate clin-
ical response to a new therapeutic approach in CRC patients, we
realized that standardized methods to perform mutational signa-
ture analysis were not available causing a lack of reproducibility
and robustness of the results [22] (clinical trial:NCT03519412).
Furthermore, there were no comparative studies or tools to iden-
tify the most appropriate bioinformatic workflow for a specific
cancer type. Five years on, to our knowledge, these issues remain
largely unaddressed. Therefore, to improve the reproducibility and
robustness of mutational signature calls, the implementation of
standardized workflows is needed as well as computational tools
to identify the influence of the variables on the analysis.

In this context, we used CRC as a model system to investigate
how discrepancies due to different methodological approaches
affect the determination of mutational signatures. We performed
two complementary assessments: a) a mathematical evaluation,
in which we calculated how accurately mutational signatures
recapitulate the genetic landscape of cancer samples; b) a bio-
logical evaluation, in which we evaluated the identification of
the MSI-MMRd/MSS-MMRp and the POLE-mutant status of CRC
samples. Next, we conducted further validations of our results

using three independent datasets, including a cohort of endome-
trial cancer patients, a cohort of lung cancer patients and a
dataset of CRC PDOs.

We assessed how different bioinformatic tools, NGS workflows
and reference catalogues influence the final outcome of the anal-
ysis. Our results show that the use of WGS data does not improve
the ability to stratify biologically relevant CRC subtypes, highlight-
ing the importance of appropriate experimental design for muta-
tional signature analysis. In particular, we found that focusing
on the coding regions for mutational signature fitting improved
CRC stratification. Given the enrichment in coding sequences of
the currently available NGS targeted panels, this finding becomes
particularly relevant from a clinical perspective. Accordingly, we
found that performing mutational signature fitting using large
pan-cancer targeted gene panels for CRC subtypes stratification
is technically effective, reliable and robust in terms of biological
outcomes.

In addition, we found that the choice of algorithm led to statis-
tically different results. In this regard, our study has limitations:
for pragmatic reasons, we focused on five of the most used algo-
rithms for performing mutational signature analysis; however,
more than 30 different tools are currently present in literature
(as of July, 2023). Furthermore, we selected a specific version of
each of the five software and we cannot exclude that the results
could slightly differ depending on the versions. Overall, we found
that MP was the best choice in the CRC cell lines. In contrast, SPA
was the preferred choice for CRC molecular stratification. The
SA algorithm offers the best performance in cohort of samples
with similar genetic features while it underperforms in case of
sample cohorts with heterogenous genetic subtypes. To extend
the benchmarking to a broader context, we further compared the
tools with respect of aetiological and molecular tumor features.
These included neoplasms with distinct DNA repair deficiencies,
tumors associated with tobacco smoke and colibactin exposure
such as samples from endometrial and lung cancer patients
and a preclinical dataset of CRC PDOs. These extended analyses
confirmed that the level of performance of MP exceeded that of
other tools we evaluated.

The mutational signature reference is also relevant to the
outcome of the analysis and should be chosen depending on the
biological question. According to our results, reducing the number
of signatures in the reference improved the stratification of CRC
subtype (MSI-MMRd, MSS-MMRp, POLE-mutated), suggesting that
TS or C2 repositories might be a better choice compared to C3 once
ascertained that they contain all the signatures to be investigated
in a particular experimental setting. Additionally, we have shown
how the contribution of specific signatures vary depending on the
mutational signature reference. This point becomes particularly
relevant when evaluating the contribution of a unique signature
linked to a specific aetiology, a condition already reported in
literature in the case of MMR deficiency associated signatures,
where specific signatures could be linked to different DNA
repair mechanism deficiency [44, 45] or to specific genetic
syndromes [46].

Our study indicated that the threshold for a reliable analysis
depends on both the quantity and quality of mutations, consid-
ering artefacts and germline mutations. Relatedly, we observed
a 50% reduction in artefacts associated signature levels when
using only somatic variants from a matched analysis, suggesting
the importance of matched normal or ‘metanormal’ samples to
enhance mutational signature profiling.

Finally, to further improve the useability of our results and
to help researchers to identify the most appropriate workflow
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Figure 6. Inferring the minimum number of mutations required to perform mutational signatures analysis. (A) Sampling experiment on the CRC cell line dataset
showing that at least 323 mutations are required to reach the threshold of cosine similarity for proper analysis. (B) Sampling experiment on the clinical
dataset showing that at least 64 variants are required to reach the threshold of cosine similarity for performing the analysis. (C) Sampling experiment
in the CRC cell line dataset using a metanormal as matched normal, showing that 145 mutations are needed for reaching the threshold (as compared to
323 in the absence of the metanormal). (D) Decrease in the contribution of mutational signatures associated with artefacts in the CRC cell line dataset
using a metanormal. CRC, Colorectal Cancer; hg38, human genome version 38.

in their setting, we developed CoMSCER, a bioinformatic tool
which streamlines mutational signature analysis by evaluating
the impact of multiple variables on the mutational signature
profile. Specifically, by enabling users to quickly access parallel
analyses using multiple algorithms and various mutational
signature references, it can provide valuable insights into the
reliability and consistency of the results. Moreover, CoMSCER
provides information on the most appropriate reference which
would reduce the frequency by which samples are excluded
due to cosine similarity values. Finally, CoMSCER can evaluate
how mutational signature profiling might vary across different
genomic regions, whether coding or extragenic. Additionally, CoM-
SCER provides the functionality to filter regions using a metanor-
mal, allowing to reduce the confounding effect of germline
variants or systematic errors introduced during sequencing
protocols.

All the data collection, software and workflows used in this
study are freely available.

Key Points

• Distinct algorithms, references and genomic sizes pro-
duce statistically different results, highlighting the role
of arbitrary choices in influencing mutational signature
analyses.

• The study highlights a differential contribution of muta-
tional signatures between coding and intergenic regions

• The minimum threshold of somatic variants required
for reliable mutational signature assignment is investi-
gated.

• Guidelines are proposed to guide researchers towards
standard mutational signature analysis.

• The study presents CoMSCER, a bioinformatics tool that
assists researchers in evaluating signature contribu-
tions across genomic regions and in identifying optimal
workflows.
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