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BTK inhibitors (BTKis) are established standards of care in multiple B-cell malignancies

including chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom

macroglobulinemia. The first-generation BTKi ibrutinib demonstrated superiority over

standard chemoimmunotherapy regimens in multiple randomized trials but is limited by

cardiovascular side effects such as atrial fibrillation and hypertension. Second-generation

BTKis have improved selectivity and demonstrate reduced rates of cardiovascular

complications in 3 head-to-head ibrutinib studies. The emergence of BTK C481S mutation

has led to the development of noncovalent, “reversible” BTKis, such as pirtobrutinib, which

are agnostic to the C481S mutation. However, these inhibitors are associated with resistant

mutations outside the C481 hot spot. These variant non-C481 mutations are of great clinical

interest because some are shared among pirtobrutinib, zanubrutinib, and acalabrutinib,

with potential implications for cross resistance and treatment sequencing. Finally, BTK

protein degraders with in vitro activity against C481 and non-C481 mutations are currently

in clinical development. Here, we review the evolution of therapeutic BTK-targeting and

discuss future directions for clinical research.
BTK: a “perfect” target?

In 1952, Colonel Ogden Bruton of Walter Reed Hospital described a congenital disease in babies born
with severe immunodeficiency due to the absence of B-cell maturation and agammaglobulinemia.1 This
was eventually identified to be due to mutations in the BTK gene encoding a critical protein in the B-cell
receptor pathway.2 The disease phenotype was entirely restricted to the B-cell lineage and affected
children grew up and survived into midadulthood with no other clinically manifested organ
dysfunctions.3

Fast forward to the present day, BTK inhibitors (BTKis) are the standard of care in multiple B-cell
malignancies including chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), Waldenstrom
macroglobulinemia (WM), and marginal zone lymphoma4 and have recently been approved for use in
Europe in relapsed follicular lymphoma, in combination with obinutuzumab, based on the results of the
ROSEWOOD study.5 The widespread use of BTKi in the clinic led to the emergence of new problems
including the occurrence of cardiovascular6 and bleeding side effects7 and the development of
resistance mutations.8 New classes of “second-generation” and “reversible” BTKis were developed in
response.9 In this review, we discuss the history and recent updates in the ongoing cat-and-mouse race
between clinician-scientists and the continuously mutating B-CLL cell.
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First-generation BTKi: ibrutinib

Many younger hematologists did not experience the dismal treat-
ment landscape of chemotherapy-refractory CLL before BTKi.
Before ibrutinib, our most promising “novel agents,” such as
alemtuzumab, achieved short-term remissions in <35% of
patients,10 with substantial side effects including immunosup-
pression and myelosuppression in patients with little remaining
marrow reserve. The median survival of patients with chemo-
therapy- and alemtuzumab-refractory CLL was 9 months.11

In that context, the outcomes of ibrutinib (PCI-32765) in early
clinical trials can only be described as miraculous. Most patients,
including those who were refractory to all previous therapies,
responded rapidly.12 Patients with severe cytopenia improved their
blood counts, and infections were uncommon. Poor prognostic
markers, including unmutated IgHV and del(11q), lost their clinical
relevance,13 and improvement in outcomes for patients with the
highest risk with TP53 deletion were particularly notable, with a
median progression-free survival (PFS) of 26 months in this group
in the phase 1b/2 PCYC 1102 study14 and 41 months in a slightly
less heavily pretreated population in the randomized RESONATE
trial.15

Given the remarkable efficacy in difficult-to-treat patients with
relapsed/refractory (R/R) disease, including those with high-risk
genomics, as well as its favorable toxicity profile, ibrutinib was
rapidly evaluated in the first-line setting. There, it demonstrated
superior PFS and overall survival (OS) in older patients in the
RESONATE-2 trial (compared with chlorambucil)16 and in younger
patients in the E1912 study (compared with FCR).17 Furthermore,
notable were the impressive PFS rates of ~60% at 6 years in
patients with TP53 aberrations treated with first-line ibrutinib.18,19

Amid the excitement of this new therapy, interesting observations
emerged from the clinic. Although ibrutinib was largely free of
infectious and marrow toxicities, patients developed bleeding20

and atrial fibrillation.21 These were side effects not expected from
BTK blockade, because patients with congenital BTK deficiency do
not have bleeding or cardiac phenotypes.3 With more widespread
use of ibrutinib, late hypertension22 and rare, fatal ventricular
arrhythmias (VAs)23,24 emerged as new important side effects.
Investigations into platelet and cardiovascular toxicities identified
BTK as being crucial in platelet and cardiac signaling.25 Although
these toxicities are technically “on-target” in nature, they are seen
with drug therapy and not with congenital BTK deficiency for 1 key
reason: congenital deficiency affects BTK only, and proteins
closely related to BTK (such as the TEC family of kinases)26 are
able to provide “backup” signaling in organs outside of the B-cell
compartment. In contrast, drug therapy is not as specific as gene
knockout, and the inhibition of BTK and structurally related kinases
resulted in disabling of signaling pathways outside the B-cell
compartment including platelets and cardiac myocytes.25

The solution to this problem is to develop cleaner, more specific
BTKi with less off-target kinase inhibition.

Second-generation BTKis

The term “second-generation BTKis” encompasses multiple drugs
all of which have 1 factor in common: higher specificity for BTK
with reduced off-target kinase inhibition than ibrutinib. This class
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includes acalabrutinib (ACP-196), zanubrutinib (BGB-3111), tira-
brutinib (ONO-4059), and orelabrutinib. The 2 exemplars of this
class are acalabrutinib and zanubrutinib, with both having been
compared with ibrutinib in head-to-head trials (Table 1).

Acalabrutinib

The phase 1 results of acalabrutinib were published in 2016.27

Acalabrutinib was 3× more selective for TEC, 10× more selec-
tive for BMX, and >100× more selective for ERBB2, EGFR, ITK,
and JAK3 than ibrutinib.28 Acalabrutinib has a short half-life, and
twice-daily dosing was required to sustain blood BTK inhibition of
>95%.29

The initial trials with acalabrutinib reported a favorable adverse
event (AE) profile compared with the historical experience with
ibrutinib. This impression was confirmed in the head-to-head
ELEVATE-RR phase 3 comparison of acalabrutinib vs ibrutinib30

in patients with high-risk R/R CLL, in which reduced rates of AF,
bleeding, and hypertension were seen in the acalabrutinib arm.
ELEVATE-RR was a noninferiority study, and the PFS of the ibru-
tinib and acalabrutinib arms were equal. Acalabrutinib was asso-
ciated with 2 problems not seen with ibrutinib: (1) a headache that
is common in patients during the first weeks of therapy, often
responds well to caffeine, and generally improves over time despite
continued acalabrutinib therapy;31 and (2) incompatibility with
proton pump inhibitors because of pH-dependent absorption, a
problem that is now solved with the new tablet formulation.32 In the
first-line setting, acalabrutinib ± obinutuzumab was compared with
chlorambucil + obinutuzumab in the ELEVATE-TN study in older
and/or unfit patients. This study demonstrated significant PFS
benefit and, in the case of the acalabrutinib + obinutuzumab arm,
OS benefit, compared with the chlorambucil + obinutuzumab
arm.33,34 Based on its high efficacy and favorable safety profile,
acalabrutinib is licensed for treatment of CLL in any line of therapy
and R/R MCL. The ongoing AMPLIFY study (NCT03836261)
compares combination therapy with acalabrutinib + venetoclax ±
obinutuzumab with FCR in fit patients.

Zanubrutinib

The phase 1 results of zanubrutinib in patients with B-cell malig-
nancies were published in 2019.35 Zanubrutinib was 2.4× more
selective for TEC, 10× more selective for EGFR, and >30× more
selective for HER2, ITK, and JAK3 than ibrutinib.35 At the clinical
dose of 160 mg twice-daily, drug exposure to zanubrutinib (as
measured by area under the curve) was 8-times higher than that of
ibrutinib, and the median BTK occupancy in lymph node biopsies
was 100%.35

Similar to acalabrutinib, the initial clinical experiences with zanu-
brutinib reported a favorable AE profile compared with that of
ibrutinib.35 The first head-to-head comparison of zanubrutinib vs
ibrutinib was conducted in patients with WM (ASPEN study).36

Although ASPEN failed to meet its primary end point of superior
complete and very good partial response rates in zanubrutinib-
treated patients, it was, to our knowledge, the first study in the
world to report the AE profile of 2 BTKis head-to-head. In this
comparison, zanubrutinib was associated with reduced rates of AF,
hypertension, and “nuisance” BTKi side effects such as diarrhea
and edema.36 The rate of neutropenia was increased in the zanu-
brutinib arm, but no difference in infection rates were noted.
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The second head-to-head study comparing zanubrutinib with
ibrutinib was the ALPINE study in R/R CLL. ALPINE showed
superior overall response rates (ORRs) and PFS in favor of zanu-
brutinib, with preservation of the superiority in key prognostic
groups including those with del(17p). Similar to ASPEN, reduced
rates of AF were noted in the zanubrutinib arm. Different from
ASPEN, the rate of hypertension was not reduced in ALPINE, and
no differences in neutropenia were noted.37

Zanubrutinib is now approved as 1L therapy for CLL, based on the
SEQUOIA study,38 which demonstrated superiority relative to
bendamustine and rituximab in older and/or unfit patients without
del(17p).

Cardiovascular toxicities of second-generation BTKis

In total, 3 head-to-head phase 3 comparisons of ibrutinib vs a
second-generation BTKis have been reported. All 3 studies were
concordant in showing a reduction in the risk of AF by 2 to 4 times
in favor of acalabrutinib or zanubrutinib.30,36,37 Acalabrutinib was
also associated with a significant reduction in the rates of hyper-
tension relative to ibrutinib (acalabrutinib: 9%; ibrutinib: 23%),30

whereas the rates of hypertension were numerically lower with
zanubrutinib in ASPEN (zanubrutinib: 15%; ibrutinib: 26%)36 and
not different in ALPINE (zanubrutinib: 24%; ibrutinib: 23%).37 The
reasons for the differences in hypertension signal reported
between acalabrutinib vs zanubrutinib are not known.

Sudden death/VAs are an emerging class-effect of BTKi. The rate
of VA is estimated to be 0.6 to 0.8 per 100 person-years for
ibrutinib.24,39 For acalabrutinib and zanubrutinib, the reported VA
rates are 0.440 and 0.1 per 100 person-years, respectively.41

These rates are associated with low confidence given their rarity
and less experience with the new drugs relative to ibrutinib. More
follow-up and surveillance are required.

BTK C481S resistance mutation

Ibrutinib and all second-generation BTKis have relatively short half-
lives and achieve continuous BTK inhibition by irreversible (cova-
lent) binding to BTK at the cysteine 481 (C481) residue.42 Muta-
tions at the BTK C481 site associated with ibrutinib resistance
were first reported in 2014.8,43 Although activating mutations in
PLCy (the protein immediately downstream of BTK) were also
described, most PLCy mutations occur at low variant allele frac-
tions in patients with concomitant BTK mutations, and isolated
PLCy mutations as a cause of BTKi resistance are uncommon.44

The canonical C481S mutation accounts for >90% of BTK
mutations seen in ibrutinib-treated patients and results in the loss
of covalent binding for ibrutinib and all second-generation BTKis.
Unlike the variant “loss of function” C481F/Y/W/G/R and L528W
mutations that will be discussed later, C481S preserves the kinase
activity of the BTK protein. There are more limited data on muta-
tional patterns for acalabrutinib and zanubrutinib. The largest series
of acalabrutinib-resistant patients comes from the ELEVATE-RR
study. This demonstrated that C481S mutations remain the most
common cause of resistance in acalabrutinib-treated patients, but
T474I gatekeeper mutations also occur in 29% of patients with
acalabrutinib resistance, either alone or in combination with C481S
mutations.45 Similarly, only small data sets exist for zanubrutinib-
treated patients, but 1 series showed that L528W kinase-
impaired mutations were as frequent as C481S mutations in
2302 TAM and THOMPSON
patients treated with zanubrutinib.46 Data from ALPINE surprisingly
showed an overall lower rate of BTK mutations at disease pro-
gression, in both the ibrutinib and zanubrutinib arms: in 52 patients
(24 treated with zanubrutinib) with paired mutational data before
treatment and at progression, only 8 developed BTK mutations (5/
24 patients treated with zanubrutinib). In the zanubrutinib-treated
patients, 3 of 5 patients with BTK mutations had non-C481 BTK
mutations. More data are required to fully understand both the true
frequency of non-C481 BTK mutations during second-generation
BTKi therapy and their impact on response to subsequent therapy.47

C481S effectively confers pan-resistance to all available covalent
BTKis. The solution to C481S is to develop new BTKis that do not
bind to the C481 site.

Reversible, noncovalent BTKis

The somewhat confusingly named “reversible” BTKis differ from
the first- and second-generation ones in that they bind BTK
reversibly at a site other than C481. The drug that is in most
advanced clinical development is pirtobrutinib (LOXO-305). Pirto-
brutinib complexes to wild-type and C481S-mutated BTK with
equipotent binding affinity and kinase inhibition, and as such, it was
predicted to be active in patients carrying the resistant C481S
mutation.48 Although the binding of pirtobrutinib to BTK is revers-
ible in nature, the long half-life of 20 hours meant that the clinical
dose of 200 mg once daily was sufficient in reaching a trough
plasma concentration resulting in 96% BTK inhibition throughout
the dosing interval.48

Indeed, in the phase 1 study of pirtobrutinib in patients with B-cell
malignancies, the drug demonstrated high activity in patients with
CLL, WM, and MCL. Updated data from the cBTKi–exposed CLL
cohort of the BRUIN study at American Society of Hematology
(ASH) 2023 showed a PFS of 19.4 months, (23 months in BCL2
inhibitor–naïve and 15.9 months in BCL2 inhibitor–exposed
patients).49 As expected from the preclinical data, there was no
apparent disadvantage seen in those patients known to carry the
C481S mutation.50 Fascinatingly, the drug also demonstrated high
response rates in patients with CLL who did not have BTK muta-
tions and in even those with PLCG2 mutations, demonstrating that,
in those patients, BTK remained a relevant therapeutic target. The
precise molecular mechanisms underpinning this phenomenon are
currently unclear. An additional advantage of pirtobrutinib is its very
high specificity for BTK, with very little off-target kinase activity.
Indeed, the AE profile of pirtobrutinib from the phase 1 study was
favorable, similar (or perhaps superior) to the AE profiles seen with
second-generation cBTKis.51

Several other reversible BTKis are in clinical development. As a
class, these drugs share the “C481S agnostic” characteristic of
pirtobrutinib in the laboratory, and clinical responses are reported
in patients carrying the C481S mutation. Different from pirto-
brutinib, these other reversible BTKis tend to be less specific for
BTK, with more off-target kinase affinity than pirtobrutinib. For
example, nemtabrutinib (ARQ-531 and MK-1026) has TEC and
BMX off-kinase activity, whereas vecabrutinib (SNS-062) has some
cross interaction with both ITK and TEC.

Until recently, inhibitors with high specificity, such as the second-
generation BTKis and pirtobrutinib, were seen to be desirable in
the clinic due to the potential for reduced AEs. However, more
14 MAY 2024 • VOLUME 8, NUMBER 9



recent reports have shown that variant (non-C481S) BTK mutations
may be more common in patients treated with highly specific drugs
such as acalabrutinib, zanubrutinib, and pirtobrutinib. These muta-
tions include (1) “kinase-dead” mutations at C481 (C481F, C481Y,
C481W, C481G, and C481R); (2) a second kinase-dead mutation
at L528W; (3) “gatekeeper” mutations at T474 (T474I or T474L);
and (4) other less common mutations such as A428D, M477I, and
V416L.52 Fascinatingly, in the setting of “kinase-dead” mutations, in
which BTK kinase activity is abrogated, as demonstrated by auto-
phosphorylation at the Y223 residue, downstream signaling, as
evidenced by AKT and ERK phosphorylation, is intact. This suggests
an alternative “scaffolding” function of BTK, in which the enzyme
facilities recruitment and activation of other signaling molecules,
such as LYN, SYK, and HCK to maintain B-cell receptor signaling.52

The reason for the emergence of variant BTK mutations with later
generation drugs is not known, but in vitro modeling showed that
ibrutinib had broad activity against BTK variant mutants, either
directly or via off-target inhibition of HCK, which complexes with
BTK kinase-dead mutants and restores the signaling capacity of
the otherwise apparently inactive mutant.53 Conversely, pirto-
brutinib has little activity against a broad range of BTK variant
mutants. Interestingly, other reversible BTKis such as nemtabrutinib
and vecabrutinib have some coverage against BTK variant mutants
in vitro.52 In a phase 1 trial, nemtabrutinib has shown clinical activity
in heavily pretreated patients with prior cBTKi exposure, with an
ORR of 56%.54 Recruitment to this study and a suite of phase 3
studies comparing nemtabrutinib with standard of care is ongoing.
Clinical development of vecabrutinib has not proceeded beyond
the phase 1 trial, which demonstrated insufficient activity to justify
further development in B-cell malignancies.55

An intriguing new molecule, with early results presented at ASH, is
LP-168, which binds wild-type BTK covalently and binds non-
covalently in the setting of C481S mutation. The molecule is highly
selective for BTK and was well tolerated, with no DLTs identified.
ORR was 75% at doses of ≥200 mg per day, and 5 of 7 patients
with gatekeeper T474I mutation responded.56

New directions: BTK degraders

The emergence of multiple BTK mutants under selective pressure
gave impetus to the development of a new class of BTK-targeting
drugs: BTK protein degraders. These drugs use the ubiquitin-
proteasome pathway to ubiquitinate BTK protein in the cell, lead-
ing to proteasomal destruction of BTK. Preclinical experiments
show broad activity of BTK protein degraders across the spectrum
of wild-type and mutant BTKs, including C481S, L528W, T474I,
and V416L.57

The first clinical results of the BTK degrader class came from a first-
in-human study of NX-2127. Preliminary results of this study showed
rapid degradation of BTK in B cells of patients on treatment, with
reduction in nodal disease in 11 of 14 assessable patients, including
those known to carry BTK mutations.58 Other BTK degraders under
clinical investigation include BGB-16673 and UBX-303061. Data
presented from the BGB-16673 study at ASH demonstrated a 70%
ORR in 10 patients with CLL, with an overall manageable safety
profile.59 If successful, BTK degraders may represent an interesting
alternative to kinase inhibition, particularly in those patients who carry
multiple BTK mutant clones from prior BTKi exposure.
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Perspectives on sequencing in the era of

novel BTK mutations

In medicine (and in general life), there is a tendency for clinicians
and scientists to be excited about the latest and greatest. When
the broad activity of pirtobrutinib in patients with and without BTK
C481S mutation was reported, there was great excitement about
pirtobrutinib potentially supplanting the first- and second-
generation BTKis. We now understand that successful inhibition
of C481S mutants may lead to the emergence of variant mutants
such as L528W (conferring resistance to zanubrutinib) and T474I
(conferring resistance to acalabrutinib). In fact, after a decade of
research into new generation BTKis, there may be an enduring
place for ibrutinib in the clinic as the agent with the broadest variant
mutant coverage.

How do we incorporate all of this knowledge in the clinic? First,
how we sequence our drugs in the clinic should be driven by the
clinical data from pivotal studies, rather than theoretical concerns
about potential for resistance mutations, because knowledge about
variant BTK mutations is scarce at present. In this respect, both
acalabrutinib and zanubrutinib were proven to be safer than ibru-
tinib in randomized head-to-head studies, and as such, acalabru-
tinib and zanubrutinib remain the standard of care; pirtobrutinib and
reversible BTKis are clearly active in patients who relapse after
covalent BTKi, and their greatest utility is as next-line therapy after
covalent BTKi. Second, it is clear that broad sequencing of BTK for
mutants is required after every line of BTK-targeting therapy, both
in clinical trials and in standard clinical practice, to enable individ-
ualized selection of subsequent treatment based on mutant pattern
and predicted sensitivity to alternative BTK-targeting strategies.
Last, BTKi manufacturers need to evaluate their agent’s activity in
BTK variant mutants and publish their results. This knowledge will
permit the design of the next generation of clinical trials that takes
into account the mutational spectrum of the individual patient and
matches that spectrum against the most active agent.

Combining BTK inhibition with other

agents: potential for limited-duration

regimens

There is no denying that BTK inhibition has markedly improved
outcomes for all patients with CLL. Nowhere has this been more
evident than for patients with TP53 deletion or mutation who have
a median PFS of ~1 year with FCR but who can expect a 6-year
PFS of ~60% with ibrutinib.19,60 However, as we have alluded to
above, there are several limitations that mean we do not yet have an
“imatinib for CLL.”Most notably, real-world data reveal high rates of
discontinuation of ibrutinib from AEs, up to 41% at 18 months in
some series.61 Continuous BTKi therapy is required for durable
responses in most patients, due to rarity of complete responses
and undetectable measurable residual disease (U-MRD); as a
result, discontinuation from AEs significantly reduces the potential
to achieve long-term PFS. Additionally, especially in high-risk and
relapsed CLL, emergence of mutations conferring resistance
remains problematic, as outlined above.

Several studies have evaluated combination approaches to deepen
remissions and potentially reduce the development of resistance by
using agents with nonoverlapping mechanisms of action. At the
BTK INHIBITORS IN CLL 2303



Table 1. Comparison of selected BTK-targeting agents

Class Drug Binding to BTK Half-life Specificity Toxicity BTK mutations

First-generation Ibrutinib Irreversible at C481 Short Low Bleeding, cardiac C481S

Second-generation Acalabrutinib Irreversible at C481 Short High Reduced C481x, T474x

Zanubrutinib Irreversible at C481 Short High Reduced C481x, L528W

Reversible Pirtobrutinib Reversible Long Very high Reduced T474, L528W, V416L, A428D,
M477I, M437R, kinase-dead C481

Nemtabrutinib Reversible Long Low Insufficient data Not reported

Bifunctional LP-168 Irreversible at wild-type C481.
Reversible in C481S

Long Very high Reduced Not reported

Protein degraders NX-2127 Degrades BTK Not reported Not reported Insufficient data Not reported

BGB-16673 Degrades BTK Long Not reported Insufficient data Not reported
most straightforward level, obinutuzumab has been added in the
first-line setting to ibrutinib in the ILLUMINATE trial62 and to aca-
labrutinib in the ELEVATE-TN study.34,63 The 4 year follow-up of
this study63 demonstrated an 87% PFS in the A + O arm vs 78% in
the acalabrutinib monotherapy arm (P = .0296). This study used
continuous BTK inhibition until progression in the A + O arm and
was thus not designed to alter the treat-to-progression paradigm of
BTKi monotherapy.

Contrary to this study, numerous studies in first-line and relapsed
CLL have evaluated various time-limited combinations of BTKis with
the BCL2 inhibitor venetoclax, either with or without obinutuzumab
(Table 2). Both fixed-duration and MRD–adapted treatment-duration
approaches have been tested. Relative to fixed-duration therapy of 1
year with ibrutinib + venetoclax (I + V), there does appear to be
deepening of remissions in a proportion of patients during second
year of therapy.64-67 Studies of I + V have demonstrated that this
approach is generally well tolerated, with high rates of achievement of
U-MRD and durable off-treatment remissions in a high proportion of
patients (with albeit a relatively short duration of follow-up for most of
these trials). I + V has been approved by the European Medicines
Agency based on the GLOW trial, which randomized older and unfit
patients to I + V vs chlorambucil and obinutuzumab (O + Clb).68 At
the latest follow-up, this study has demonstrated a survival advantage
for I + V vs O + Clb; however, the regimen has not been approved for
use by the US Food and Drug Administration for use in the United
States, due, in part, to a higher rate of early deaths (including 4
cardiac/sudden deaths) in the I + V arm. Of note, I + V was asso-
ciated with greater tolerability and lower risk of cardiac AEs in the
CAPTIVATE trial (which enrolled younger, fitter patients) than in
GLOW, a finding that has been recapitulated right across the BTKi
development programs.66,69 The 1-year fixed-duration arm of
CAPTIVATE also showed a higher rate of U-MRD4 than GLOW.69 A
somewhat surprising finding from GLOW (also replicated in other I +
V studies) was that patients with mutated IgHV have lower rates of
achievement of U-MRD4 than patients with unmutated IgHV.68

However, despite this, they have highly favorable PFS, with >90%
remaining progression-free at 3.5 years of follow-up, with remarkably
stable MRD levels on serial analysis.70 At the current follow-up, no
statistically significant difference in PFS has been seen between
patients who have MRD positivity vs U-MRD4. Longer follow-up is
clearly required, but this does raise the prospect that U-MRD4 may
not be absolutely required for prolonged treatment-free remission
after I + V, especially in patients with mutated IgHV, who have slower
clonal growth rates.71,72
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Much debate is ongoing in the field about the role of I + V in the first-
line setting and which patients should be considered for this treat-
ment in preference to V + O or continuous BTKi therapy. Many CLL-
focused clinicians feel instinctively uncomfortable with the idea of
combining the 2 best drug classes (BTKi and venetoclax) first line,
expressing concern about the availability of effective salvage therapy
at progression. In this regard, more data are required, but it is notable
that very few patients develop canonical resistance mutations to
BTKi or venetoclax during/after time-limited I + V combination ther-
apy,73,83 in contrast to the use of the single-agent treat-to-progres-
sion approach. Additionally, the early, emerging data from the fixed-
duration cohort of CAPTIVATE have demonstrated near-universal
response to retreatment with ibrutinib monotherapy after progres-
sion (15/17 responses; only 1 patient with progressive disease).84

There are very limited data on re-treating with a BTKi + BCL2
inhibitor doublet. Whether combination approaches are superior to
sequential monotherapy is a challenging question and one in which
the traditional end point of PFS is inadequate to answer. As an
example, when comparing continuous BTKi therapy with BTKi +
BCL2i (±CD20 antibody) given for a fixed duration, the continuous
BTKi may show similar or even superior PFS, as demonstrated by
the early results from the Alliance A041702 trial. However, by defi-
nition, a patient progressing on continuous BTKi will have resistant
disease, whereas most patients progressing after fixed-duration
BTKi + BCL2i remain sensitive to retreatment with BTKi83 (with
very limited data available on venetoclax retreatment in this setting).
An end point such as time to treatment failure may better answer this
question, but we acknowledge the challenges in the implementation
of such a design, particularly the time frames required to obtain an
answer in a population of patients with generally excellent outcomes.
The fully accrued ECOG9161 trial (NCT03701282), which enrolled
younger patients, and the fully accrued German CLL study group
CLL17 trial (NCT 04608318), which enrolled patients regardless of
age, test a similar concept to A041702 (fixed-duration combination
therapies vs BTKi monotherapy). It will be of great interest to follow
long-term results of these studies, especially PFS after second-line
therapy. The jury remains out on whether fixed-duration treatment
of response-adapted treatment is optimal when combining BTKi +
BCL2i. Two phase 3 studies of note, evaluating alternative
approaches, are the MAJIC study, comparing venetoclax + obinu-
tuzumab with acalabrutinib + venetoclax, with both arms allowing for
MRD–adapted treatment duration, and the UK MRC FLAIR trial. The
latter study recently reported a PFS and OS benefit for MRD-
adapted I + V compared with FCR and an overall highly favorable
PFS for the I + V arm.85
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Table 2. Selected studies of BTKi + BCL2i ± CD20 antibody

Study Regimen Population CR/CRi U-MRD4 PFS/OS

1L “Doublets”

M.D. Anderson phase 2,64,65

n = 80
I, 3 cycles; then I + V, 24 cycles;
MRD–adapted I maintenance; then third
year of I + V

TN; ≥65 y or high-risk genomics* 78 (best) 75 (BM-best) 93/96 (3 y)

CAPTIVATE FD73 phase 2,
n = 159

I, 3 cycles; then I + V, 12 cycles; FD TN; 18-70 y 55.9 77 (PB)/60 (BM) 95/96 (2 y)

CAPTIVATE MRD66 phase 2,
n = 164

I, 3 cycles; then I + V, 12 cycles;
randomized, MRD–adapted consolidation
and maintenance

TN; 18-70 y 46 75 PB/68 BM
(best)

Confirmed MRD 30 mo, 95
(placebo)/100 (I)

Unconfirmed MRD, 95 (I)/97 (I + V)

1L “Triplets”

IVO,74 n = 50 I + V + O, 14 cycles: O on d 1, 2, 8, and 15
of C1, then monthly for C2-7; I C2-14; V
C3-14

TN and RR 32 (TN)
44 (RR)

BM: 67 (TN),
50 (RR)

NR

CLL2-GIVe,75 n = 41 I + V + O, 15 cycles with response–adapted
I maintenance:

O, C1-6
I, C1-15; then maintenance if not in U-MRD
CR;

V, C1-12 (starting d22)

TN; high-risk: del(17p)/TP53mut 59 88 (PB-best) 79/93 (3 y)

CLL13 GAIA76 IVO, 12 cycles TN, excluding patients with TP53
aberrations

231 92 (PB) 91/96 (3 y)

AVO phase 2,77,78 n = 61 AVO (A from C1; O cycles 2-7; V from C3).
Duration 15/24 cycles, followed by MRD–
adapted A maintenance beyond C24.

TN; cohort 1 (n = 37), all TN patients; cohort
2 (n = 31)

48 86 (BM-best) 93 (3 y)

BOVen, n = 5079 BOVen, 8-24 cycles MRD adapted TN 57 96 (PB)/92
(BM)-best

NR

R/R “Doublets”

M.D. Anderson phase 2,80

n = 80
I + V, MRD–adapted I maintenance R/R NR 67 (24 m BM) NR

TAP CLARITY,67,81 n = 50 I + V, MRD response–adapted duration
(maximum 36 cycles). I maintenance in
MRD+

R/R 78 (best) 64 (PB)/50 (BM) 78/91 (5 y)

HOVON141/Vision,82 n = 225 I + V, MRD–adapted ibrutinib maintenance R/R 64 50 (PB)/37 (BM) 98 (27 mo)

Treatment details: for the sake of space, the details of precombination BTKi monotherapy have not been included.
1L, first-line; A, acalabrutinib; AVO, acalabrutinib/venetoclax/obinutuzumab; BM, bone marrow; BOVen, Brukinsa (zanubrutinib)/obinutuzumab/venetoclax; C1, cycle 1; CR/CRi, complete

remission with or without marrow recovery; FD, fixed duration; I, ibrutinib; IVO, ibrutinib-venetoclax-obinutuzumab; NR, no response; O, Obinutuzumab; PB, peripheral blood; TN, treatment-naïve;
V, venetoclax.
*High-risk genomics: any of del(11q), del(17p), unmutated IgHV, or TP53 mutation.
In contrast to patients receiving first-line CLL therapy, the out-
comes for patients resistant to a covalent BTKi are poor, with a
median PFS after venetoclax + rituximab therapy of only
~24 months,86,87 even in patients without chemoimmunotherapy
before BTKi therapy.88 Although response rates to pirtobrutinib are
high in this scenario, median PFS is only 19.6 months,89 and
patients frequently develop other mutations in BTK that drive
resistance.52 One approach to improving these outcomes is being
evaluated in the BRUIN-322 study, which compares venetoclax +
rituximab with pirtobrutinib + venetoclax + rituximab in a phase 3,
registrational study (NCT04965493). The hope is that the combi-
nation of venetoclax with pirtobrutinib, 2 agents with different
mechanisms of action, will suppress the selection of resistant
clones (as has been seen in other studies of BTKi and venetoclax in
R/R CLL) and thereby extend PFS.

Finally, we are entering an era in which immunotherapeutic
approaches such as chimeric antigen receptor T cells and perhaps
bispecific antibodies can achieve deep remissions and possible
cure in patients with advanced B-cell lymphoproliferative disorders.
The immunomodulatory effect of ibrutinib has been purported to
14 MAY 2024 • VOLUME 8, NUMBER 9
enhance the efficacy of chimeric antigen receptor T cells,87,90,91

and we expect to see novel combinations of BTKis and potent
immunotherapeutic agents tested in upcoming trials.
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