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THE BIGGER PICTURE Antibodies are used as therapeutics against a variety of human diseases, and their
discovery, evaluation, and clinical development would be accelerated by computational models able to
infer the characteristics of antibodies directly from their sequence accurately. A human antibody comprises
a unique pairing of a heavy chain and a light chain, with both chains contributing to the antigen-binding re-
gion of the antibody. Large language models have been used to infer characteristics from an antibody
sequence, but these models are usually trained with unpaired sequence data. This means that models
cannot learn the cross-chain features necessary to understand structure and function fully. Considering
more information during training could further accelerate the clinical development of antibody computa-
tional models.
SUMMARY
Existing antibody language models are limited by their use of unpaired antibody sequence data. A recently
published dataset of �1.6 3 106 natively paired human antibody sequences offers a unique opportunity to
evaluate how antibody languagemodels are improved by training with native pairs. We trained three baseline
antibody language models (BALM), using natively paired (BALM-paired), randomly-paired (BALM-shuffled),
or unpaired (BALM-unpaired) sequences from this dataset. To address the paucity of paired sequences, we
additionally fine-tuned ESM (evolutionary scale modeling)-2 with natively paired antibody sequences (ft-
ESM). We provide evidence that training with native pairs allows the model to learn immunologically relevant
features that span the light and heavy chains, which cannot be simulated by training with random pairs. We
additionally show that training with native pairs improves model performance on a variety of metrics,
including the ability of the model to classify antibodies by pathogen specificity.
INTRODUCTION

It is estimated that the circulating antibody repertoire is

composed of as many as 1018 unique antibodies,1 which sur-

passes the combined number of unique proteins encoded by

all of the genomes of all of the species on Earth by many orders

ofmagnitude.2 The extraordinary diversity of the human antibody

repertoire is produced initially by somatic recombination of

germline gene segments.3 Antibody heavy chains are assembled

from variable (V), diversity (D), and joining (J) gene segments.

Light chains are assembled similarly, but without D gene seg-

ments. This recombination process occurs independently in

each B cell, and the resulting antibody is expressed as a dimer
Patterns 5, 100967,
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of heterodimers, containing two identical heavy chains and two

identical light chains. The antigen-binding regions of the anti-

body, which determine antigen specificity, are each composed

of six complementary determining region (CDR) loops: three en-

coded by the heavy chain and three by the light chain.

Further diversification of antibodies occurs upon exposure to a

non-self antigen, when B cells encoding antigen-specific anti-

bodies undergo an iterative affinity maturation process that con-

sists of multiple rounds of clonal expansion, somatic hypermuta-

tion (SHM), and antigen-driven selection.4–6 Through this

process, antigenic stimulation of a single naive B cell can pro-

duce a clonal lineage of B cells, each expressing an antibody

that is related to the parental antibody but which has
May 10, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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accumulated a unique set of somatic mutations. These affinity

matured antibodies often contain only a handful of deviations

from the original germline recombination, but affinity is typically

improved by several orders of magnitude.7 Following antigen

clearance, a subset of B cells encoding affinity matured, anti-

gen-specific antibodies are retained as an immune memory of

the encounter,8,9 which allows rapid response to subsequent

exposure and is the primary mechanism of protection for most

vaccines. In essence, each person’s unique collection of affinity

matured antibody genes constitutes a detailed molecular record

of all previous pathogen encounters.

The structure and function of a protein is encoded by its amino

acid sequence, much as the meaning of a sentence is deter-

mined by the order and context of its words. More concisely,

sequence determines structure determines function.10 The con-

ceptual similarity between language and biological sequences

inspired the application of language models (LMs) to biological

sequence data, to gain a deeper understanding of the language

of proteins.11 LMs trained on general protein sequence data

(PLMs), such as HelixFold and ESMFold, have successfully

learned information about evolutionary fitness, function, and

structure.12–14 This suggests that the models have learned a

deep understanding of the fundamental properties of amino

acids and the importance of the order and context in which

they occur. Applying PLMs to antibody sequences yielded

some success, but PLMs generally exhibited only a cursory un-

derstanding of antibodies that did not extend beyond ‘‘obvious’’

features such as germline gene use.15,16

Antibody-specific LMs (AbLMs), which use essentially unmod-

ified LM or PLM model architectures but are trained using anti-

body sequence data, have learned features such as SHM16–18

and are substantially better than PLMs at antibody sequence in-

filling.16 These results indicate that AbLMs possess a more so-

phisticated understanding of features that differentiate anti-

bodies from the general protein space and provide a strong

argument for training specialized AbLMs instead of repurposing

pretrained PLMs. However, AbLMs still have much room for

improvement.

ESMFold and HelixFold demonstrate that existing model ar-

chitectures can support powerful biological LMs. Thus, the pri-

mary factors impeding AbLM development are instead related

to the lack of suitable training data at a sufficient scale. First, ex-

isting transformer-based AbLMs were trained using unpaired

antibody sequences. This was by necessity rather than design;

the far lower cost of generating unpaired sequencesmeans there

are orders of magnitude more unpaired than natively paired anti-

body sequences available.19,20 Nevertheless, AbLMs trained us-

ing only unpaired data cannot learn cross-chain features that

encode important information about antibody structure and

function. Second, publicly available antibody datasets are

skewed toward a relatively small number of disease states,

including autoimmunity, cancer, and infectious diseases such

as HIV, influenza, and severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2). This produces AbLMs with a parochial

view of the antibody repertoire rather than a complete under-

standing of antibody diversity.

A recently published dataset of�1.6million natively paired hu-

man antibody sequences21,22 provides an opportunity to assess

the value of training an AbLM with natively paired data. This
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unique dataset from Jaffe et al., which is the largest publicly

available collection of natively paired human antibody se-

quences, was compiled using circulating B cells from healthy

adult donors to produce a minimally skewed representation of

the baseline human antibody repertoire. The Jaffe dataset is

much smaller than the unpaired datasets used to train existing

AbLMs, however, and it is unlikely that the training advantages

of native pairing are sufficient to overcome this massive differ-

ence in scale. Thus, the primary goal of this work is to determine

whether and towhat extent an AbLMcan be improved by training

with natively paired antibody sequence data rather than un-

paired sequence data.

To accomplish this, we trained three baseline antibody lan-

guage model (BALM) variants using identical training datasets

except for their inclusion of natively paired sequences (BALM-

paired), inclusion of randomly paired sequences (BALM-shuf-

fled), or exclusion of pairing information (BALM-unpaired).

BALM-paired performs substantially better than BALM-shuf-

fled and BALM-unpaired across a variety of metrics, with

notable improvements in the information content of light-chain

embeddings. We further demonstrate that the improved per-

formance of BALM-paired is linked to its ability to learn fea-

tures that span the heavy and light chains of natively paired

antibodies. We additionally fine-tuned an ESM (evolutionary

scale modeling)-2 model (ft-ESM) with the same natively

paired sequences, to demonstrate a potential middle-ground

approach for training a highly performant model despite the

limited availability of natively paired data. Finally, we show

that these paired models exhibit improved performance over

unpaired models on three antibody specificity classifica-

tion tasks.

RESULTS

Training a BALM
BALM-paired, BALM-shuffled, and BALM-unpaired use a

slightly modified RoBERTa-large architecture. An encoder-only

architecture was chosen to enable the production of informative

sequence embeddings that can be used for downstream tasks,

such as specificity classification, and to align with existing pro-

tein and antibody LMs. At the time of model training, the notable

outlier that was trained as an encoder-decoder was ProtT5.

However, ProtBERT performed nearly as well as ProtT5-XL on

several downstream tasks despite the fact that the ProtT5-XL

model was nearly 10 times larger (3 billion vs. 420 million param-

eters) andwas trained usingUniRef50 (ProtBERTwas trained us-

ing the noisier and more redundant UniRef100). Therefore, an

encoder-only architecture was also chosen to enable more effi-

cient training.

Models were trained with a masked language model (MLM)

objective on the same Jaffe dataset of 1,335,854 antibody

sequence pairs.22 BALM-paired was trained on the original

natively paired sequences, and BALM-shuffled was trained on

paired sequences for which the pairing of heavy and light chains

was randomized. BALM-unpaired was trained on the light and

heavy chains separately, with only one chain per input. To

equalize training between the models, BALM-unpaired was

trained using a batch size of 512, which is twice that of BALM-

paired and BALM-shuffled, at 256.



Figure 1. Per-position CEL of BALM-paired

(A and B)The per-position CEL was calculated by iteratively masking each

position and predicting the masked residue with BALM-paired using either

unmutated (A) or mutated (B) test sequences. For each sequence, the median

CEL was computed for each FR or CDR, and the distribution of median values

is shown using a letter value plot.24
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BALM rapidly learns germline antibody features
The combinatorial diversity of antibody recombinants (i.e., the

diversity provided by the selection of individual V, D, and J genes

for recombination) is relatively small compared to the diversity

contributed by nontemplated addition and deletion at recombi-

nation junctions.23 Thus, it is expected that AbLMs will learn

germline-encoded features more readily than the more complex

patterns inherent in nontemplated regions. To assess this on

BALM-paired, we separately analyzed the per-position cross-

entropy loss (CEL) of mutated or unmutated sequences (Fig-

ure 1). By grouping sequence positions into their corresponding

framework region (FR) or CDR, we observed much weaker

model performance in the untemplated CDR3s of unmutated se-

quences. In addition, we observed moderately lower model per-

formance in all of the regions of mutated antibody sequences,

which contain nontemplated somatic mutations distributed

throughout the sequence. Antibody mutations are clustered in

CDRs, and BALM-paired performs substantially less well in the

CDRs of mutated sequences compared to the relatively less

mutated FRs.

Native pairing preferentially improves light-chain
embeddings
Previously reported AbLMs AntiBERTa18 and AbLang16 have

shown that clustering the output embeddings of these models

can group antibody sequences according to V gene use and

SHM. Despite both of these AbLMs being trained on datasets

that include light chains, only heavy-chain embeddings were

analyzed. Using a test dataset of 20,000 natively paired antibody

sequences, we analyzed the output embeddings of BALM-
paired, BALM-shuffled, and BALM-unpaired. As described pre-

viously,16,18 embeddings from the final transformer layer were

averaged along the input length dimension and a uniform mani-

fold approximation and projection (UMAP) representation was

computed.25,26 Because BALM-paired and BALM-shuffled

output embeddings include both heavy and light chains, we ex-

tracted a subset of the embeddings that contains only the posi-

tions corresponding to a single chain (either heavy or light) before

averaging over the length dimension. This allows us to directly

compare the embeddings produced by the paired models and

BALM-unpaired.

Heavy-chain embeddings from BALM-paired, BALM-shuffled,

andBALM-unpaired clustered similarly, grouping sequences pri-

marily by mutation and secondarily by V gene (Figures 2A–2F).

This mirrors results seen with AntiBERTa18 but differs slightly

from AbLang,16 for which output embeddings cluster primarily

by V gene and secondarily by mutation. However, clustered

light-chain embeddings of the models were quite different

(Figures 2G–2L). Although BALM-unpaired embeddings of

mutated light-chain sequences form reasonably well-defined V

gene clusters, unmutated light-chain embeddings were essen-

tially randomly dispersed (Figures 2K and 2L). The same pattern

was observed with BALM-shuffled, with unmutated light-chain

embeddings appearing to be essentially randomly dispersed

(Figures 2I and 2J). In contrast, the clustered light-chain embed-

dings produced by BALM-paired were similar to heavy chains,

segregating sequences primarily by mutation and secondarily

by V gene (Figures 2G and 2H). Similar clustering patterns

were observed with t-distributed stochastic neighbor embed-

ding (t-SNE) representations (see Figure S1), which verifies that

these patterns are not an artifact of the dimensionality reduction

method. Given that this improvement in light-chain clustering is

only present for BALM-paired and not BALM-shuffled, this sug-

gests that BALM-paired is learning cross-chain features present

only in natively paired sequences and that these features prefer-

entially improve light-chain embeddings.

Paired model improvements are driven by learning
cross-chain features
We next sought to more deeply investigate the ability of BALM-

paired to learn features that span both antibody chains. From our

test dataset, we selected all of the sequence pairs containing at

least 3 mutations in each of the heavy and light chains. All of the

mutated heavy chain positions were masked, and BALM-paired

was asked to predict the masked residues when the heavy chain

was paired with (1) the natively paired light chain, or (2) a germ-

line-reverted version of the light chain in which all of the mutated

light-chain residues were reverted to germline (Figure 3A). For

comparison, BALM-unpaired was also asked to predict the

same masked residues given only the unpaired heavy-chain

sequence. Because only mutated positions were masked, pre-

dictions of the germline-encoded residue were always incorrect.

For BALM-paired we noted a large reduction in CEL when the

masked heavy chain was paired with the native (mutated) light

chain (Figure 3B), indicating that native pairing improved model

performance through cross-chain learning. BALM-paired

considered the correct (mutated) residue �4-fold more likely

when the masked heavy chain was paired with the native

light chain (6.7 vs. 1.7), and also considered incorrect but
Patterns 5, 100967, May 10, 2024 3



Figure 2. Training with natively paired sequence data improves light chain embeddings

UMAP of final layer embeddings for heavy chains (A–F) and light chains (G–L), colored by V gene or number of somatic mutations, for BALM-paired (top row),

BALM-shuffled (center row), and BALM-unpaired (bottom row).
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nongermline residues about twice as likely when the masked

heavy chain was paired with the native (mutated) light chain

(16.7 vs. 8.9), indicating that the model is learning patterns of

somatic mutation rather than memorizing specific mutations

(Figure 3C). Results from the reciprocal experiment, in which

light-chain mutations were masked and paired with native or

germline-reverted heavy chains (Figures 3D and 3E), were even

more striking: native pairing increased the likelihood of the cor-

rect (mutated) residue by >6-fold (7.3 vs. 1.1) and the likelihood

of any non-germline residue by nearly 5-fold (11.9 vs. 3.1). To

verify that native pairing, and not simply the presence of any

paired chain during training, was responsible for the better per-

formance of BALM-paired, we performed the same experiment

using BALM-shuffled. The performance of BALM-shuffled was

indistinguishable from BALM-unpaired when mutation-masked

sequences were paired with either the mutated or germline-re-

verted partner chain, demonstrating that the features learned
4 Patterns 5, 100967, May 10, 2024
by BALM-paired are indeed specific to natively paired antibody

sequences.

ft-ESM2 with natively paired sequences
Upon observing the training benefit of natively paired se-

quences, but recognizing the limited availability and extremely

high cost of generating natively paired antibody datasets, we

were motivated to evaluate whether a general protein LM could

learn similar cross-chain features by fine-tuning with natively

paired antibody sequences. This could decrease the amount of

natively paired sequences required to construct a competitive

model by transferring general protein knowledge and requiring

the fine-tuned model to learn only those features that are unique

to antibodies. We fine-tuned the pretrained 650-million param-

eter ESM-2 model14 (ft-ESM) with an MLM objective on the

same dataset of 1,335,854 natively paired antibody sequences

used to train BALM-paired.22



Figure 3. CEL of masked mutations in light and heavy chains

(A) Schematic of the mutation masking process, in which the mutated positions in a single chain are masked and the masked chain is paired with either the native

(mutated) partner chain or a germline-reverted variant of the partner chain.

(B) CEL of masked mutations in heavy chains, when paired with mutated light chain and germline reverted light chain for BALM-paired and BALM-shuffled, and

alone for BALM-unpaired.

(C) Likelihood (model output probabilities, multiplied by 100) assigned by BALM-paired to the correct masked heavy-chain residue (blue: mutated light chain,

green: germline-reverted light chain) or to any other nongermline residue (gray). Likelihood values are the average of all of the masked positions across all test

sequences.

(D) CEL of masked mutations in light chains when paired with mutated heavy chain and germline reverted heavy chain for BALM-paired and alone for BALM-

unpaired.

(E) Likelihood assigned by BALM-paired to the correct masked light-chain residue (blue: mutated heavy chain, green: germline-reverted heavy chain) or to any

other nongermline residue (gray). Likelihood values are the average of all of the masked positions across all of the test sequences.
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Learned cross-chain features are immunologically
relevant
To assess the cross-chain features being learned by our natively

paired models, 1,000 sequences were randomly selected from

the test dataset and attention values for all of the attention heads

in thefinal layer ofeachmodelwereextracted.Theattention values

were filtered to produce a cross-chain attention matrix containing

only positionpairs that spanboth antibody chains. Thismatrixwas

averaged by sequence position and each position was catego-

rized by antibody region (CDR or FR) to calculate the percentage

of cross-chain attention directed toward CDRs compared to FRs.
We first sought to determine which regions of the antibody

sequences were the focus of model attention. For both models

trained on natively paired antibodies (ft-ESM and BALM-

paired), we observed heightened cross-chain attention in

CDRs, with ft-ESM paying 2.05 times more attention to CDRs

than FRs and BALM-paired devoting 1.44 times more attention

(Figure 4A). BALM-unpaired and base-ESM devote approxi-

mately equal cross-chain attention to CDRs and FRs. Notably,

the cross-chain attention patterns of BALM-shuffled match the

unpaired models, demonstrating once again that native pairing,

rather than simply the presence of any random paired chain
Patterns 5, 100967, May 10, 2024 5



Figure 4. Cross-chain attention of ESM-2

before and after fine tuning with paired anti-

body sequences

(A) Cross-chain attention of the final layer of 5

models was extracted and averaged for 1,000

sequences from the test dataset, shown as mean

and SD. This showed that models trained on

natively paired sequences (BALM-paired and ft-

ESM) show increased attention to the CDRs.

(B) Cross-chain attention for the same 1,000 se-

quences was plotted by CDR for ft-ESM as mean

and SD, revealing that the most attention is paid to

CDR-H3.

(C and E) Cross-chain attention matrices were

computed for the clinically approved anti-SARS-

CoV-2 mAb Masavibart by averaging cross-chain

attention across all of the model layers and atten-

tion heads, using either (C) the fine-tuned ESM-2

model or (E) the base-ESM-2 model.

(D) Mapping per-position cross-chain attention of

the ft-ESM-2 model onto the Masavibart structure

(PDB: 6xdg) revealed a focus on structural regions

important for antigen recognition.

(F) In contrast, per-position cross-chain attention

of the base-ESM-2 model was focused primarily

on cysteine residues and on positions near the end

of the heavy chain or the start of the light chain,

which are proximal in the concatenated input

sequence and distant from the antigen recognition

site. To demonstrate that the results observed for

Masavibart are representative, cross-chain atten-

tion matrices for 4 additional anti-SARS-CoV-2

mAbs can be found in Figure S2.
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during training, drives improvements in model performance.

The increased cross-chain attention on CDRs is immunologi-

cally relevant because the CDRs of antibody heavy and light

chains are structurally proximal and responsible for antibody

function.

To further evaluate the cross-chain attention in ft-ESM, the

model with the highest ratio of CDR:FR cross-chain attention,

we computed the total cross-chain attention devoted to each

CDR (normalized by region length) and for the combined FRs.

Although more attention is paid to each of the CDRs compared

to FRs, the heavy-chain CDR3 stands out as the most highly at-

tended region (Figure 4B). This, again, is immunologically rele-

vant because the heavy-chain CDR3 is the most diverse anti-

body region and is typically oriented at the interface between

heavy- and light-chain variable regions. We additionally evalu-

ated the cross-attention of several clinically approved thera-

peutic monoclonal antibodies (mAbs) using both the base-
6 Patterns 5, 100967, May 10, 2024
ESM-2 model (base-ESM) and ft-ESM.

For each mAb, we extracted and aver-

aged the cross-chain attention across

all of the attention heads in all of the

model layers. Results from the represen-

tative mAb Masavibart are shown in

Figures 4C–4F, and data for several

additional mAbs can be found in Fig-

ure S2. We observe again the extent to

which ft-ESM focuses its cross-chain

attention on CDRs (Figure 4C), with
particular emphasis on the heavy-chain CDR3. Overlaying

model attention onto the Masavibart structure reveals

increased attention on regions where the heavy and light chains

are in close proximity (Figure 4D). In contrast, base-ESM di-

rects heightened attention on residues near the end of the

heavy chain and the start of the light chain (lower left corner

of Figure 4E), suggesting that cross-chain attention is focused

on residues that are proximal in the linear input sequence rather

than structurally or immunologically relevant residues (Fig-

ure 4F). Unsurprisingly for a general protein LM, base-ESM-2

also pays substantial attention to cysteine residues. This

behavior appears to have transferred, albeit in a somewhat

attenuated form, because ft-ESM also pays increased attention

to cysteines. Because base-ESM does not preferentially attend

to immunologically relevant positions before fine-tuning, these

patterns in ft-ESM must be a direct result of fine-tuning with

natively paired sequences.



Figure 5. Comparison of model perfor-

mance on specificity classification tasks

(A) Metrics of binary classification of CoV vs.

healthy donor antibodies.

(B) Metrics of binary classification of Flu vs. CoV

antibodies.

(C) Metrics of multiclass classification of Flu vs. CoV

vs. healthy donor antibodies.

(D) Accuracy on test dataset plotted against training

steps for CoV vs. healthy donor classification.

(E) Comparison of accuracy at 150 steps vs. end of

training for CoV vs. healthy donor classification.One

outlier for BALM-unpaired was excluded (see Fig-

ure S3). All of the data are represented as mean

and SE.
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Training with natively paired antibody sequences
improves specificity classification
To demonstrate an application of these natively paired models, we

fine-tuned models with a sequence classification head to perform

3 separate antibody specificity classification tasks. The first task,

trained on �20,000 paired antibodies (�10,000 in each class),

was a binary classification of CoV-specific antibodies against a

collection of randomly selected antibodies from the memory B cell

repertoiresofseveralhealthydonors. ft-ESMwasthebestperformer

across all of themetrics, followed closely by BALM-paired and then

BALM-shuffled. The protein and unpaired counterparts (base-ESM

andBALM-unpaired) underperform compared to their paired coun-

terparts. AntiBERTy, a previously reported unpaired AbLM,17 was

included for comparison and appears to perform slightly better

than BALM-unpaired (Figure 5A). The second task, trained on a

smaller dataset of�2,000 paired antibodies (�1,000 in each class),

involved binary classification of influenza (Flu)-specific and CoV-

specificantibodies. In this task,weobserve similar results to the first

binary classification task, with the pairedmodels outperforming the
unpaired ones, although BALM-paired out-

performs ft-ESM on several metrics, unlike

the first task (Figure 5B). The improved per-

formance of all of the paired models,

including BALM-shuffled, which does not

learn the same immunologically relevant

cross-chain features as BALM-paired or ft-

ESM, suggests that at least part of the

improved classification performance can

be attributed to the model already being

familiar with the format of paired input se-

quences from pretraining. This is further

supported by the fact that paired models

learn the classification task much faster

than the unpaired ones (Figures 5D and

5E), suggesting that the initial fine-tuning

with paired sequences improved the ability

of themodel to adapt to the specificity clas-

sification task. We see the inverse effect

when fine-tuning with unpaired sequences,

with unpaired models showing improved

performance classifying unpaired se-

quences (Table S1). A notable exception is

ft-ESM, which outperforms all of the other
models onunpairedclassification tasks, presumablydue to residual

familiarity with single-chain inputs remaining from its pretraining on

general protein sequences.

The final specificity classification task, trained on �3,000 anti-

bodies (�1,000 per class), was a multiclass classification of Flu-

specific, CoV-specific, and randomly selected healthy donor anti-

bodies (Figure 5C). This is the most challenging classification and

we again observe that ft-ESM and BALM-paired outperform their

equivalents that lack pretraining with natively paired antibodies

(BALM-unpaired andbase-ESM). TheperformanceofBALM-shuf-

fled declines relative to the binary classification tasks, suggesting

that the benefits of pretraining with natively paired sequences be-

comes more pronounced on increasingly difficult down-

stream tasks.

DISCUSSION

Many existing antibody language models are limited by their

exclusive use of unpaired sequences and by inherent biases in
Patterns 5, 100967, May 10, 2024 7
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publicly available antibody sequence datasets, which overrepre-

sent certain disease states. The Jaffe dataset, with �1.6 3 106

natively paired human antibody sequences from healthy donors,

offers a unique opportunity to train an AbLM without these limi-

tations. Given the relatively small size of this paired dataset,

the benefits of training with natively paired sequences were not

expected to overcome the shortage of data. Therefore, rather

than attempting to train a state-of-the-art model using only

natively paired data, we sought to determine how natively paired

sequences could improve the training of AbLMs by training a

matched set of models: BALM-paired, BALM-shuffled, and

BALM-unpaired. In this controlled experiment, we show that

natively paired training data substantially improves model per-

formance and that these improvements are the result of

BALM-paired learning immunologically relevant features that

span both antibody chains in natively paired sequences.

Templated regions encoded by antibody germline segments

were learned rapidly by BALM-paired, but the model struggled

with nontemplated regions, including heavy-chain CDR3s and

regions with increased SHM. These results suggest that model

training could be improved by incorporating more somatically

mutated sequences and focusing training resources on nontem-

plated regions. BALM-paired, BALM-shuffled, and BALM-un-

paired generate informative heavy-chain embeddings that indi-

cate their ability to learn antibody-specific features, grouping

antibody embeddings primarily by mutation and secondarily by

V gene use. In contrast, BALM-paired performs significantly bet-

ter than BALM-shuffled and BALM-unpaired on light-chain em-

beddings. Although the clustered light-chain embeddings from

BALM-shuffled and BALM-unpaired do not segregate into

well-formed clusters, those of BALM-paired are more similar to

heavy-chain embeddings, clustering primarily by mutation and

secondarily by V gene. This suggests that BALM-paired is

learning cross-chain features that improve light-chain embed-

dings that cannot be simulated with random light-chain pairing.

The asymmetry with which cross-chain features influence model

outputs, with light-chain embeddings displaying much more

obvious differences than heavy chains, is consistent with a

growing body of evidence that the light-chain partners of genet-

ically similar heavy chains are themselves genetically similar.21

This cross-chain information flow does not appear to be bilateral,

however, because genetically similar light chains display ‘‘pro-

miscuous’’ pairing with diverse heavy chains.27 Thus, there is

an immunological basis for the distinct improvement patterns

observed with BALM-paired. We provide further evidence that

BALM-paired is learning biologically relevant, cross-chain fea-

tures by demonstrating markedly improved SHM prediction in

one antibody chain when the natively paired chain, but not a

germline-reverted variant of the natively paired chain, is provided

as context. This implies a surprisingly sophisticated understand-

ing of humoral immunity, learning that SHM-driven deviation

from the germline template in one chain is a strong indicator of

similar deviation in the paired chain.

Although these results clearly demonstrate the benefits of

training antibody language models with natively paired

sequence data, in practice this is less straightforward, because

the cost of generating paired antibody sequences is orders of

magnitude higher than that of unpaired. Our observations with

BALM-shuffled suggest that datasets of synthetically paired
8 Patterns 5, 100967, May 10, 2024
antibody sequences are unlikely to be useful for AbLM training

unless they accurately recapitulate all of the factors that influ-

ence native antibody pairing. To evaluate the feasibility of a mid-

dle-ground approach in which paired antibody sequences are

used to supplement larger andmore readily available training da-

tasets, we fine-tuned the general protein language model ESM-

214 using the Jaffe dataset (ft-ESM). Using this model, along with

our previous BALMmodels, we further assessed the cross-chain

features being learned by the model. We observed that the

natively paired models (ft-ESM and BALM-paired) showed

increased attention to the CDRs, compared to the unpaired

models (BALM-unpaired and base-ESM) and the randomly

paired model (BALM-shuffled). The focused attention on the

CDRs shows focus on the immunologically important and struc-

turally proximal regions of paired antibody sequences. The fact

that ft-ESM shows more CDR attention than BALM-paired is

particularly encouraging because it indicates that natively paired

datasets, which due to their high cost are necessarily limited in

scale, can be supplemented with unpaired antibody sequences

or general protein sequences while still allowing models to learn

critically important cross-chain antibody features.

To demonstrate an example application of these paired

models, we trained sequence classifiers to test the ability of

the models to perform 3 separate antibody specificity classifica-

tion tasks. We observed that the natively paired models, ft-ESM

and BALM-paired, consistently outperformed their counterparts

base-ESM and BALM-unpaired. BALM-shuffled also outper-

forms the unpaired models on the binary classification tasks,

performing only slightly below the natively paired models. How-

ever, on the 3-way classification task, BALM-shuffled performs

lower than the natively paired models (more comparably with

the unpaired models), suggesting that the cross-chain features

learned from natively paired sequences is more significant for

complex downstream tasks. We also observed that ft-ESM out-

performs other models across paired classification tasks and

even on unpaired classification tasks (where unpaired models

tend to dominate), suggesting that ft-ESM is more flexible with

the types of data during downstream tasks. This implies that

mixed models trained on a mix of paired and unpaired or protein

sequences may be a useful strategy both to overcome the

shortage of natively paired data and to ensure the generalizability

of pretrained models.

Although the results from these binary and small multiclass

classification tasks are impressive, it is not clear whether there

is much practical use for models that can perform relatively sim-

ple ‘‘SARS-CoV-2 or not’’ classification tasks. Instead, the fact

that these models can achieve such high accuracy means that

there are learnable patterns of sequence-inherent properties

that distinguish groups of antibodies with similar specificity.

Herein lies what is likely the greatest value of these models: if

we can better understand the feature patterns driving classifica-

tion decisions and leverage these patterns in other downstream

tasks, then we have the opportunity to learn the fundamental

immunological properties that define antibody specificity, with

broad ramifications across infectious disease, autoimmunity,

and cancer.

In summary, we report four important discoveries that will help

guide the design and training of future state-of-the-art AbLMs.

First, incorporating natively paired training data produces
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higher-performing models by allowing models to learn cross-

chain features that cannot be simulated by randomly paired se-

quences. The native pairing of heavy and light chains is integral

to the structure and function of each antibody and understanding

features that span both chains is vital. Second, AbLMs rapidly

learn patterns associated with templated regions that are en-

coded by germline gene segments but struggle with nontem-

plated regions. It is likely that training datasets enriched in so-

matically mutated sequences combined with antibody-specific

training schemes that bias training resources toward untem-

plated regions such as CDR3s may directly address the most

prominent model weaknesses. Third, mixed training datasets,

which supplement paired antibody sequences with unpaired or

general protein data, can help overcome the high cost and

limited availability of natively paired datasets. Finally, LMs

trained or fine-tuned using natively paired antibody sequences

perform better on downstream classification tasks, suggesting

a deeper and more generalizable understanding of human

antibodies.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Bryan Briney (briney@scripps.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Model weights for BALM-paired, BALM-shuffled, BALM-unpaired, and ft-ESM

and the datasets used for training are available on Zenodo28 under the CC BY-

SA 4.0 license. The code used for data processing, model training, and cross-

chain attention plots is available on Github (github.com/brineylab/BALM-

paper) under the MIT license and has also been archived to Zenodo together

with themodel weights and training datasets. Any other information required to

reanalyze the data reported is available from the lead contact upon request.
Training data

For BALM-paired pretraining, we used the largest publicly available dataset of

natively paired human antibody sequences, comprising �1.63 106 sequence

pairs.21,22 All paired antibody sequences in this dataset were recovered from

circulating B cells from healthy adult human donors and were not selected

or enriched for binding to any particular antigen. Raw sequences were anno-

tated with abstar,29 and the amino acid sequence of each V(D)J region was ex-

tracted. Sequence pairs were filtered to remove duplicates and nonproductive

sequences, resulting in 1,335,854 filtered pairs. A total of 90% of the filtered

pairs were used for training, with 5% held out for evaluation and an additional

5% for testing.

To generate the shuffled-pairs dataset for BALM-shuffled, the heavy and

light chains from the BALM-paired dataset were randomly shuffled. Due to

the redundancy of light chains, a very small percentage (0.07%, or 845 se-

quences) of the pairs in the train dataset after shuffling were native pairs.

To generate the unpaired dataset for BALM-unpaired, the BALM-paired da-

taset was processed to unpair the sequences. This separation of pairs

occurred using the train-evaluation-testing split from BALM-paired, such

that the training corpus of BALM-paired and BALM-unpaired are directly com-

parable. The unpaired data were intentionally not processed any further to

ensure that the models were trained on the same sequence data and therefore

were directly comparable. This means, however, that given that light chains

have less diversity than heavy chains, there is a high level of light-chain redun-

dancy in the unpaired dataset. Out of the 2,671,708 total sequences, 746,311

of the light chains were redundant, meaning there are a total of 1,925,397

unique sequences in the unpaired dataset. This light-chain redundancy disad-

vantages BALM-unpaired during training; however, it was an intentional choice
to include this light-chain redundancy because the paired models also see

these redundant light chains but with the advantage of its heavy-chain pair.

For specificity classification training, 3 datasets were used. CoV antibody

sequences were obtained from CoV-AbDab.30 Flu antibody sequences were

obtained from Wang et al.,31 filtered for paired sequences only. Randomly

selected antibodies from the memory B cell repertoire of healthy adult donors

were obtained from the control dataset of Hurtado et al.32 Amino acid se-

quences were clustered at 95% identity for CoV vs. healthy donor and 99%

for the other two classification tasks. From here, these datasets were used

to form 3 unique datasets to use for specificity classification tasks and labeled

according to their antigen specificity: CoV vs. healthy donor (total 18,090 se-

quences), CoV vs. Flu (total 2,930 sequences), and CoV vs. Flu vs. healthy

donor (total 4,396 sequences). Sequences were labeled according to their an-

tigen specificity (or nonspecificity, for the healthy donor sequences), and each

dataset contained an equal number of each class to ensure balanced training.

All 3 datasets were randomly split with stratification, to generate a test dataset

of 5% for CoV vs. healthy donor and 10% for the other 2 tasks.

BALM training

We separately trained 3 BALM variants, BALM-paired, BALM-shuffled, and

BALM-unpaired, using the HuggingFace transformers library.33 All 3 models

used a slightly modified version of the RoBERTa-large architecture,34 with

24 layers, 16 attention heads per layer, a hidden size of 1,024, and an interme-

diate (feedforward) size of 4,096. An encoder-only architecture was chosen to

align with other widely used protein and antibody models and prioritize utility

for downstream tasks such as specificity classification. In addition, absolute

positional embeddings were selected over rotary embeddings to increase

the compute efficiency of model training. An MLM objective was selected

rather than another pretraining method, such as Electra’s replaced token

detection,35 since ProtBERT has been previously shown to outperform

ProtElectra on general protein tasks.36

The vocabulary contained 25 tokens: 1 for each of the 20 amino acids and 5

special tokens: <s>, </s>, <pad>, <unk>, and <mask>. Inputs to BALM-un-

paired were individual heavy- or light-chain sequences, padded to amaximum

length of 256, to accommodate the longest unpaired sequence in the dataset

without truncation. Inputs to BALM-paired were concatenated heavy- and

light-chain sequences separated by a </s> token and padded to a maximum

input length of 512, such that the input length was twice that of BALM-un-

paired. Since BALM-unpaired has twice as many sequences as BALM-paired,

the total batch size of BALM-unpaired (512) was twice that of BALM-paired

(256) to normalize training.

All 3 models were trained using an MLM objective. Briefly, when given an

input for which some positions have been masked, the model is asked to

predict the masked tokens based only on the context provided by the non-

masked tokens. For each input, 15% of the tokens were uniformly selected

for masking. Of the selected tokens, 80% were replaced with a <mask> to-

ken, 10% were replaced with a randomly selected amino acid token, and

10% were left unchanged. Masking was performed dynamically to avoid us-

ing the same mask across epochs.34 The 3 models were each trained for

500,000 steps (�100 epochs) on 8 NVIDIA A100 graphics processing units

(GPUs), which equates to �5 days per model. The peak learning rate was

4e�4, with a linear warmup over the first 30,000 steps and a linear decay

thereafter.

Analysis of model embeddings

The output embedding of a model with input length L, hidden size H, and N

input sequences, is a matrix of the shape N 3 H 3 L. For each BALM model,

the dimensionality of the final layer output embedding was reduced by aver-

aging over the L dimension as previously described,16,18 producing an N 3

Hmatrix. A UMAP embedding25 was computed for the averaged embeddings

matrix for each model in Python 3.9, using the umap-learn package.26 UMAP

plots were visualized in Python 3.9 using matplotlib. For BALM-paired and

BALM-shuffled, the subset of the output embedding matrix corresponding

to either the heavy chain or light chain was extracted before averaging so

that only the embeddings for the chain of interest were used to compute the

UMAP. This ensures an ‘‘apples-to-apples’’ comparison between the embed-

dings of BALM-paired and BALM-shuffled (for which the raw embeddings

contain both heavy and light chains) and BALM-unpaired (for which the raw
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embeddings contain only a single chain). The same procedure was completed

for the t-SNE embeddings in Figure S1.

ft-ESM training

We fine-tuned the pretrained 650-million parameter ESM-2 model, which is

based on the RoBERTa architecture34 and has 33 layers, with 20 attention

heads per layer.14 The 650-million parameter model was chosen (rather

than the larger, higher-performing 3 or 15 billion parameter ESM-2 variants)

to reduce the likelihood of overfitting due to the small training dataset and

allow for faster training despite memory constraints. Inputs were concate-

nated heavy- and light-chain sequences separated by two <cls> tokens

and were tokenized with the standard ESM-2 vocabulary and padded to a

maximum length of 320. None of the paired or unpaired sequences ex-

ceeded the maximum input length, so truncation was not required. The total

batch size was 256. The model was trained using an MLM objective, as

described above for BALM model training. The peak learning rate was

4e�4, with a linear warmup over the first 30,000 steps and a linear decay

thereafter. The model was scheduled to train for 500,000 steps on 8

NVIDIA A100 GPUs, but was early-stopped after 150,000 steps to prevent

overfitting being observed in the evaluation dataset, which equates

to �7 days.

Analysis of cross-chain attention

Attention values of the final layer of each model were extracted for each posi-

tion of the input antibody sequence and filtered to include only cross-attention

(i.e., position pairs for which the 2 positions are on different chains). Values

were averaged by position in the sequences, and then analyzed by their loca-

tion (FR or CDR) in the sequence. To generate the attention ratio, the percent-

age of attention to the CDRs was divided by the percentage of the sequence

classified as CDR positions. These values were also plotted into bar plots by

CDR group using seaborn37 and matplotlib.38

For the therapeutic antibodies, the attention values of ft-ESM and base-

ESM were extracted for each position of the input antibody sequence,

across each head and layer of the model. Cross-attention values for each

position pair were averaged across all 20 heads and 33 layers of the model.

Based on these data, heatmaps were generated using seaborn37 and mat-

plotlib.38 To map the cross-chain attention onto mAb structures, the total

cross-chain attention was separately summed for each position in the heavy

and light chains, resulting in a single attention vector per chain. These atten-

tion vectors were used to color residues by b-factor using PyMOL.39 Atten-

tion step plots were created using the summed attention vectors in Python

using matplotlib.38

Specificity classification training

Models were fine-tuned with a sequence classification head for the down-

stream task of specificity prediction on two binary classifications (CoV vs.

healthy donor, CoV vs. Flu) and one multiclass classification (CoV vs. Flu vs.

healthy donor). For tokenization, models were tokenized with the standard to-

kenizer for the model type. BALM models received concatenated heavy- and

light-chain sequences separated by the </s> token, whereas ESM models

were concatenated heavy- and light-chain sequences separated by 2 <cls>

tokens. No truncation was necessary since all of the sequences were shorter

than the maximum input length of the model. Models were trained for 1 epoch

with a total batch size of 32 for CoV vs. healthy donor and 8 for the other 2 clas-

sifications, with a learning rate of 5e�5 and a linear warmup ratio of 0.1. Each

model was trained for each sequence classification task 5 times, with the same

5 random dataset splits and different random seeds during training, to show

variation based on training data and random seeds.

Metrics used for evaluation of the binary classifications were accuracy, F1,

area under the receiver operating characteristic curve (AUC), area under the

precision-recall curve (AUPR), and Matthews correlation coefficient (MCC).

For the multiclass classifications, evaluation metrics were accuracy, macro-

F1, and MCC. Plot of accuracy against model steps for healthy donor vs.

CoV was based on wandb logging data, averaged across all 5 runs of each

model with SE, and plots were smoothed with a weight of 0.25. One iteration

of BALM-unpaired was excluded as an outlier and rerun with a different

random seed, and the training plot for the excluded outlier can be viewed in

Figure S3.
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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