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■ INTRODUCTION
Annual anthropogenic carbon emissions reached nearly 36
billion tonnes in 2020, and the atmospheric carbon dioxide
concentration has increased ∼50% since preindustrial times to
approximately 420 ppm.1 Rising CO2 levels have motivated
the development of carbon capture and sequestration (CCS)
technologies to combat the effects of emissions on global
climate change.2 Direct air capture (DAC) is an emerging
technology with the potential for distributed capture and
negative emissions.3 DAC operates at ambient conditions and
avoids impurities that are common for point source capture of
CO2, but the low concentration of CO2 requires the movement
of large volumes of air and strong adsorption of CO2.

4 Many
current DAC absorbents, such as liquid amines and solid
alkali hydroxides, strongly bind CO2 through chemisorption,
requiring energy-intensive regeneration of the sorbent.5,6

Metal−organic frameworks (MOFs) are a promising class of
alternative sorbent materials for DAC allowing regeneration at
relatively low temperatures. In contrast to sorbents such as
alkali hydroxides, MOFs are modular, flexible, and highly
tunable, and they possess remarkably high porosities, low
densities, and long-range order.7 Their chemical tunability and
long-range order make MOFs worthy of high-throughput
computational screening studies.
Computational materials design is a promising strategy for

DAC sorbents.8 Design of efficient DAC processes may require
tailoring of materials to the specifics of the air temperature and
humidity conditions in a given environment or the temper-
ature/pressure swings that are required to keep energy

consumption low.9 This is particularly true of DAC processes
that seek to leverage air movement and energy content of
existing systems such as heating, ventilation, and air conditioning.10

The consideration of humidity is particularly important since
dehumidifying air requires significant energy input, the presence of
H2O can result in competitive adsorption even at low relative
humidities, and humidity can in some cases cause adsorbent
degradation over time.11−14 The availability of large datasets of
MOFs and other solid sorbent materials can facilitate the
identification of specific materials or chemical moieties that are
well suited for the specific conditions of a given DAC process.15,16
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High-throughput computational studies and machine
learning (ML) techniques are already a common practice in
the screening and discovery of MOFs and other reticular
materials.12,17−25 There are several large databases of MOF26−31

and zeolite structures32 and multiple computational toolkits33−37

and ML models23,38−43 to analyze and predict the adsorption
properties of these materials. However, there are several key
limitations to the existing body of work. First, because of the
computational costs involved, many studies rely on empirical force
field (FF) models for predicting adsorption properties.
Inaccuracies associated with FFs can lead to both qualitative and
quantitative inconsistencies in the prediction of material perform-
ance, particularly in the case of open-metal sites (OMS) or defects
where covalent bonding or complexation occurs.17,44−49 There are
several large databases of density functional theory (DFT)
calculations for MOF materials,27,31 but to date these are focused
only on the MOF structure and do not include adsorption data.
Second, many existing databases and studies of CO2 adsorption
focus only on adsorption of CO2, neglecting the possibility of
competition with H2O.

11,50−53 Failure to consider competitive
adsorption will strongly limit the ability to predict materials for
practical DAC processes, where bicomponent CO2/H2O
isotherms are required. Accurately modeling H2O adsorption
with classical FFs is challenging due to the complex physical
properties of water.54−57 Third, many computational databases
and studies focus on hypothetical materials,28,30,58,59 which leads to
practical challenges in the synthesis and experimental testing of
new predicted materials. Finally, most datasets are restricted to
pristine materials. In reality, MOFs will contain a wide range of
defects that may govern their adsorption properties under practical
conditions.60,61 New materials can also be created by inserting
defects in MOFs via so-called defect-engineering.62 Large datasets
of high-quality DFT simulations of mixed CO2 and H2O
adsorption on realistic pristine and defective MOFs are needed
to address these limitations.
ML is also a well-established approach in the discovery of

MOFs and other nanoporous materials. ML models have been
applied to directly predict the adsorption properties and
isotherms of MOFs based on their physical and chemical
structures.23,41−43,63−65 Descriptors based on the porosity,
chemical constituents, and energy landscape of probe adsorbates

in MOFs have been combined with a range of regression and
classification models to provide predictions of gas load-
ings,23,42,66,67 Henry’s constants,40,68 and temperature-dependent
isotherms.63,64 Neural networks have been used to predict MOF
properties and perform inverse design tasks to identify MOF
materials with high thermal stability58,69 and strong or selective
CO2 adsorption.

43,59,65 ML models have also been trained to
provide insight into the synthesizability and stability of MOFs and
zeolites.70−74 However, the training data required for many of
these properties, such as adsorption isotherms, are generated
using classical FFs, which have been shown to exhibit systematic
errors.45 Efforts to train ML models that can directly emulate
DFT data for MOFs are more limited.43 The ability to use ML
models to directly replace FFs in MOFs has the potential to
enhance many of the prior efforts.
In this work, we introduce the Open DAC 2023 (ODAC23)

dataset to address these challenges. The dataset consists of
adsorption energies for CO2, H2O, and mixtures thereof on
∼8K MOFs, amounting to a total of ∼176K adsorption
energies and ∼38M single-point calculations (Figure 1). All
calculations were performed using DFT with the PBE+D3
exchange correlation functional, ensuring that covalent and
electrostatic interactions are treated quantum mechanically
and van der Waals interactions are included with well-
established empirical accuracy. Approximately 76K adsorption
energies involve MOFs that have missing linker defects,
providing a route to predict the role of defects. The dataset is
used to train and evaluate state-of-the-art ML models for the
prediction of adsorption energies and atomic forces using
approaches developed for the Open Catalyst Project.75 In
addition, we include several out-of-domain datasets taken from
the extended CoRE MOF database58,76 to evaluate the ability
of the trained models to generalize to unseen topologies
and linker chemistries. We expect that this dataset and the
associated infrastructure will accelerate the development of
MOF materials for DAC by providing a common dataset
that far exceeds the size of any currently available dataset,
establishing well-defined standards and benchmarks for the
development of new ML models, and providing accessible
pretrained ML models that enable routine prediction of mixed

Figure 1. Materials, adsorbates, tasks, and potential applications of the ODAC23 dataset. Images are randomly sampled from the dataset.
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CO2 and H2O adsorption on MOFs at an accuracy that
approaches DFT.

The ODAC23 dataset is publicly available at the OpenDAC
Web site.a All of our trained ML models and training code are
available in the OCP repository.b

Scope and Structure of the ODAC23 Dataset.
Enormous numbers of hypothetical MOF structures exist, as
illustrated by the hypothetical MOF database (hMOF) of
Wilmer et al., which contains 138,000 structures.28 Several
other MOF databases have been developed, including the
Topologically Based Crystal Constructor (ToBaCCo) database
of 13,512 MOFs with 41 unique topologies developed by
Colo ́n et al.30 Perhaps most importantly, Chung et al.
developed the Computation-Ready, Experimental (CoRE)
MOF database26 and its 2019 expansion27 from experimentally
synthesized structures in the Cambridge Structural Database
(CSD).77 The CoRE MOF database has been the foundation
of many studies and extensions, including assignment of
DFT-derived point charges,78 more thorough cleaning by
removal of structures with misbonded or overlapping atoms,79

and the QMOF database of DFT-derived properties of many
CoRE MOF structures.31

The Open DAC dataset uses the CoRE MOF 2019 work as
a starting point. This approach is beneficial because the data
are readily available, and the origin of each MOF in the
database in an experimentally reported synthesis partially
addresses concerns surrounding practicality when considering
candidate MOFs for experimental testing. The CoRE MOF
database has also been shown to be more chemically diverse
than larger databases of hypothetical materials, which is
beneficial for training transferable and generalizable ML
models.80 The CoRE MOF 2019-ASR database contains
12,020 unique structures with accessible data. We considered
only MOFs that contain fewer than 1,000 atoms in the unit cell
due to computational cost. MOFs with a pore limiting
diameter (PLD) of less than 3.3 Å are excluded because a
CO2 molecule (kinetic diameter of 3.3 Å) may experience
kinetic limitations in entering such small pores.27 With these
limitations, 8,803 MOFs serve as our starting point for DFT
relaxation.
We used the Perdew−Burke−Ernzerhof functional81 with a

D3 dispersion correction82,83 (PBE-D3) for all calculations.
The generalized gradient approximation (GGA) approach was
chosen over more accurate methods such as hybrid functionals
or coupled cluster techniques because of the size and diversity
of the dataset. Nazarian et al. showed that several different
functionals and dispersion corrections perform similarly when
making structural and partial charge predictions on a
chemically diverse set of MOFs.78 We did not include a
Hubbard U correction. Without this correction, PBE system-
atically overpredicts binding energies on open-metal sites, but
U values are empirical and are difficult to find for every metal

type.84 Our calculations included spin polarization to capture
spin effects associated with open metal sites, with the
simplification that the magnetic moment was initialized as +1
for all atoms. Further exploration of possible spin states may be
warranted in cases of special interest. Our work ultimately
seeks to push the baseline description of MOFs for DAC from
classical FFs to the PBE-D3 level of theory, so we prioritized
consistency across a very large number of calculations rather
than absolute accuracy.
The ODAC23 dataset consists of complete relaxation

trajectories of CO2, H2O, and mixtures of CO2 and H2O in
MOF structures derived from the CoRE MOF database. We
include two classes of MOF frameworks: pristine frameworks
and defective structures. Although a range of defect types can
exist in MOFs, we only considered missing linker defects, since
systematic methods exist to add these defects to MOF
structures.85 Pristine MOF structures are obtained from the
CoRE MOF database without further modification. Approx-
imately 66% of the pristine MOFs include frameworks with
open metal sites. To test generalizability, we also included 114
“ultrastable” MOFs from Nandy et al. created by fragmenting
and recombining linkers and nodes from the original CoRE
MOF database.76 The final data set includes a total of
4,942 pristine MOFs and 3,470 defective MOFs with defect
concentrations ranging from 1 to 16%. The MOFs contain a
diverse set of 57 metals, with Zn, Cu, and Cd being the most
common, and include a mix of monometallic (89%), bimetallic
(10.7%), and trimetallic (<1%) frameworks. The abundance of
various metals is provided in Table S1, and the most common
linkers are listed in Table S2. The adsorbates were initially
placed using classical FFs and Monte Carlo sampling, with
∼2−6 placements per framework. The selection of MOFs and
adsorption configurations included in the final set are
established by pragmatic constraints and practical consider-
ations. In total, the dataset consists of over 170K converged
adsorption energies and nearly 40M single point calculations,
corresponding to over 400M core-hours of compute time.
Details are provided in the Methods section.
The ODAC23 dataset has been designed to allow training

of ML models to approximate DFT calculations, similar
to previous work in heterogeneous catalysis (OC20 and
OC22).75,86 We use the same three task definitions used in the
OC20 work. These tasks are briefly summarized below, and we
refer the reader to the OC20 paper75 for more detailed
descriptions.
In each task, the input structure is a unit cell periodic in all

directions containing a MOF with one or more adsorbates.
The ground truth targets of forces, energies, and relaxed
structures were all calculated using DFT. For energy targets,
we used a nonrelaxed adsorption energy:

E E E n E n Eads system MOF CO CO H O H O2 2 2 2
= (1)

where Esystem is the energy of the MOF and adsorbates, EMOF is
the energy of the relaxed MOF structure without an adsorbate,
ni is the number of adsorbate i, and Ei is the energy of
adsorbate i in the gas phase. The tilde on Eads denotes that
Esystem is not necessarily a relaxed structure. In specific cases
where Esystem is relaxed, the tilde is dropped, and the adsorption
energy is denoted as Eads. More details are provided in the
Methods section.
The energies of these MOF + adsorbate structures were

used to train models for three tasks:
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1. Structure to Total Energy and Forces (S2EF) takes a
structure as input and predicts Eads of the system as well
the force on each atom. This task is analogous to
training a force field for all atoms in the system.

2. Initial Structure to Relaxed Energy (IS2RE) takes an
initial guess structure as input and predicts Eads of its
relaxed structure. This task is analogous to predicting an
adsorption energy from an initial structure.

3. Initial Structure to Relaxed Structure (IS2RS) takes an
initial guess structure as input and predicts the relaxed
position of each atom. This task is analogous to
geometry optimization.

The S2EF task is the most general, and an S2EF model can be
used to complete the IS2RS and IS2RE tasks. The data set is
organized by task and train/test splits. For each task, the data are
split into a training set, testing set, and validation set. These in-
domain (id) sets are randomly sampled from the full dataset
derived from CoRE MOF but are stratified by MOF framework to
ensure that all defective structures are in the same set as the
pristine structure from which they are generated. Four out-of-
domain (ood) sets are included. The “big” ood set corresponds to
MOFs from CoRE with over 500 atoms in their unit cell (testing
the ability to generalize to larger structures). The “linker”,
“topology” ood sets contain linkers and topologies not included in
the training data, selected from MOFs in the ultrastable MOF
dataset of Nandy et al.76 The “linker and topology” ood set
contains MOFs from the ultrastable MOF dataset that contain
both unseen linkers and topologies. The number of MOF
structures and DFT calculations in each set is provided in Table 1,

and a more detailed breakdown based on adsorbate type is
provided in Table S1. Figure 2 illustrates this detailed distribution
across adsorbate types split by task. Further details are described in
the Methods section.

Identification of Selective CO2 Adsorption Sites. We
used our DFT calculations to directly search for MOFs that are
potentially interesting for DAC following the criteria suggested
by Findley and Sholl12 that the adsorption energy of CO2 is <
−0.5 eV (with our sign convention, more negative binding
energies correspond to more favorable binding) and that the
adsorption energy of CO2 needs to be more favorable than that
of H2O. Materials not satisfying the first criterion are unlikely
to bind sufficient quantities of CO2 at the dilute concentrations
relevant for DAC, and materials not satisfying the second

criterion are likely to adsorb far more water from air than CO2.
In the following analysis, we compared the lowest adsorption
energy of all computed configurations for each MOF +
adsorbate case. We neglected cases with |Eads/(nCOd2

+ nHd2O)| >
2 eV because we suspect these cases are unphysical.
Figure 3a and b compare the CO2 and H2O adsorption

energies in each pristine and defective MOF from our DFT
calculations. As expected, most of the MOFs bind water more
favorably than CO2. However, 135 of the 5,079 pristine MOFs
bind CO2 strongly and have higher affinity for CO2 than for
H2O. The top 10 pristine MOFs identified by our DFT
calculations with the highest values of |Eads(CO2) − Eads(H2O)|
are tabulated in Table S3.
Several screenings of the CoRE MOF database for CO2

capture in the presence of water have been conducted
previously.87,88 Here, we compare our promising MOFs with
two previous studies where the adsorption energies of CO2
and H2O in CoRE MOFs are available. Findley and Sholl
performed a similar screening of CoRE MOFs using FF
methods, finding no cases that satisfied the criteria stated
above.12 The observation that our DFT calculations of analogous
quantities identified many interesting materials suggests that the
generic FFs used previously are insufficiently accurate. Kancharla-
pall and Snurr recently screened the CoRE MOF 2019 database
with a combination of FF and DFT calculations, using somewhat
different selection criteria.89 Kancharlapall and Snurr also found
that FF-based calculations failed to identify MOFs that satisfy our
criteria. They further analyzed a subset of their most promising
structures using DFT, with a slightly different workflow than
we use for ODAC23. We find that 17 materials identified by
Kancharlapall and Snurr also appear in the ODAC23 dataset,
although we find that 7 of these materials bind H2O more
strongly than CO2 and the remaining 10 MOFs bind CO2
weakly (Eads(CO2) ≥ −0.5 eV), indicating that they may not
be promising for DAC.
In addition to considering the adsorption of single CO2

and H2O molecules, we also used DFT to probe the
coadsorption of CO2 and H2O in MOFs. With the resulting
coadsorption energies, we computed the adsorbate−adsorbate
interaction energies associated with removing both molecules
from the coadsorbed state, denoted Einter mol

1st
_ , for each MOF

using eq 6. For the 10 MOFs listed in Table S3, there are three
distinct scenarios for this quantity. In a simple case like
ZIDBEV, E 0.00inter mol

1st =_ eV is small relative to the single
molecule adsorption energies, so coadsorption can be
approximated in a simple way as separate adsorption of the
two molecules. For MOFs with negative adsorbate−adsorbate
interaction energies like IMAGAG (E 0.64inter mol

1st =_ eV),
coadsorption of CO2 and H2O is strongly favored relative to
adsorption of the individual molecules. Positive adsorbate−
adsorbate interaction values such as those seen for IPIDUH
(E 1.04inter mol

1st =_ eV) and TUGTAR (E 0.51inter mol
1st =_ eV)

indicate the coadsorption is much less favorable than
adsorption of isolated molecules. In some cases the first
adsorbate−adsorbate interaction energies are strongly nonzero
(e.g., KOQLUZ, E 2.31inter mol

1st =_ eV), suggesting that
rearrangement of the MOF structure occurred in the
coadsorbed case that was not observed for the individual
adsorbed molecules.
For the CO2 + 2H2O configurations, we also computed the

second adsorbate−adsorbate interaction energy using eq 7.

Table 1. Overview of ODAC23 Dataset Organized by
Dataset Split, Number of MOF Frameworks, and Number of
DFT Calculations

Split

#
pristine
MOFs

#
defective
MOFs

# total
MOFs

# total
DFT

relaxations
# total DFT
single points

train 4,537 3,287 7,824 162,224 35,871,295
val 121 71 192 3,998 839,565
test-id 120 93 213 4,669 973,515
test-ood (big) 66 19 85 1,768 381,219
test-ood
(linker)

28 0 28 1,182 287,125

test-ood
(topology)

55 0 55 1,612 472,256

test-ood
(linker and
topology)

15 0 15 579 158,773

total 4,942 3,470 8,412 176,032 38,983,748
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This energy is small or negative for all of the 10 promising
MOFs listed in Table S3. One example, LEWZET, shows an
extremely negative second adsorbate−adsorbate interaction

energy of −5.48 eV; this occurs because of significant
distortion in the relaxed MOF that occurs due to adsorption
of a second water molecule. We note that these effects cannot

Figure 2. Distribution of the number of MOF + adsorbate DFT calculations for the (a) S2EF and (b) IS2RS/IS2RE tasks on a logarithmic scale.
The horizontal lines emphasize the size of the dataset.

Figure 3. Parity plots showing DFT-calculated CO2 and H2O adsorption energies in (a) pristine and (b) defective MOFs. (c−f) MOF examples
with common features of the promising MOFs.
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be explored in existing FF-based searches of MOFs, which
assume that the MOF structure is unperturbed by adsorbates.
It would be challenging, however, to draw in depth conclusions
about a selection of MOFs from a limited number of DFT
calculations. The complexities associated with the changes in
MOF frameworks during coadsorption and the challenges with
sampling the many possible placements of coadsorbed states
both point to the need to be able to derive FFs or ML models
that allow rapid assessment of large numbers of states to
provide a thorough description of coadsorption.
Our results also include the first large collection of adsorbed

molecules in defective MOFs relaxed with DFT. The cell
volume of most of the MOFs decreased after introducing
defects (Figure S2a). From the 3,628 defective MOFs, we
found 107 defective MOFs with CO2 adsorption energy
greater than water (Figure 3b). The top 10 defective MOFs
ranked in the same way as the pristine materials are listed in
Table S4. Defects play an important role in the adsorption
of water and CO2. For example, pristine TIDLID has an
adsorption energy of −1.10 eV for CO2 and −0.52 eV for H2O
(Figure S2b), but defective TIDLID was no longer considered
promising because the porous structure collapsed, and the
PLD was smaller than 3.3 Å (Figure S2c).
The defect concentration was not strongly correlated

with the difference in adsorption energies associated with the
presence of defects (Figure S3). The average differences
of CO2 adsorption energy were nearly zero for all defect
concentrations, and adding defects to MOFs resulted in
slightly more favorable water adsorption on average. However,
the effect of defects on adsorption energies differs greatly from
case to case. In Figure 4a−d, defects in QOVSOL resulted in
more favorable H2O adsorption and less favorable CO2

adsorption, making it no longer a promising candidate for
DAC. On the other hand, our calculations with defective
MOFs show that the defects in some of these materials can
create interesting adsorption environments for DAC. We found
multiple cases where pristine MOFs would not be selected
based on the criteria defined above but where the defective
material is a promising candidate. Figure 4e−h shows one example
of POLDUQ. Our observations are broadly consistent with
previous experimental and simulation results for CO2 adsorption
in UiO-66,90,91 and enhanced CO2 adsorption in Cu-BTC is due
to water coordinated to OMS.92 Although defects are capped with
water or hydroxyl groups in most cases, it is also possible for
defects to create OMSs. The diversity of possibilities illustrates the
need for accurate and efficient methods to rapidly explore the
many configurations and effects that can exist in defective MOF
structures.
It is interesting to ask what motifs or attributes give MOFs

adsorption energies that are favorable for DAC. Previous research
has suggested several characteristics of good candidates for this
application. Boyd et al. identified three favorable characteristics:
parallel aromatic rings with a spacing of approximately 7 Å,

Figure 4. Examples showing different impacts of the defects in MOFs. The defects generated are shown in red squares. Negative impact of defects
on DAC (a−d): Defective QOVSOL with a defect concentration of 0.12 shows less favorable CO2 adsorption (a and c) and stronger H2O
adsorption (b and d). Positive impact of defects on DAC (e−g): The H2O adsorption is slightly more favorable in defective POLDUQ with a
defect concentration of 0.06 (f and h), but the CO2 adsorption is much stronger at the defect site (e and g).
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metal−oxygen−metal bridges, and open-metal sites.11 The
presence of uncoordinated N atoms or amine groups has
also been proposed as a contributing factor to strong CO2
adsorption.93,94 We examined these four characteristics
(Figure 3c−f) in our list of promising MOFs: 224 of the 242
promising MOFs can be characterized by at least one of these
characteristics. In particular, 72% of the promising pristine MOFs
had open metal sites, 60% had parallel aromatic rings, and slightly
under 30% had metal−oxygen−metal bridges or undercoordinated
N atoms. For defective MOFs, open metal sites were slightly less
prevalent (54%), while the other motifs occurred with similar
frequencies (59% parallel aromatic rings, 34% metal−oxygen−
metal bridges, and 26% undercoordinated N atoms). To
understand whether these features are truly predictive, it is
important to compare these results to the prevalence of these
features in the total population of pristine/defective MOFs in our
data set. In this sense, undercoordinated N atoms are the strongest
predictor of strong and selective CO2 adsorption for pristine
MOFs, being over-represented by 30% in the promising MOF
population. Open metal sites are also slightly over-represented by
10% in the promising MOF population. However, these
characteristics are neither over- or under-represented in defective
MOFs. Parallel aromatic rings are under-represented by 13% in
promising pristine MOFs and 15% in promising defective MOFs,
while metal−oxygen−metal bridges are under-represented by 21%
(pristine) or 31% (defective). Many readers will suspect that
amine groups can play an important role in creating materials with
a strong affinity for CO2. The ODAC23 dataset contains 217
pristine and 254 defective MOFs with an amine functional group.
Of these, 7 MOFs (2 pristine and 5 defective) were found to be
promising, so amine functional groups were significantly under-
represented among promising MOFs. Details of the frequency
normalization calculation can be found in Table S5. These findings
suggest that open metal sites and undercoordinated N atoms are
the chemical motifs that are most suggestive of strong and selective
CO2 adsorption in pristine MOFs, while none of the previously
identified motifs are strong indicators for defective MOFs. This
suggests that additional development of ideas characterizing the
environments enabling strong and selective CO2 adsorption will
be useful in the future. Structure files of the promising MOFs and
the code for promising MOF analysis are available in our open-
source repository on GitHub.c

Although the structures in the CoRE MOF database set
were derived from experiments, it is important to be cautious
in concluding that every structure in this dataset is in fact a real
material. In developing the CoRE MOF 2019 database,
automatic cleaning procedures were applied to experimentally
reported crystal structures, including the removal of solvent
molecules and the resolution of partial occupancies. Although
this procedure was generally effective, there are cases where it
was too aggressive. We observed removal and incorrect partial

occupancies in a number of the MOFs listed above. Charge-
balancing ions were also removed for MOFs denoted
“charged” in Table S4. For each MOF listed above, we
manually compared the MOF structures retrieved from the
CoRE MOF 2019 database and the original publications. From
this analysis, we curated a selection of promising MOFs that
are completely charge neutral and where the CoRE MOF
structure is fully consistent with the original experimental data.
On the basis of current DFT data and manual analysis, we
expect these to be the most promising MOFs for experimental
synthesis and testing. These MOFs are listed in Tables 2 and 3.
The tables include the number of times the original synthesis
report has been cited, since this has been suggested as a proxy
for the ease of synthesis/reuse of a material, and the tables
indicate which of the four promising MOF characteristics
mentioned above appear in each material. Two of the ten
proposed MOFs have common names: PCN-516 for ODIXEG
and PCN-46 for LUYHAP. A complete lookup table for
common names available for our list of promising MOFs can
be found in Table S6. The available CO2 adsorption isotherms
from experimental measurements of these MOFs show
relatively strong CO2 adsorption at low partial pressures,108

which is consistent with the implications of our calculations.

■ EVALUATION OF THE ACCURACY OF CLASSICAL
FORCE FIELDS

Our large library of DFT calculations allowed us to further
investigate the accuracy of existing classical FFs against our
DFT calculations. We focus here on the energy of interaction
between adsorbed molecules and MOFs, since this is the key
calculation underlying previous high throughput assessments
of MOFs for CO2 adsorption. Specifically, we considered a
“standard” FF for adsorption in MOFs that combines the
UFF4MOF,109−111 TraPPE,112 and SPC/E113 FFs for atoms in
the MOF, CO2, and H2O, respectively. Coulombic interactions
were defined using DDEC point charges assigned to MOF
atoms from our DFT calculations.114 Further technical details
are provided in the Methods section.
We computed the interaction energy for 51,478 DFT-

relaxed MOF + adsorbate systems using the FF and DFT.
These are analogous to the energies in the S2EF task. Using
interaction energies for this comparison rather than adsorption
energies is consistent with previous FF-based studies that assume
framework rigidity.14,28,115,116 The ODAC23 dataset also includes
information on MOF deformation associated with the presence of
adsorbates, and future work could explore how accurately existing
FFs for MOF atoms describe these effects.
The results of our FF calculations and comparisons to DFT

interaction energies are shown in Figure 5. All structures in this
comparison contained only one adsorbate molecule (either
CO2 or H2O), and we omit 226 structures with DFT

Table 2. Five Pristine MOFs Suitable for Synthesis on the Basis of ODAC23 Calculations and Manual Evaluation of Original
Synthesis Reports

characteristics exp. CO2 loading (mmol/g)

MOF Eads(CO2) Eads(H2O) PLD LCD Metal OMS PAR M−O−M
Uncoordinated

N 150 mbar 1 bar
common
name

# of
citations

ODIXEG −0.94 −0.24 7.80 10.4 Zn √ √ PCN-516 5695

QOVSOL −0.93 −0.63 3.67 6.21 Cd √ √ 0.1 (298 K) 0.2 (298 K)96 3597

QEFNAQ −0.57 −0.32 4.72 6.03 Cu √ √ 0.4 (293 K) 1.0 (293 K)98 27299

FECXES −0.64 −0.39 6.59 10.83 Cu √ √ 1.6 (273 K) 6.3 (273 K)100 56100

DITYOW −0.60 −0.36 4.79 4.86 Cu √ √ 52101
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interaction energies outside the range of [−2, 2] eV since we
suspect these structures are unphysical. We also omit 716
structures with reasonable DFT energies because their FF
predictions also fall outside of [−2, 2] eV. This is done to
avoid heavily skewing the subsequent discussion and is
revisited at the end of this analysis. Figure 5a shows that in
many cases the difference between the classical FF and DFT is
less than 0.25 eV and that many of the DFT results can be
described as physisorption. van der Waals (vdW) interactions
dominate within the physisorption regime of −0.5 ≤ EintDFT ≤
0 eV, and if interaction energies are restricted to this range
then the mean absolute error (MAE, or simply error) between
FF and DFT energies is 0.06 eV. This indicates that the
physics-based FFs we tested are quite well adapted to predict
the interaction energy when physisorption is dominant.
The results in Figure 5b−d provide a less promising view of

the classical FF. The error between the FF and DFT
calculations scales approximately linearly with the DFT energy
outside the physisorption regime, showing that the FF predicts
a physisorption energy even when DFT indicates that
chemisorption is occurring. The minima in these graphs
around −0.4 eV again indicate that the FF is only capable of
accurately predicting physisorption. In the chemisorption
regime from −2 to −0.5 eV, the MAEs for CO2 and H2O
are 0.29 and 0.39 eV, respectively. Figure 5b shows the number
of points and average error as a function of DFT interaction
energy. Although relatively few points outside the physisorp-
tion regime exist, the FF interaction energy errors increase
drastically with the magnitude of the interaction energy. Many
interesting chemistries that are beneficial for DAC occur due to
chemisorption (e.g., CO2 binding more strongly than H2O).
These cases would be missed by a classical FF that is unable to
model chemisorption. There are also many instances in which
the FF energy prediction is substantially larger than the
DFT-calculated energy. We attribute these to cases involving
chemisorption where the adsorbate is close to the framework
and therefore returns very large Lennard-Jones energies. That
is, the FF exhibits unstable behavior here because very slight
changes in geometry cause large spikes in energy predictions.
An additional takeaway from Figure 5 is that H2O is

significantly more challenging to model than CO2. This is
consistent with the fact that physics-based water models are
complex and are themselves the subject of a rich body of
literature.117 We found that the error in interaction energy
calculations within the [−2, 2] eV domain involving H2O
(0.19 eV) was more than triple for CO2 (0.05 eV). The vast
majority of unstable FF calculations involved H2O and not
CO2. Selecting and implementing an appropriate water model
is a nontrivial task that further complicates the use of classical
FFs for material screening.
Finally, there are a number of cases where the FFs predict

very large interaction energies, with the maximum error being
187.2 eV. These cases typically correspond to dissociative
adsorption, where the FF is not an appropriate model.
Figure S4 presents the binned FF errors as a function of the
DFT interaction energy for all configurations with a DFT
interaction energy in [−2, 2] eV, irrespective of whether the
FF interaction energy falls within this range. Comparison with
Figure 5b shows that the 716 cases with reasonable DFT
energies but unreasonable FF energies drastically increase the
error, and that catastrophic failures (e.g., errors >10 eV) begin
to dominate when the DFT adsorption energies are stronger
than 1 eV. The large errors cause the FF MAE for all structuresT
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to be quite large at 0.28 eV. If the MAE is calculated only for
cases where the FF interaction energy is in the range of [−2, 2]
eV, then the classical FF performs reasonably well with an
interaction energy MAE of 0.11 eV across 50,536 calculations.
Overall, the results indicate that the FF performs well for
physisorption but fails to capture strong chemical interactions
that are likely critical for DAC.

Training and Analysis of Machine Learning Models.
We begin by training and benchmarking models for the S2EF
task, since it is the most general. We tested six graph
neural network (GNN) architectures for this task: SchNet,118

DimeNet+,119,144 PaiNN,120 GemNet-OC,121 eSCN,122 and
EquiformerV2.123 We chose models that performed well on the
OC20 and OC22 benchmarks since those datasets and tasks are
most similar to ours. These models use GNNs containing
equivariant or nonequivariant operations to compute energies and
forces. All models were trained to minimize the following objective
function for forces and energies:

E E
N

F F1
3E

i
i i F

i j i
ij ij

p

,

= | | + | |
(2)

where the loss coefficients λE and λF are used to trade-off the force
and energy losses. Ei and Ei are, respectively, the ground truth and
predicted energies of system i, and Fij and Fij are, respectively, the

ground truth and predicted forces for the jth atom in system i. The
number of atoms in system i is denoted by Ni. p is the order of
the norm; SchNet and DimeNet++ used p = 1, while the other
models used p = 2.
We used the same model sizes as those used for OC20

(Table S7). To prevent overfitting due to the smaller size of
the data set, we adjusted the weight decay for each model. We
also slightly adjusted the initial learning rates, batch sizes,
learning rate schedules, and the loss coefficients λE and λF. All
error metrics are reported for test sets that were not included
in the training and optimization process. Additional information
can be found in the Methods section.
The results of all ML models on the S2EF task are presented

in Table S8, revealing that GemNet-OC, eSCN, and EquiformerV2
have the best performance. Figure 6 shows a radar plot comparing
these models, indicating that EquiformerV2 (large) achieved the
best results for both forces and energies, with a force MAE of
8.20 meV/Å and energy MAE of 0.15 eV on the in-domain test set.
The eSCN and GemNet-OC models also performed well, with
force MAEs of less than 10 meV/Å and energy MAEs of under
0.17 eV. The models’ relative performance was consistent with their
performance on the OC20 and OC22 datasets, suggesting that
improvements in model architecture generalize to various materials
datasets.

Figure 5. Comparison of adsorbate interaction energies calculated with FFs and DFT. (a) Histogram of energy differences between FF and DFT
for 29,644 CO2 calculations (red) and 20,892 H2O calculations (blue). (b) Binned errors and DFT interaction energy distributions split by
adsorbate. (c, d) Absolute difference between FF and DFT energies plotted versus DFT interaction energy for CO2 and H2O, respectively.
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Next, we consider how the models generalize to out-of-
domain test sets. The results in Table S8 and Figure 6
demonstrate that the EquiformerV2 (large) model outperforms
the other models on most metrics for all out-of-domain sets.
The ML models show only a slight decrease in performance on
the test-ood(b) and test-ood(l) sets, suggesting that they
generalize well to larger graphs or to new linker chemistry.
However, the energy predictions for the test-ood(t) and test-
ood(lt) sets are substantially worse than the test-id set,
although the force errors are similar to the other test sets. This
could be due to errors in long-range vdW interactions for
unseen topologies, since this is the main contribution that
varies with topology.
We also analyze the performance of the models on the more

complex chemical environments of OMSs and defects. OMSs
are significant for DAC as they can enable stronger CO2
adsorption.46 Classical FFs are known to be less accurate for
MOFs with OMSs as they can cause high polarization in
adsorbed molecules.46,124 Tables S9 and S10 compare
GemNet-OC, eSCN, and EquiformerV2 on different subsets
of the test-id split. Table S9 shows the performance across
pristine MOFs with and without OMSs, and Table S10
compares the performance of the same models on pristine and

defective structures. The ML models have similar force MAEs
on the OMS and non-OMS sets, as well as the pristine and
defective sets. However, the energy MAEs are lower for MOFs
without OMSs or defects. This may be due to the stronger and
more complex interactions at OMSs or may be related to the
relative abundance of different types of examples within the
dataset. Figure 7a analyzes the binned error for MOFs with
and without OMSs, indicating that errors are slightly higher for
OMS-containing MOFs in the chemisorption regime, suggest-
ing that the ML models perform slightly worse at predicting
the more complex chemical interactions at OMS sites.
A direct comparison between classical FFs and ML models is

not feasible because the architecture of the FFs makes it
challenging to relax framework atoms. However, we can
compare the S2EF adsorption energy errors to the interaction
energy errors from FFs to gain insight, since both evaluate the
ability to describe interactions between frameworks and
adsorbates. We did this with 1,391 relaxed single-adsorbate
configurations in the test-id set, which is a subset of the 50,536
structures that excludes all systems used in ML model training.
For this reason, energy errors reported in this section may vary
slightly from those in the evaluation of the accuracy of classical
force fields. The energy MAE for EquiformerV2 (large) for

Figure 6. Radar plots for S2EF (a) energy and (b) force MAEs, (c) IS2RE energy MAEs, and (d) IS2RS AFbT for the top three best models�
GemNet-OC (red), eSCN (blue), and EquiformerV2 (large, except in (c) where the lighter model is shown) (cyan). Dashed lines correspond to
the relaxation approach for IS2RE; all other models are direct predictions. Axes correspond to different in- and out-of-domain test sets and are
aligned so that the best result is closest to the origin of the plot in all cases.
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these systems was 0.10 eV, while the MAE for the FF
interaction energies on the same structures was 0.49 eV. It is
clear that, on average, the best ML models outperform the
classical FF models, even when only focusing on relaxed single-
adsorbate geometries. However, a more detailed analysis
reveals that the large FF error occurs due to a small number
of large failures. The maximum force field error is 67.66 eV,
compared to a maximum error of 1.23 eV for the
EquiformerV2 (large) model. If the analysis is restricted to
the cases where force fields predict interaction energies in the
range of [−2, 2] eV, the average errors are quite comparable,
with MAEs of 0.10 eV for both.
In the regime where adsorption energies range from −0.5 to

0 eV and physisorption is expected to be dominant, the FF
performance becomes comparable to that of ML, with an MAE
of 0.10 eV for the FFs and 0.09 eV for the ML models.
A detailed analysis is provided in Figure 7b, which indicates
that ML models exhibit consistently lower errors in the
chemisorption regime, in contrast to FF models, which fail for
chemisorption. Given the importance of chemisorption in
selective CO2 capture at low concentrations, this finding
supports the potential value for ML models for DAC. See
Figure S5 for errors in the repulsive region. We note that our
FF calculations used “general purpose” FFs that are readily
suitable for high throughput calculations. Systematic methods
exist to improve classical FFs by including parameters derived
from first-principle calculations,44 and the data sets we have
introduced may create useful opportunities to develop
improved FFs using variations of these methods.
Next, we move to the IS2RE and IS2RS tasks, which evaluate

the ability of ML models to directly predict the relaxed adsorption
energy (IS2RE) and structure (IS2RS) from an initial guess of
framework and adsorbate positions. The IS2RE task only predicts
energy and is evaluated with the energy MAE (similar to S2EF)
and the “energy within threshold” (EwT), which evaluates the
fraction of predictions within 0.02 eV of the DFT energy. The
IS2RE task can be solved by training ML models to directly
predict the relaxed adsorption energy from the initial structure (the
direct method), or by running a structure relaxation with an S2EF
model (the relaxation method). In the case of the relaxation
approach, the task is identical to IS2RS, where the energy of the
final structure is used as the IS2RE prediction. However, the

metrics used to evaluate the IS2RS task are significantly different,
since the goal is to compare structures. The metrics used are the
average distance within threshold (ADwT), force below threshold
(FbT), and average force below threshold (AFbT), with details
provided in the Methods. Evaluating the IS2RS models is quite
expensive since it requires performing a DFT single-point for each
of the predicted relaxed structures. Therefore, we only evaluated
the best 4 models (GemNet-OC, eSCN, EquiformerV2, and
EquiformerV2 (large)) and only computed DFT single-point
energies on 500 randomly selected structures from each test split.
For the IS2RE task, any S2EF model can be used for the

indirect approach, so we evaluated all six S2EF models from
this work by performing structure relaxations with each model.
The resulting structures are also used for the IS2RS task. In
addition, we selected the best three models�GemNet-OC,
eSCN, and EquiformerV2�and retrained them for the direct
approach, with settings identical to the corresponding S2EF
models unless otherwise noted.
Figure 6 and Table S11 show the results for the IS2RE task

on each of the test splits. On the test-id set, the direct methods
obtain an energy MAE around 0.18 eV and an EwT of over
10%. The relaxation approach with older S2EF models like
SchNet, DimeNet++, and PaiNN performs worse than direct
methods, while newer methods such as GemNet-OC, eSCN,
EquiformerV2, and EquiformerV2 (large) are marginally better
than direct approaches. Similar to the S2EF task, we find that
the performance of the ML models degrades marginally on the
test-ood(b) or test-ood(l) datasets, while they degrade significantly
on the test-ood(t) and test-ood(lt) datasets. This is true for both
direct and relaxation-based approaches.
Figure 6 and Table S12 show the IS2RS results on each test

split. The ADwT results are reasonably high for the test-id and
test-ood(b) sets but degrade significantly for test-ood(l) and
test-ood(t) sets. However, the results on the DFT-based
metrics (FbT and AFbT) indicate that the models achieve
relaxed structures consistent with what would be obtained
from DFT < 1% of the time in all cases (and 0% in many
cases). This inconsistency between ADwT and (A)FbT has
also been observed for OC2075 and indicates that the models
need significant improvement to achieve the level of accuracy
needed to replace DFT for the prediction of relaxed structures.
However, the fact that the models are able to predict the
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Figure 7. Binned errors and relative density of the number of points (solid lines) as a function of DFT adsorption energy for (a) ML predicted
adsorption energies on open metal site (OMS) (red) and non-OMS (blue) and (b) interaction energies predicted by FFs (magenta) and
corresponding adsorption energies predicted by ML (green) models. Compared to FFs, ML models are significantly more accurate in the
chemisorption regime and are comparable in the physisorption regime. Positive adsorption energies are omitted from the plot because they are rare
and likely unphysical; plots with the full range of adsorption energies are provided in Figure S4.
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energies of relaxed structures with reasonable accuracy in the
IS2RE task is an encouraging sign, since the state of the art for
high throughput MOF screening with force field is to assume
that the structures are rigid. This assumption becomes
particularly questionable in the case of defective MOFs or
strong adsorption, indicating the need for models capable of
accounting for relaxation effects.
It is clear that the ML models presented here demonstrate

significant promise compared to the standard classical FF
models. However, there are also obvious deficiencies. One
advantage of ML models is that they tend to improve with
more data. In particular, scaling laws for deep learning models
relate model performance to a parameter like the number of
model parameters or size of the training dataset. Scaling
laws have helped to choose the optimal model and training
parameters in several domains.125−127 Figure 8 shows the

scaling laws for the ODAC23 dataset size, comparing the force
MAEs of different models as a function of the number of
MOFs in the training data. Consistent with previous work in
other domains, we observe a power-law relationship between
force MAE and the number of MOFs. This implies that we can
continue to improve the performance of these models by
including more training data. It is also interesting to note that
equivariant models like EquiformerV2 and eSCN have better
scaling properties than GemNet-OC, matching the findings of
Batzner et al.128 This indicates that the use of more sophisticated
model architectures is a promising route forward.
Based on these scaling laws, a much larger number of MOFs

would be required to achieve force MAEs of 3 meV/Å
(approaching the numerical error of DFT). An alternative
strategy common in deep learning is to leverage similar
datasets. This has proven useful in the Open Catalyst Project
models,129 and we plan to explore this approach in future work.

Another possible strategy is to develop model architectures that
are tailored for the DAC application. In particular, the strong
performance of FFs in the weak-binding regime suggests that
incorporating information on vdW interactions into the model130

or Δ-ML131 models may be promising strategies. Ultimately, we
expect that improved model architectures, advanced transfer
learning, and joint training techniques may provide a route to
leveraging physical knowledge and other large atomistic datasets to
improve performance on ODAC23, although we leave this as
future work.132,133

■ IMPACT AND FUTURE OUTLOOK
The results of this study provide the most comprehensive DFT
dataset of CO2 and H2O adsorption in MOFs available to date.
Analysis of the resulting DFT calculations has shown that, contrary
to the findings from FF-based studies, there are numerous MOF-
based adsorption sites with strong and selective CO2 adsorption. A
direct comparison of the DFT results to classical FFs provides the
most comprehensive perspective to date on the accuracy of FFs.
The results reveal that the FFs work well in cases where vdW
interactions dominate but fail when stronger bonding is involved.
These findings demonstrate that high-throughput screening with
methods capable of treating chemisorption and framework
distortion will be required to identify MOFs that can strongly
and selectively bind CO2 under humid conditions.
In addition, the work provides a benchmark for state-of-the-

art ML models for CO2 and H2O adsorption in MOFs. The
results indicate that the best performing GNN models, such as
EquiformerV2, are capable of predicting adsorption energies
with average errors of ∼0.15−0.3 eV and forces with errors of
∼5−10 meV/Å. Comparison with classical FFs shows that
these ML models are more accurate outside the regime of vdW
interactions. This, coupled with the importance of strong
binding in identifying selective CO2 adsorption sites, suggests
that these ML models have the potential to replace classical
FFs as the standard approach in high-throughput MOF
screening for DAC and other applications in separations and
catalysis.
Moving forward, it will be important to critically evaluate

and improve ML models and associated datasets so that they
can be applied to other steps in the computational sorbent
selection process. For example, grand canonical Monte Carlo
simulations are critical for predicting adsorption isotherms.
The models here are untested for this task since they have not
seen configurations with more than two adsorbed molecules. It
would be very interesting to test predictions of these models
against DFT data from higher loadings generated with methods
that can sample the full range of possible configurations such as ab
initio MD. This is especially critical for the case of bicomponent
CO2/H2O isotherms that are needed to predict the behavior of
MOF materials in DAC process models. The complex mixture of
vdW interactions, hydrogen bonding, and covalent bonding in
H2O makes it difficult to accurately predict these bicomponent
isotherms with existing methods, but the ML models presented
here provide a promising foundation for future developments.

■ METHODS
ODAC23 Dataset Generation. A workflow diagram with

details on the dataset generation workflow is provided in
Figure S6, and more details are provided in the subsections
below.

Figure 8. Force MAE on the test-id set for the top 3 S2EF models
when trained on different amounts of training data. The lines show
scaling laws obtained by fitting a line between log of the force MAE
and log of the number of training MOFs for each model.
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Structure Relaxations. DFT relaxations used the PBE
exchange−correlation functional81 with a D3 dispersion
correction82 including Becke-Johnson damping and with spin
polarization.83 Relaxations were performed with conjugate
gradient methods with a step size of 0.01, and Gaussian
smearing was used with a width of 0.2 eV. A plane wave cutoff
energy of 600 eV to minimize effects of Pulay stress and a
precision of 10−5 eV were used. All simulations were performed in
the Vienna Ab Initio Simulation Package (VASP) v5 software with
a 1 × 1 × 1 k-point grid.134

We relaxed all 8,803 CoRE MOF pristine structures using
DFT as described above before generating defective structures
and placing adsorbate molecules, and a total of 5,079 MOFs
converged. DFT convergence failures are due to a variety of
issues. For example, Chen and Manz identified several failure
modes in CoRE MOF input files beyond overlapping atoms
(3.5% of all screened structures), including isolated atoms
(7.8%), misbonded hydrogens (1.3%), and over-/underbonded
carbons (15.3%).79 Examples of VASP convergence issues
were large systems that took too long or ran out of memory
(∼10% of screened structures) and numerical errors pertaining
to Hamiltonian diagonalization. We noticed several converged
structures with very high initial formation energies (>3 eV/atom).
All initial inputs of converged structures were thus screened for
overlapping atoms resulting from imperfect solvent removal
processes and partial occupancies in the CoRE work. We used
the published list of effective atomic radii by Chen and Manz for
atom typing; a structure failed if any atom pairs were less than half
the sum of their respective atomic radii apart.79 In total, 161
structures failed and were excluded from further analysis due to
overlapping atoms and unphysically large initial formation
energies.
Defective MOF Generation.We expanded the pristine set of

MOFs from CoRE MOF by introducing missing linker defects
using the methods introduced recently by Yu et al.85 This
approach requires identification of the linker and nodes in each
MOF, a task completed using the algorithm MOFid developed
by Bucior et al.135 Out of 5,079 pristine MOFs that converged
in our DFT calculations, we successfully identified the
nodes and linkers of 4,780 MOFs. In each MOF, we created
structures with different defect concentrations from 0.01 to
0.16, where the defect concentration is defined as the number
of removed linkers divided by the total number of linkers.
For MOFs that have multiple types of linkers, we generated
corresponding defective structures by removing one kind of
linker at a time. OMSs were capped using either a water
molecule if the removed linker is charge neutral or hydroxyl(s)
if the removed linker was charged to create structures that have
no overall charge. In total, 16,358 distinct structures were
generated and relaxed by DFT, and 6,340 of them converged.
We kept only the relaxed structures with PLD > 3.3 Å, and the
final set of defective MOFs contained 3,470 frameworks.
Adsorbate Placement. In each relaxed MOF (either

pristine or defective) structure, we placed an adsorbate(s)
using nonbonded pairwise interactions defined by one of the
classical FFs by the RASPA 2.0 package.33 FF parameters for
framework atoms and adsorbates (CO2 and H2O) were
defined by the United Force Field (UFF)109 and TraPPE-
United Atom FF,136 respectively. Specifically, we adopted the
rigid TIP5P model for H2O molecules.137,138 The Lorentz−
Berthelot mixing rules and a tail correction with a cutoff radius
of 14 Å were used to define the Lennard−Jones interactions
between MOFs and adsorbates. Coulombic interactions were

considered when partial charges of the framework atoms were
available by the DDEC method. We collected configurations of
[MOF + CO2] or [MOF + H2O] from every 10,000 Monte
Carlo cycles with the same translation, rotation, and reinsertion
probabilities. We took two approaches to ensure that structures do
not have duplicated positions and exhibit diversity in structures: (i)
energy matching and (ii) random sampling. The energy matching
approach notes that different nonbonded interaction energies will
correspond to different configurations. Starting from the minimum
observed energy, we sampled configurations in 5 kJ/mol intervals
until the nonbonded interaction energy reached a threshold
(−15 kJ/mol and −5 kJ/mol for CO2 and H2O, respectively).
If the minimum energy was greater than the threshold, we
included only the configuration with the minimum energy. No
configuration was added for cases where the minimum energy was
>0 kJ/mol. This resulted in having 0−9 adsorbate placements for
each MOF structure, leading to a diverse collection of more than
10,000 MOF + adsorbate configurations per adsorbate by the
energy matching approach. For random sampling, we randomly
chose 2 configurations from the collection of 10,000 cycles and
added these configurations to the set selected from energy
matching, leading to more than 16,000 MOF + adsorbate
configurations per adsorbate by the random sampling approach.
Several MOF structures were further excluded from the dataset
because their pore size shrunk during the relaxation, making it
impossible for RASPA to place an adsorbate in their pores. We
manually added 158 converged [MOF + H2O] configurations to
position water molecules closer to OMSs. This was done for MOF
structures where a CO2 molecule was near OMSs without nearby
water or when they were identified as promising but with fewer
than 4 H2O placements.
In addition to considering the adsorption of single CO2 and

H2O molecules, we also used DFT to probe the coadsorption
of CO2 and H2O in MOFs. Similar to our calculations with
single adsorbed molecules, these calculations allowed for full
relaxation of the adsorbate and MOF degrees of freedom.
Coadsorption studies include the following examples: [1CO2 +
1H2O] and [1CO2 + 2H2O]. In each study, we inserted all of
the participating molecules into each empty MOF structure.
Since we are interested in the behavior of CO2 in the presence
of water, we discarded configurations where the distance
between the centers of mass for any pair of adsorbate molecules
was greater than 5 Å. For MOF structures whose primitive cells
were too small to place multiple adsorbates in the pores, the
primitive cell was repeated to form a bigger supercell. Whether a
supercell was used to save the configuration can be found on
GitHub.d Both energy matching and random sampling strategies
were applied to multi-adsorbate configurations. The energy
threshold was set to be −5 kJ/mol for all molecule combinations
in the case of the energy matching approach.
After placing adsorbates, we performed DFT structure

relaxations on each MOF + adsorbate configuration. We used
the same DFT settings as the MOF relaxations but with fixed
unit cell parameters.

Out-of-Domain MOF Selection. The ODAC23 dataset
contains four out-of-domain (OOD) test sets in addition to the
in-domain test set to evaluate the ability of ML models trained
on the ODAC23 dataset to new topologies, new linker
chemistries, and larger MOFs.
The test-ood (big) or test-ood(b) test split only contains

MOFs with over 500 atoms in their unit cells. Testing on this
set allows us to assess how well our models generalize to larger
MOFs than those contained in the training set.
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The other three OOD test sets were designed to study how
our ML models generalize to new chemistries and topologies
not present in CoRE MOF. To create these splits, we sampled
structures from the “ultrastable MOF database” developed by
Nandy et al.76 To create our OOD test sets, we selected the
ultrastable MOFs with less than 500 atoms and contained
either novel linkers or topologies not present in the rest of our
dataset. This allowed us to create three OOD test sets:
the test-ood (linker) set contains novel linkers but known
topologies, the test-ood (topology) set contains novel
topologies but known linkers, and the test-ood (linker &
topology) set contains both novel linkers and novel topologies.
We abbreviate these three sets as test-ood(l), test-ood(t), and
test-ood(lt) respectively. We used the MOFid library135 to
identify the organic linkers and topologies.
We believe that the inclusion of these OOD sets, which are

biased to a property not related to the DAC application,
provides a useful test of the generalizability of our trained ML
models.

Energy Definitions. We defined three energy definitions
for analysis of our work. Throughout this section, EAB denotes
the total energy of a system of interest A calculated by a
method B. If not specifically noted, B defaults to DFT.
Energies are a function of atomic coordinates (C) either from
DFT relaxation (rCrelax) or from a single-point DFT calculation
(rCsingle).

Adsorption Energy. The adsorption energy can be defined
as

E E r E r n E r

n E r

( ) ( ) ( )

( )

ads system system
relax

MOF MOF
relax

CO CO CO
relax

H O H O H O
relax

2 2 2

2 2 2

=

(3)

where Esystem is the DFT energy of the MOF + adsorbate system,
EMOF is the reference DFT energy of the relaxed standalone MOF,
nCOd2

and nH O2
denote the number of CO2 and H2O molecules in

the system respectively, and ECOd2
and EH O2

are the gas phase
energies of the corresponding molecules.
In eq 3, the structure of the MOF in the system and the

standalone MOF are from separate DFT relaxations. When a
supercell was created during adsorbate placement, the reference
energy EMOF was computed by performing an additional DFT
relaxation on the supercell without the adsorbate.
The inclusion of adsorbate molecules during relaxation broke

framework symmetry and resulted in lower energy empty MOF
configurations in a small number of cases. We conducted a second
round of relaxations on these empty MOFs and successfully found
lower energy states for 690 pristine and 625 defective MOFs.
These lower energy states were used as the reference energy for all
adsorption energy calculations. We removed all configurations
where the adsorption energy was found to be < −2 eV per
adsorbate.
We also define Eads for which we obtained the total energy of

the current MOF + adsorbate configuration instead of seeking
its relaxed state. This can be expressed as

E E r E r n E r

n E r

( ) ( ) ( )

( )

ads system system
single

MOF MOF
relax

CO CO CO
relax

H O H O H O
relax

2 2 2

2 2 2

=

(4)

Eads indicates how far the current state of a MOF + adsorbate
system is from its reference state and is used as one of the main
targets in our ML studies. In the case that Eads is computed

from the single-point DFT calculation of a relaxed structure
(i.e., rsystemsingle =rsystemrelax ), it is equivalent to Eads.

Interaction Energy. The interaction energy is defined as

E E r E r n E r

n E r

( ) ( ) ( )

( )

int system system
relax

MOF system
relax

CO CO system
relax

H O H O sytem
relax

2 2

2 2

=

(5)

where Eint was calculated either by DFT (EintDFT) or the classical
FF (EintFF).
Interaction energy calculations were performed only on the

relaxed MOF + adsorbate configurations using single-point
DFT. For simplicity, interaction energies were computed only
in single adsorption cases, and thus nCOd2

+ nHd2O = 1 in eq 5.
Adsorbate−Adsorbate Interaction Energy. The adsor-

bate−adsorbate interaction energy quantifies interactions
between adsorbates in coadsorption cases and is defined as

E E E E(CO H O) (CO ) (H O)inter mol
1st

ads 2 2 ads 2 ads 2= +_
(6)

E E E

E

(CO 2H O) (CO H O)

(H O)

inter mol
2nd

ads 2 2 ads 2 2

ads 2

= + +_

(7)

where the number of each adsorbate is shown in parentheses.
The first adsorbate−adsorbate interaction energy E( )inter mol

1st
_

shows the adsorbate−adsorbate interactions between CO2 and
H2O, and the second adsorbate−adsorbate interaction energy
E( )inter mol

2nd
_ shows the adsorbate−adsorbate interactions in-

duced by introducing a second H2O molecule.
Evaluation Metrics. For all machine learning models, we

used the same evaluation metrics used for OC20. We briefly
describe the metrics used for each task in this section, but refer
the reader to the OC20 paper75 for more details.

Structure to Total Energy and Forces (S2EF). The
S2EF task is evaluated on the accuracy of force and adsorption
energy predictions through the following metrics. For these
metrics, E Eads is computed by eq 4.

• Energy MAE: Mean absolute error between the predicted
energy and the ground truth DFT energy:

N
E EEMAE

1

i
i i= | |

(8)

where Ei and Ei are the ground truth and predicted energies of
system i and N is the total number of systems.

• Force MAE: Mean absolute error between predicted and
ground truth DFT forces:

N N
F FFMAE

1 1

i i j
ij ij 1

=
(9)

where Fij and Fij are the predicted and ground truth forces on
the j-th atom of system i and Ni is the number of atoms in
system i.

• Force Cos: Cosine similarity between the predicted and
ground truth forces.

• Energy and forces within the threshold (EFwT): The
fraction of energies and forces that are respectively
within 0.02 and 0.03 eV/Å of the ground truth DFT
values.
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Initial Structure to Relaxed Energy (IS2RE). The IS2RE
task is evaluated on the accuracy of relaxed energy predictions
using the following metrics. For these metrics, E ≡ Eads is
computed by eq 3.

• Energy MAE: Mean absolute error between predicted
energy and the ground truth DFT energy of the relaxed
state.

• Energy within Threshold (EwT): The fraction of
energies within 0.02 eV of the DFT relaxed energy.

Initial Structure to Relaxed Structure (IS2RS). The
IS2RS task is evaluated on whether the predicted relaxed
structure is close to a local minimum in the energy landscape
using the following metrics.

• Average Distance within Threshold (ADwT): Distance
within Threshold (DwT) is the percentage of structures
with an atom position MAE below a threshold β. ADwT
averages DwT across thresholds ranging from β0 = 0.01
Å to β1 = 0.5 Å in increments of 0.001 Å.

• Force below Threshold (FbT): Percentage of relaxed
structures with maximum DFT calculated per-atom
force magnitudes below a threshold of α = 50 meV/Å.
This is only computed for structures that satisfy the
DwT criterion with β = 0.5 Å.

• Average Force below Threshold (AFbT): FbT averaged
over a range of thresholds: α0 = 10 meV/Å to α1 = 400
meV/Å in increments of 1 meV/Å.

As the systems in ODAC23 do not contain any fixed atoms,
per-atom metrics like Force MAE, ADwT, FbT, and AFbT are
computed over all atoms. Note that a new single point DFT
calculation is required to evaluate FbT and AFbT on a given
data point.

Classical Force Fields. All classical FF calculations in this
work used the readily available MOF extension to the
ubiquitous UFF force field (UFF4MOF)110,111 in the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).36 Topology files were generated using LAMMPS
Interface.139 CO2 and H2O molecules were described using the
TraPPE112 and SPC/E113 models, respectively. The SPC/E
model was chosen to avoid challenges related to the geometry
of massless sites in newer models such as TIP5P,137 which was
used for adsorbate placement but can be cumbersome to place
in high-throughput FF calculations. Electrostatic interactions
were described using DDEC framework point charges
provided as part of the ODAC23 dataset,114 and long-range
interactions were computed using an Ewald summation with a
force tolerance of 10−5 kcal/mol/Å. The cutoff for all pairwise
interactions was 12.5 Å. Periodic boundary conditions were
applied in all calculations, and tail corrections were not applied.
Code for FF calculations is available in our open-source
repository on GitHub.e

ML Models. Various ML FF models have been proposed
for molecular and material tasks over the past few
years.118,120−123,140−142 Here, we benchmark a subset of the
state-of-the-art models on our tasks. All of our models were
implemented using PyTorch,143144 and the code is available in
our open-source repository on GitHub.f

For S2EF, we trained SchNet,118 DimeNet++,119 GemNet-
OC,142 PaiNN,140 eSCN,122 and EquiformerV2123 models. We
trained 2 versions of the EquiformerV2 model�a small 31M
parameter model and a large 153M parameter model. The list
of models used is summarized in Table S7. Edges were
computed on-the-fly using a nearest-neighbor search with a

cutoff of 8 Å, a maximum of 50 neighbors for SchNet,
DimeNet++, and PaiNN, and a maximum of 20 neighbors for
eSCN and EquiformerV2. GemNet-OC uses different cutoffs
for different types of interaction triplets and quadruplets.
These S2EF models can then be used to run machine learning
relaxations to solve the IS2RE and IS2RS tasks. We benchmarked
the top performing S2EF models�GemNet-OC, eSCN, and
EquiformerV2�to run these ML relaxations using the L-BFGS
optimizer for 125 steps or until the magnitude of the predicted
forces on each atom was less than 0.05 eV/Å. IS2RE can also be
solved by directly predicting the energy from the initial system,
which we call direct IS2RE prediction. We trained GemNet-OC,
eSCN, and EquiformerV2 models on the direct IS2RE task.

Comparison of Computational Cost. Machine learned
potentials involve a much higher number of floating point
operations than classical force fields. However, most of these
operations involve matrix operations which are well-suited for
modern graphics processing units (GPUs). Therefore, ML
models can be run efficiently on a GPU in terms of wall clock
time. Since these potentials are often used to run structure
relaxations, we computed the average wall clock time per
relaxation for UFF, GemNet-OC, and EquiformerV2 models
across 60 randomly sampled systems from the dataset. We ran
the UFF relaxations on a CPU and the ML relaxations on a
GPU since those are the most suitable architectures. On
average, a UFF relaxation requires 37.67 s per CPU core on a
Dual Intel Xeon Gold 6226R 2.9 GHz CPU machine. In
comparison, GemNet-OC relaxations take 0.8 s, and Equifor-
merV2 relaxations take 10.2 s on a single 32GB V100 GPU.
The comparison between the runtimes is not straightforward

because of the difference in hardware. For a fair comparison,
we estimate the cost of running 1000 relaxations on a public
cloud: on AWS, it costs $0.55 with GemNet-OC, $7 with
EquiformerV2, and $1.2 with UFF. From these numbers, we
conclude that ML models and UFF have a comparable
computational cost.
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