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ABSTRACT: Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the
prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as
a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to
limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron
emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a
potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-
2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging
in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement,
functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem
samples from Huntington’s disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated
specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2
holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human
PET.

■ INTRODUCTION
Cyclooxygenase-2 (COX-2) is a pivotal enzyme in the
prostaglandin biosynthesis pathway and is well-known as a
therapeutic target of nonsteroidal anti-inflammatory drugs
(NSAIDs).1,2 COX-2 is upregulated locally when tissues are
injured in the periphery and in the spinal cord.3 The
upregulation of COX-2 leads to increased synthesis of
prostaglandins4 that initiate the inflammatory response,
including vasodilation, increased microvascular permeability,
and sensitization of nerves.5 The inhibition of COX-2 prevents
this cascade, reducing pain and swelling.2

COX-2 activity in the brain is implicated in many
neurodegenerative and psychiatric disorders that comprise a

significant portion of the main contributors to global disease
burden.6−9 However, the specific role of COX-2 in the central
nervous system (CNS) remains unclear, even amidst strong
associations of increased COX-2 expression with the pathology
of neurodegenerative diseases, including Alzheimer’s disease
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(AD)10,11 and multiple sclerosis (MS).12 Both COX-2 and
COX-2 metabolites are elevated in the post-mortem brain
tissue of patients diagnosed with these neurodegenerative
diseases. In addition, investigations using transgenic mice and
COX-2 selective inhibitors have demonstrated that suppression
of COX-2 activity in both AD and MS mouse models
attenuates neuropathological hallmarks of these diseases such
as Aβ plaque deposition, tau phosphorylation, and myelin
degeneration, while also improving performance mice in motor
and cognitive tasks.13−18

Given the association of COX-2 with peripheral inflamma-
tion, its role in the brain has often been linked to a
neuroinflammatory or neuroimmune function�and, thus,
has been linked to microglial phenotype changes. Several
studies have found COX-2 to be differentially regulated in
macrophages or microglia under conditions of pro-inflamma-
tory brain states and neurodegeneration.6 For example, gene
expression datasets from lipopolysaccharide (LPS)-injected
mice and an AD mouse model showed increased COX-2
expression in microglia, compared to their respective controls
(GEO: GSE67858, GSE75246, GSE74615).19,20 In addition,
COX-2 was identified as part of the transcriptional signature of
a neurodegenerative specific microglial phenotype (MGnD)
that was characterized through studies of common microglial
gene changes in models of amyotrophic lateral sclerosis (ALS),
AD, and MS.21 A separate study also identified COX-2 as part
of a gene module that was upregulated in mice who underwent
LPS treatment and in mouse models of AD.22 Although the
role of COX-2 expression in microglia is not entirely clear,
microglial COX-2/prostaglandin E2 (PGE2) activity appears to
hamper beneficial microglial functions and drive aspects of
pathology in rodent models of AD.23,24 In addition, tran-
scriptomic analysis of human cortical tissue shows changes in
COX-2 expression in microglia across the human lifespan
(GEO: GSE99074).19,20 Taken together, these findings make
microglial COX-2 an intriguing target for studies of healthy
brain aging and neurodegenerative diseases. Research in aging
mice found that (i) prostaglandin signaling impacts the
metabolic state of microglia in aging mice, and (ii) ablation
of the EP2 receptor of PGE2 not only restores metabolic
phenotypes in these cells, but also reduces the expression of
inflammatory cytokines, increases synaptic protein levels, and
restores cognitive ability.25 Adding to the complexity, research
indicates that COX-2 is expressed constitutively in neurons in
the healthy brain where it has been suggested to play a role in
some synaptic functions;26−28 additionally, neuronal COX-2
can also be elevated in some instances of inflammation and
neurodegeneration.29,30 Although the connection of COX-2
with inflammation and neurodegeneration is well-established,
the impacts of COX-2 activity during inflammatory processes
and of changing COX-2 expression during disease progression
are still very unclear.6,31

COX inhibition (COXib), both of COX-1 and COX-2, has
been associated with and evaluated clinically for treating
various neurological and neurodegenerative diseases32−34 and
psychiatric disorders, including schizophrenia and depres-
sion.7,35−41 Despite significant research efforts into COXib, the
evidence of efficacy for COX inhibition in neurologic and
psychiatric trials is still quite mixed,42−45 and the mechanisms
underlying the outcomes of COX activity and COX inhibition
remain opaque. This is a complex landscape, and research
approaches are currently limited to preclinical models and
post-mortem tissue analyses. Given potential species differ-

ences in COX-2 brain function and pathology30 and the
exceptional complexity of COX-2’s involvement in underlying
pathological mechanisms, there is great need for tools that will
enable in vivo research of COX-2 in the human brain.
To address this need, COX-2 positron emission tomography

(PET) radiotracers for human neuroimaging have been
pursued for several years.30,46,47 Imaging with PET allows
researchers and clinicians to measure how critical targets, such
as proteins or enzymes, change in the living brain at disease
onset and throughout disease progression. More importantly,
PET can measure how a target changes following therapeutic
intervention, a critical step in assessing treatment efficacy.
Recently, the PET radiotracer [11C]MC1, which is potent and
selective for COX-2, was shown to be sufficient for measuring
low-density basal expression of COX-2 in the human brain.48

However, the overall specific binding of the tracer is low
(10%−20% of the total uptake). MC1, and other existing
COX-2 inhibitors, such as celecoxib, have slow enzyme on-
rates (kon), which can prove troublesome for achieving high
binding signals in low expressing targets and act in practical
terms as irreversible inhibitors (extremely low off rate, koff).
Ideal CNS PET radiotracers engage the target quickly and
demonstrate functionally reversible binding, allowing for
appropriate scan length and proper kinetic modeling of PET
data. Given that no fast-binding COX-2-targeting CNS PET
radiotracers exist, we sought to develop fast-binding COX-2
inhibitors and then incorporate the appropriate radiolabeling
handles for imaging, in this case, Carbon-11.
Here, we report the development of a COX-2 PET

radiotracer that builds on the robust development process of
[11C]MC1 but that we designed with a fundamentally different
structure−activity approach. Selectivity for COX-2 over COX-
1 has historically leveraged the differential association/
dissociation kinetics related to a COX-2 conformational
shift.49 In this instance, we developed and then applied a
kinetically biased assay to identify COX-2 inhibitors that have
faster association (less time-dependent inhibition) to deter-
mine the in vivo relationship between enzyme kinetics and
PET radiotracer pharmacokinetics. Past research has reported
interspecies variation in COX-2 inhibitors;50 therefore, after
identifying and optimizing promising candidate tracers, we
focused on animal models that expressed human COX-2. First,
we drove expression of human COX-2 in rat brains using an
adenoviral vector (AAV), thus allowing us to assess kinetic
differences in vivo under high COX-2 expression, where
enzyme kinetic differences would be most detectable. We then
validated the tracer, [11C]BRD1158, in a second model of
COX-2 overexpression, a human Thy-1-COX-2 transgenic
mouse line.
In this study, we show that our novel COX-2 tracer

[11C]BRD1158 displays high potency and selectivity toward its
target. In vivo testing revealed appropriate target engagement
and demonstrated that [11C]BRD1158 has ideal radiotracer
properties related to its reversible fast binding kinetics.
Additionally, using mouse models of Huntington’s disease

(HD) and post-mortem human brain tissue from donors with
HD, we show that COX-2 protein levels increase in disease-
affected brain regions and that increases are likely to be driven
by increased expression in microglia specifically, suggesting
that our tracer has potential utility as a clinical indicator for
this disease indication.
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■ RESULTS AND DISCUSSION
Ligand Selection and Radiotracer Development. To

select the best starting point for COX-2 radiotracer develop-
ment, we extensively profiled a large set of known COX-2
selective inhibitors. Our primary focus was to identify a ligand
with high binding affinity, COX-2 selectivity over COX-1, fast
on-rate binding kinetics and improved free fraction in plasma
to maximize the signal-to-noise ratio in PET imaging
experiments. To favor compounds with high potency and
fast on-rate kinetics, we utilized a liquid chromatography−mass
spectrometry (LCMS)-based biochemical assay measuring the
conversion of arachidonic acid to PGE2, optimized from Cao
et al.,50 but with a short enzyme−inhibitor incubation time (2
min). To anticipate fast washout pharmacokinetics in vivo, we
utilized simple plasma and brain protein binding assays to
maximize the unbound fraction. After evaluating each scaffold
for their COX-2 activity, Celecoxib, MC1, and Pyricoxib were
the frontrunner candidates. Of these, MC1 possessed the
greatest balance between potency, solubility, and fraction
unbound (both in plasma and brain). Thus, MC1 emerged as
the best starting point for medicinal chemistry efforts to
develop a brain-permeable COX-2 radiotracer (Figure S1 in
the Supporting Information).
We initially focused on the methyl sulfone-containing

aromatic ring for optimization. As shown by other studies,
the methyl sulfone imparts selectivity for COX-2 over COX-
149,51 and was left unchanged. Different aromatic rings (pyridyl
isomers) improved solubility but decreased potency, while
substitution saw a significant decrease in potency, so the simple
phenyl methyl sulfone was maintained (data not shown). We
turned next to explore the central pyrimidine ring of the
molecule, envisioning that this ring would significantly impact
both the solubility and potency of our compounds. Removal of
the methoxy substituent had no significant impact (not
shown); however, this coupled with converting the 2-amino
pyrimidine to the 4-aminopyrimidine saw a significant
improvement in solubility (15× from 1 to 2) and Fup
(∼2.5× from 1 to 2; see Figure S2). The pyrazine ring 3
saw an almost 2-fold increase in Fup, albeit at the cost of a
decrease in solubility. Wondering whether the nitrogen
between the phenyl ring and amine was essential, we
constructed the benzene derivative 4, which showed a marked
improvement in potency (19 nM for 4; see Figure S2).

Converting to a pyridyl scaffold maintained this improvement,
while boosting the lipophilic ligand efficiency (LLE).
Ultimately, this 2,6-substituted pyridyl moiety was chosen (5,
Figure S2) due to its balance of potency, improved LLE, and
fraction unbound. With the core optimized, we turned to the
molecule’s linker and distal aromatic ring.
An obvious step in developing our structure−activity

relationships (SAR) profile was to determine if the acidic
N−H was essential to COX-2 activity. Substitution of the aryl
amine to the aryl ether resulted in the most potent compound
identified in the series, BRD2369 (see Figure 1, as well as
Figure S3 in the Supporting Information). However, this came
at a cost, in reduced fraction unbound and poor solubility.
Other modifications such as tertiary amines and amides
showed a significant to complete loss in potency (6−8; see
Figure S3). We also explored carbon linkers and substitution of
the benzylic position. However, these modifications came with
a considerable decrease in potency (data not shown). After
identifying the aryl amine and ether as optimal, we set out to
explore SAR on the thiophene ring.
With thiophene rings being highly hydrophobic, we were

eager to continue our expansion of the SAR to this portion of
the molecule to identify more polar replacements, particularly
to further increase the fraction unbound. We tested a variety of
unsaturated and saturated heterocycles, and the large majority
were significantly less potent than BRD2369 (data not shown).
However, we did identify the 2- and 3-furyl rings as optimal to
maintain high potency while significantly increasing the
fraction unbound and LLE (10 and 11; see Figure S4 in the
Supporting Information). Ultimately, combining the amine
linker with a 3-furyl ring in BRD1158 (see Figure 1, as well as
Figure S4) led to a potent COX-2 inhibitor with high fraction
unbound in plasma and brain while maintaining desirable
permeability with no P-gp efflux and high aqueous solubility.
Previous COX-2 discovery relied on whole blood assays to

measure COX-2 inhibition. Focusing on fast-binding inhib-
itors, we prioritized SAR derived from a rapid inhibition
LCMS-based enzymatic assay. Using short incubation times (2
min), we identified several fast-binding, potent COX-2
inhibitors. Most notably, BRD1158 and BRD2369 displayed
remarkable potency (COX-2 IC50: 25 nM and 3 nM)
compared to previously discovered MC1 (42 nM), celecoxib
(54 nM), or rofecoxib (535 nM). Importantly, improvements

Figure 1. Selected COX-2 PET radiotracers with their in vitro potency and pertinent absorption, distribution, metabolism, and excretion (ADME)
properties.
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in physicochemical properties (e.g., aqueous solubility, LLE,
passive permeability) led to a 4-fold improvement in plasma
protein binding (PPB) for BRD1158 (Fup = 0.091) compared
to MC1 (Fup = 0.024).
Rodent COX-2 PET Neuroimaging with Tracers

[11C]BRD1158, [11C]BRD2369, and [11C]MC1. [11C]-
BRD1158 was initially assessed with in vivo PET neuroimaging
of naiv̈e rats, which confirmed rapid and robust brain uptake
(Figure S5 in the Supporting Information). These initial scans
demonstrated that endogenous COX-2 expression in naiv̈e rats
is below a detectable level for measuring specific binding,
necessitating an overexpression model to evaluate the proper-

ties of [11C]BRD1158 compared to [11C]MC1. Additionally,
while human and rodent COX-2 show more than 60%
homology,52 variations at active site pockets can significantly
impact ligand binding49 and are thus crucial to consider in
radiotracer development, so our subsequent rodent models
expressed the human COX-2 ortholog.
Localized overexpression of human COX-2 was induced in

rats with intrastriatal injections of AAV2-GFP-hCOX2 to the
right caudate and AAV2-GFP (control virus) to the left
caudate (Figure 2A).53 Animals also received a systemic
injection of mannitol to enhance vector spread and transgene
expression.54 To directly compare the kinetic profiles of the

Figure 2. Brain PET intrasubject comparison of localized COX-2 overexpression (intrastriatal AAV2-GFP-hCOX2) with three different COX-2
radiotracers in one rat (animal ID: SD2006071) across three imaging sessions. [11C]BRD1158 is an effective COX-2 PET radiotracer that
demonstrates uniquely fast onset in a rodent COX-2 overexpression model. (A) Schematic of injection paradigm in rats showing ICV injection of
AAV2-GFP-hCOX2 (6.53 × 1012gc/mL) to right caudate (in blue), to induce overexpression of COX-2 and AAV2-GFP to left caudate (in green),
as control. Animals were also given IP mannitol (10 mL/kg dose) to enhance transgene expression and increase vector spread. (B−D) Time
average SUV images (above) and regional time activity curves (below) in one rat using tracer [11C]BRD1158 at 57 days post-AAV injection (left,
B), [11C]BRD2369 at 61 days post-AAV injection (middle, C), and [11C]MC1 at 75 days post-AAV injection (right, D), at baseline and celecoxib
(1 mg/kg) blocked conditions. Time averages shown are from the optimal portion of the scan; 9−21 min for [11C]BRD1158, and 29−41 min for
[11C]BRD2369 and [11C]MC1. Representative MRs are shown. (See Figure S8 for a technical replicate in a second rat.)
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three COX-2 tracers, intrasubject imaging was performed in
several rats. Each animal was scanned under baseline and
competition (+celecoxib) conditions, testing each tracer within
each animal (initial data in Figure 2). This design allowed us to
keep the expression level as a constant in all comparisons. The
full experimental design was then replicated (Figure S8 in the
Supporting Information). An additional experiment lacking the
control virus to the left caudate was performed to facilitate
assessment of tracer uptake that could be mediated by the
instrastiatal injection through blood brain barrier disruption
(Figure S9 in the Supporting Information). We hypothesized

that [11C]BRD1158 would demonstrate more favorable
kinetics, including fast binding, relative to the other tracers.
In vivo PET studies in the COX-2 overexpression rat model

showed that [11C]BRD1158 (Figure 2B) is a potent tracer with
preferable kinetics, compared to [11C]BRD2369 (Figure 2C)
and [11C]MC1 (Figure 2D). [11C]BRD1158 is fast to engage
with the target and fast to washout with clear separation in the
right caudate PET signal from controls (left caudate and
cerebellum) seen as early as 10 min (Table S1 in the
Supporting Information), compared to 30 min for the other
tracers. In contrast, accumulation of [11C]MC1 at later time
points, as seen in Figure 2D, Figures S8D and S9, indicates
functionally irreversible binding or the accumulation of a
radioactive metabolite.
We performed additional validation of [11C]BRD1158

through in vivo PET imaging of an hCOX-2 transgenic
mouse line (Figure 3), which overexpressed human COX-2
primarily in neurons (Strain No. 010703, Jackson Laborato-
ries). The hCOX-2 mice offered a COX-2 overexpression
model that did not necessitate intracranial injections. While we

Figure 3. [11C]BRD1158 shows efficacy in PET imaging in a h-Thy1 COX-2 transgenic mouse line. Time average SUV images with (A)
[11C]BRD1158 in one hCOX-2 mouse, compared to (B) one wild-type mouse. hCOX-2 versus wild-type mouse time activity curves from the (C)
striatum, (D) cortex, and (E) cerebellum. (F) Cohort average SUVs for hCOX-2 (n = 5) versus wild-type (n = 4) mice in the cortex, cerebellum,
and striatum. Representative MRs are shown.

Table 1. SUV Average (9−21 min) for h-Thy1 COX-2
versus Wild-Type Mice Using Tracer [11C]BRD1158

ROI h-Thy1 COX-2 (n = 5) WT (n = 4) P value

cortex 1.68 ± 0.50 0.359 ± 0.04 0.0058
cerebellum 1.84 ± 0.56 0.376 ± 0.02 0.0065
striatum 1.95 ± 0.55 0.385 ± 0.05 0.0044
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did perform contralateral sham (control virus) injections in the
AAV rats to assess potential injection confounds, as COX-2 is
part of the injury and inflammation response, it was important
to validate in a model naiv̈e to brain insult to mitigate how
aspects of the AAV rat experimental design could have misled
our interpretations of tracer specific binding. We found that
[11C]BRD1158 was also effective for imaging in the hCOX-2
transgenic mice and that [11C]BRD1158 continued to
demonstrate early target-engagement, achieving significant

signal differentiation from wild-type controls within 10−20
min (Figure 3 and Table 1).
Taken together, the data from rodent imaging demonstrate

that [11C]BRD1158 has features appropriate to advance for
human PET neuroimaging that are differentiated from
[11C]MC1, namely, the early fast target-engagement and
functional reversibility.
Microglial COX-2 Upregulation in Huntington’s

Disease. In preparation for human imaging studies, we also

Figure 4. Increased COX-2 levels in Huntington’s Disease are partly driven by elevated expression in microglia. (A) Representative Immunoblot
showing staining for COX-2 and GAPDH in striatal and cerebellar extracts from 7 mo zQ175 mice and WT littermates. (B) Quantification of
COX-2 levels in 7 mo zQ175 mice and WT littermates. Band intensity is normalized to total protein per lane (measured using BioRad Stain-Free
gel (see Figure S10C); n = 4 zQ175 mice and 4 WT littermate controls. Unpaired t-test: (C) for striatum, (*) P = 0.0268 and (D) for cerebellum, P
= 0.6810. Representative IHC images showing staining for COX-2 and Iba-1 in the dorsolateral striatum of a 7 mo zQ175 mice and a WT
littermate. Scale bar = 20 μm. Insets show single channel images of the soma of a cell. (E) Representative immunoblot showing staining for COX-2
and GAPDH in globus pallidus extracts from HD patients and age-matched controls (see Figure S10D and S10E in the Supporting Information).
(F) Quantification of COX-2 levels in tissue from HD patients and controls. Band intensity is normalized to total protein per lane (measured using
BioRad Stain-Free gel (Figure S11); n = 12 samples from HD patients and n = 8 samples from age-matched control individuals. Unpaired t-test, (*)
P = 0.0473. (G) Representative IHC image of the caudate nucleus of a HD patient (Vonsattel grade 2), showing COX-2 staining in RCA1 positive
microglia. Insets show single channel images; scale bar = 20 μm. (H) Bar chart showing quantification of the percentage of microglia (RCA1 + ve),
astrocytes (sox9 + ve) and neurons (NeuN + ve) in the caudate nucleus of Vonsattel grade 2 HD tissue, as well as tissue from the same region of
age-matched controls that stained + ve for COX-2; n = 3 samples from HD patients and n = 3 samples from age-matched controls. Two-way
analysis of variance (ANOVA), with clinical designation as a source of variation: (*) P = 0.0127; with cell type as a source of variation, (**) P =
0.0062; with the interaction of clinical designation and cell type as a source of variation, (**) P = 0.0036. Sidak’s posthoc test for multiple
comparisons, for microglia, (***) P = 0.0007, for astrocytes P = 0.9918 and for neurons P = 0.9990.
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used rodent models and post-mortem tissue in Huntington’s
Disease to explore a potential clinical use for COX-2 imaging
in neurodegeneration as we move toward human translation.
Although many PET radioligands have been developed over
the years to act as staging and progression markers for
neurodegenerative diseases, including HD, no PET ligands
have been able to reliably predict disease conversion or aid in
the stratification of patients for clinical trials in HD. We believe
PET imaging with [11C]BRD1158 has the potential to be an
objective clinical marker that can assess, and lead to the
discovery of, effective disease-modifying therapeutics for HD
patients.
To determine whether COX-2 levels might be elevated in

neurodegenerative contexts, we decided to interrogate the
zQ175 mouse model of Huntington’s disease. This mouse is
thought to capture some of the earliest pathological events
occurring in the presymptomatic phase of HD with synaptic
dysfunction and the selective loss of corticostriatal synapses
beginning at three months of age�a time point that also
coincides with the appearance of visual discrimination learning
deficits.55 Both phenotypes have also recently been observed in
presymptomatic HD patients.56−58 We initially performed
immunoblotting using extracts from this mouse from a disease-
affected brain region (striatum) and a region that is relatively
spared (cerebellum). These results showed that COX-2 was
selectively increased in striatal extracts from the zQ175 mice,
relative to wild-type (WT) littermates, but a comparable
increase was not observed in extracts from the less disease-
affected cerebellum (see Figures 4A and 4B, as well as Figures
S10 A, B, C).
Interestingly, we found that COX-2 colocalizes largely with

Iba-1 positive microglia in the mouse striatum, suggesting that
the increase we observed may be driven primarily by elevated
expression in this cell type (Figures 4C and 4D). To test this
and to see if the elevation of COX-2 was also observed in
human tissue, we performed immunoblot analysis on globus
pallidus extracts dissected from HD post-mortem tissue and
tissue from age-matched controls. These data showed that
COX-2 levels were significantly elevated in the HD tissue,
relative to levels seen in extracts from the same region obtained
from control age-matched individuals (see Figures 4E and 4F,
as well as Figures S10D−F). When we subsequently used IHC
and cell-type-specific markers to identify which cells were
contributing to the increased expression of COX-2, we saw
that, in the HD tissue, there was an increase in the proportion
of microglia (delineated by RCA1 staining) that stained
positive for COX-2 with no change in the percentage of COX-
2 positive astrocytes or neurons in this brain region (see
Figures 4G and 4H, as well as Figures S11A and S11B in the
Supporting Information).
Taken together, these results show that (i) COX-2 is

elevated in disease-relevant regions of a mouse model of
presymptomatic HD and (ii) this increase in COX-2 levels can
also be observed in post-mortem tissues from HD patients,
where it appears to be mainly due to elevated expression in
microglia. To develop effective therapeutics for HD, we must
understand the biological changes in the living brain that occur
at the earliest evidence of disease conversion. Our data indicate
that COX-2 holds promise as a novel clinical marker of HD
and it will be important to determine if, in conjunction with
other biomarkers, it could be used to help predict disease onset
and progression.

Translation of [11C]BRD1158, which is a highly specific,
brain penetrant COX-2 PET radiotracer, and parallel studies
characterizing the mechanism through which COX-2 influen-
ces synaptic pathology will (i) enable the study of COX-2
expression changes and distribution in the living brain to
monitor and characterize key pathophysiological events in HD
and potentially any microglial dynamics that might be
important in synaptic elimination mechanisms;55 (ii) allow
for patient stratification in novel brain-permeable COX-2
inhibitor clinical trials; (iii) provide a therapeutic imaging
biomarker for monitoring response to new treatment
strategies; and (iv) generate a translatable tool to evaluate
the role of COX-2 in HD and potentially other neuro-
degenerative diseases in the living human brain.

■ CONCLUSION
In this study, we have characterized the development of a novel
COX-2 CNS PET radiotracer, [11C]BRD1158, which has the
potential to be a valuable asset in neurodegenerative research,
due to its unique properties. With [11C]BRD1158, we achieved
a high-potency, functionally reversible radiotracer with fast
kinetic binding, which proved well-suited for future translation
into clinical imaging through evaluations in rodent models
overexpressing human COX-2. Data from animal models and
post-mortem tissue in Huntington’s disease (HD) suggest that
this condition could serve as a strategic starting point for the
translation of [11C]BRD1158 into human imaging. Our studies
are not without notable limitations, including uncertainty on
the required sensitivity for detecting COX-2 signal in the
healthy human brain and across stages of disease conversion
and progression, as well as the clinical implication of changes
in COX-2 levels across disease states. However, we believe
these lingering questions are best answered in a human
imaging context. We are excited to move forward with the
translation of [11C]BRD1158 and explore its potential to open
new avenues for understanding and treating HD and other
neurodegenerative and psychiatric disorders.
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