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Abstract

The persistent increase in the worldwide burden of type 2 diabetes (T2D) and the accompanying 

rise of its complications, including cardiovascular disease, necessitates our understanding of the 

metabolic disturbances that cause diabetes. Metabolomics and proteomics, facilitated by recent 

advances in high-throughput technologies, have given us unprecedented insight into circulating 

biomarkers of T2D even over a decade prior to overt disease. These markers may be effective 

tools for diabetes screening, diagnosis, and prognosis. As participants of metabolic pathways, 

metabolite and protein markers may also highlight pathways involved in T2D development. The 

integration of metabolomics and proteomics with genomics in “multi-omics” strategies provide 

an analytical method that can begin to decipher causal associations. These methods are without 

their limitations, however, but with careful study design and sample handling, these methods 

represent powerful scientific tools that can be leveraged for the study of T2D. In this paper, we 

aim to give a timely overview of circulating metabolomics and proteomics findings with type 2 

diabetes observed in large human population studies to provide the reader with a snapshot into 

these emerging fields of research.
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Challenges in the Care of Individuals with Diabetes

It is projected that in 2040, 642 million adults worldwide will have diabetes—the vast 

majority of which will be type 2 diabetes (T2D)1. The unprecedented increase in the 

global burden of this “lifestyle disease” will be accompanied by rising mortality and 

disability rates, especially among adults during their most productive years. A multinational 

observational study that included countries in South America, North Africa, South and 

East Asia, the Middle East, and Russia, estimated ~50% prevalence of microvascular 
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complications (e.g. retinopathy, nephropathy, and neuropathy) and ~30% prevalence of 

macrovascular complications, including coronary heart disease and peripheral vascular 

disease among individuals with T2D2. In regards to atherosclerotic cardiovascular disease, 

T2D confers a 2–4 fold increased risk of cardiovascular events and death3, a similar increase 

in risk for lower extremity amputations4, and is the leading modifiable risk factor for 

heart failure5. In turn, cardiovascular disease is estimated to cause two-thirds of deaths 

in individuals with T2D6. Together, this translates to a 2–3 fold increase in medical 

expenditures7.

The complications, of diabetes, and associated health care costs, can be avoided to a 

significant degree by effective prevention and treatment. Changes in diet and increasing 

physical activity have been found to be more effective than pharmacotherapy (e.g., 

metformin) to delay and potentially prevent diabetes8. It is difficult, however, to identify 

individuals at risk since the metabolic dysfunction associated with diabetes development 

begins decades before increases in blood glucose. Also, not all individuals with elevated 

blood glucose will progress to diabetes. Population approaches to increase diabetes 

awareness, physical activity, and healthy food access while decreasing added sugar intake

—all considered to be risk factors for diabetes—may be effective. Diabetes incidence in the 

U.S. consistently rose from 1990 to a peak incidence of 8.2 per 100 adults in 2009, but from 

2011 to 2017 has remained stable with a reduction in incidence rate of 35%9, possibly due 

to these population approaches. However, the casual role of these risk factors have yet to 

be confirmed. Furthermore, obesity, a traditional risk factor for T2D, continues to rise10 and 

the prevalence of pre-diabetes remains high11 despite the decline in frank diabetes. These 

findings suggest there is still much we do not understand about the pathophysiology of T2D 

development.

There is also evidence of significant heterogeneity of diabetes clinical presentation and 

course. Leveraging unsupervised clustering analyses of clinical data as well as genetics 

and outcomes data, Ahllqvist et al. recently identified 5 new diabetes “subgroups” among 

individuals traditionally considered to have T2D.12 They identified 2 clusters of individuals, 

labeled as severe autoimmune diabetes (SAID) and severe insulin-deficient diabetes (SIDD), 

with characteristics more similar to type 1 diabetes including lower BMI, higher rates of 

diabetic ketoacidosis, and faster progression to insulin therapy despite one cluster having 

no antibody positivity. Another group that was identified, labeled as having severe insulin-

resistant diabetes (SIRD), had higher risk of progression to chronic kidney disease and 

trended toward an increased risk for coronary events. Improving our ability to identify 

individuals at the highest risk for developing specific complications will help guide clinical 

care. Also, with the recent availability of cardiovascular and renal outcomes data for 

medications previously used only for glycemic control13,14, there is now an unprecedented 

number of therapeutic options for specific subsets of patients with type 2 diabetes including 

those with established cardiovascular disease, heart failure, or kidney disease.

A Need for New Diabetes Biomarkers

Biomarkers can be effective tools for disease screening, diagnosis, and prognosis. If these 

biomarkers also participate in disease pathways, which is frequently the case for metabolites 
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and proteins, they can highlight mechanisms of disease development or therapeutic effect. 

Many current biomarkers for diabetes, however, are strongly correlated with dysglycemia, 

limiting their predictive and diagnostic value beyond a fasting blood glucose or hemoglobin 

A1c (HbA1c) level. This point was illustrated by Wang et al. when they simulated 

the stepwise addition of 100 hypothetical biomarkers to a traditional risk model for 

cardiovascular disease (Figure 1)15. The degree of correlation between biomarkers included 

in the clinical model was a key determinant of how much additional information each 

biomarker provided and how many biomarkers were needed to meaningfully change the 

predictive power of the risk model16,17. For example, more than 50 biomarkers were 

needed to improve the c statistic of the model by 0.05 for a set of biomarkers with mean 

inter-marker correlation of r = 0.4 (i.e., moderately correlated). By contrast, less than 10 

biomarkers were needed if their mean inter-marker correlation was r = 0.05 (i.e., weakly 

correlated)17. High throughput technologies that allow the unbiased quantification of all 

circulating metabolites and proteins can help facilitate the identification of biomarkers that 

are from orthogonal pathways and are therefore weakly correlated.

Metabolites and Proteins are the Product of Genetic, Physiologic, and Environmental 
Stimuli

The aim of metabolomics is to measure metabolite concentrations in cells, tissues, organs, 

and biological systems to study the chemical processes involved in metabolism in a 

systematic fashion. Similarly, proteomics aims to quantify and characterize all proteins 

that participate in the biological processes of an organism. These should not be considered 

mutually exclusive fields of study, but rather a continuum of biochemical profiling that 

focuses—when included with peptidomics—on characterizing the molecular products of 

genetic transcription. These products could be a single compound (i.e., an amino acid 

such as aspartic acid), a structure composed of several constituents (i.e., a dipeptide such 

as aspartame), or a protein that is made up of multiple peptides (i.e., an enzyme such 

as aspartate transaminase); but due to differences in molecular sizes, require different 

technologies to identify and quantify. Metabolites and proteins are of particular interest 

because they are influenced by physiologic changes and environmental stimuli as well as 

genomic inputs. T2D is specifically suited for metabolomics and proteomics methods since 

it is generally a polygenic metabolic disease influenced by physiologic changes such as 

diet and physical exercise. Recent technological advances have allowed scientists to profile 

circulating metabolites and proteins rapidly and on an increasingly larger scale, several 

which are briefly highlighted in Table 1. This has facilitated the mapping of the complete 

human metabolome and proteome, analogous to how genomic advances have allowed the 

mapping of the human genome.

A percentage of the inter-individual variability of circulating metabolites, or proteins, can 

be attributed to genetics. Twin studies were initially used to study the heritability of 

circulating concentrations of specific blood factors18,19. The heritability of a wide range 

of metabolite concentrations in large populations can now be estimated with the availability 

of genome wide association study (GWAS) data. A single nucleotide polymorphism (SNP) 

can explain up to 16–36% of a metabolite’s variance20,21. Metabolites, and proteins, can 

also be influenced by multiple genes simultaneously. General heritability estimates in a 
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Finnish study suggested genetics explained 23–55% of the variability in amino acid and 

small molecule levels. The percentages were higher, 48–76%, for lipids and lipoproteins22. 

While genetic influences are substantial, there remains a percentage that is not explained 

by genetics. GWAS in the Framingham Offspring cohort showed less than 20% of inter-

individual variation in 34% of 217 measured plasma metabolites was attributable to 

genetics23. Some of these non-genetic contributors could be known clinical or environmental 

factors, but some remain unidentified.

Genetics also influence circulating protein concentrations. In a comprehensive GWAS 

conducted on human plasma proteins in the European INTERVAL study, genetic variants 

explained more than 20% of variation in only approximately 10% of the proteins measured. 

A higher percentage of heritability, approximately 90%, was found in the Framingham 

Offspring cohort but significantly fewer proteins were measured24. The mean heritability, 

however, was only 49%, suggesting again that there is a percentage of circulating protein 

variation that is unexplained by genetics in humans that warrants further study.

Biomarker Integration with Genomics Could Uncover Causal Relationships with Disease

Metabolite and protein biomarkers can illuminate disease pathophysiology, however, a 

limitation of biomarker studies are that causality is difficult to establish. Mechanistic studies 

in cell lines and model organ systems are usually required that are time and resource 

intensive. With the increasing availability of genomic data, however, advances in statistical 

methods allows the determination of if biomarkers are possibly causal to a disease and 

allows for the prioritization of specific biomarkers for further mechanistic studies.

Instrumental variable analysis exploits Mendelian randomization, or the random inheritance 

of genes, to make causal inferences about genetic variants and intermediate phenotypes 

with an outcome of interest. For example, randomized control trials have shown that the 

inhibition of proprotein convertase subtilisin-kexin type 9 (PCSK-9), a protein involved in 

low density lipoprotein (LDL) receptor degradation, successfully reduces LDL levels and 

likely reduces the risk for major cardiovascular events25,26. Ference et al. demonstrated 

with Mendelian randomization in a cohort of over 110,000 individuals that loss of function 

genetic variants of PCSK-9 were associated with lower clinical LDL cholesterol levels 

(e.g., the intermediate phenotype)27. These same variants were also associated with lower 

risk of cardiovascular events (e.g., the outcome of interest). This suggested that reductions 

in cardiovascular risk associated with these specific PCSK-9 variants were mediated by 

their effect on LDL levels. Interestingly, this study also found these same genetic variants, 

associated with the same LDL lowering effect, were also associated with increased risk for 

T2D in individuals with impaired fasting glucose. This is supported by clinical findings that 

statins, another class of LDL cholesterol lowering medications, are also associated with a 

small but significant increase in T2D risk. Utilizing this framework, exposure to either high 

or low levels of a biomarker of interest can now be substituted as the intermediate phenotype 

to interrogate if the biomarker is in the causal pathway for a disease of interest.
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Analytical Methods in Metabolomics

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS)—usually 

coupled to gas chromatography (GC-MS) or liquid chromatography (LC-MS)—are the most 

common profiling technologies used. An understanding of the strengths and weakness of the 

different technologies as well as appropriate sample preparation methods are imperative to 

generate usable data.

Nuclear Magnetic Resonance Spectroscopy (NMR)

NMR has been used for the simultaneous detection of several metabolites in different 

bodily fluids for decades28,29. It utilizes the predictable behavior of atomic nuclei (e.g. 
1H is most commonly measured in metabolomics) when they are exposed to strong 

magnetic fields based on neighboring atoms and the frequency of the electromagnetic 

radiation exposure to identify molecular compound structures. The presence of protons 

in the vast majority of biological compounds makes this identification technique almost 

universally applicable. NMR is also a nondestructive analytical method that allows for in 
vivo compound identification. Also, when coupled with imaging techniques such as MRI, in 
vivo localization of metabolic activity is now possible within an ogransim30. A limitation of 

NMR, however, is that the peaks generated are often an integration of signals from several 

different compounds, especially when compounds of similar species are present. Also, MS is 

better suited for the identification of metabolites that are in higher abundance.

Mass Spectrometry (MS)

MS utilizes chromatographic separation, analyte ionization, and ionic separation by 

mass to quantify and identify compounds from biological samples with high resolution 

and sensitivity. Chromatography is not a required step, but this technique reduces ion 

suppression and improves the quantitative accuracy of MS results especially for lower 

abundant analytes. It also allows the identification of isomers (compounds that have the 

same molecular formula and mass but different structural arrangements) which commonly 

occur in biological metabolites. In chromatography, there is a mobile phase that the analytes 

are dissolved into that interacts in a predefined manner with a stationary phase that the 

mobile phase is passed through, allowing for physical separation of the analytes. With 

GC, analytes are vaporized into a mobile gas phase and passed through a liquid layer in 

the chromatograph column that serves as the stationary phase. GC has superior resolution 

to LC and is well suited for nonpolar, low molecular weight, volatile analytes. With LC, 

analytes are dissolved in a liquid mobile phase that is then passed through a column filled 

with beads coated with different compounds with predefined chemical properties that serves 

as the stationary phase. LC is better suited for polar, high-molecular-mass compounds 

that are heat-labile. There are a variety of LC columns and techniques that facilitate the 

separation of a large spectrum of metabolites. Hydrophilic interaction chromatography 

columns (HILIC) contain hydrophilic beads with an organic solvent to water gradient are 

effective in separating small, polar analytes such as amino acids, nucleotides, and organic 

acids. Columns that contain hydrophobic beads with a gradient from water to organic 

solvent are effective in separating polar molecules and lipids.
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There are different methods used to ionize analytes with MS, the most common being 

electrospray ionization (ESI). ESI is typically coupled with LC and utilizes a highly charged 

needle tip to create charged analyte droplets from a liquid that can be heated and ionized. 

There are also several different methods to achieve ionic separation in MS using different 

analyzers including time-of flight (TOF), quadrupole, ion trap mass, and orbitrap. The TOF 

instruments utilize a fixed electric field to accelerate ions through a voltage drop to impart 

kinetic energy and then down a flight tube of known length. The time an ion requires to 

reach the end detector is dependent on its charge and mass and therefore a mass to charge 

ratio (m/z) can be calculated with high resolution and mass accuracy. A quadrupole mass 

spectrometer uses oscillating electrical fields to selectively stabilize the flight path of an 

ion with a specific m/z of interest, serving as a mass filter. A triple quadrupole measure 

metabolites with high sensitivity, but can only measure a smaller subset of preselected 

metabolites. An ion trap mass spectrometer traps ions of a specific m/z using an electrical 

field and calculates the m/z based on the radio frequency required to retain the ions. 

The ion trap has increased sensitivity but is less accurate with quantification. An orbitrap 

mass analyzer monitors the frequency of oscillations of an ion once it is trapped around a 

central spindle-shaped electrode and calculates the m/z based on the ion oscillations around 

a specific axis. This analyzer provides exceptional resolution and mass accuracy. These 

different analyzers can also be coupled together in a single method to provide increased 

mass resolution and accuracy.

Metabolomics in Diabetes

Over the past decade there has been a growing body of literature describing metabolomic 

profiles associated with type 2 diabetes. Both targeted methods, that measure a defined 

group of known chemical compounds, and untargeted methods, that measure all chemicals 

present including those that have never been previously annotated, have been used.

Amino Acids

One of the strongest associations with diabetes and glycemic traits that has emerged from 

metabolomics studies is the positive association of branch chain amino acids (BCAAs)—

e.g., leucine, isoleucine, and valine. Evidence relating amino acid metabolism with insulin 

resistance and obesity in humans was initially described decades ago31. Newgard et al. 

confirmed these associations in a cross-sectional metabolomics analysis of obese and 

lean individuals. BCAAs in particular were higher in individuals that were obese and, 

furthermore, in those that had higher insulin resistance (defined by the homeostatic model 

assessment of insulin resistance or HOMA-IR) even after adjustments for adiposity32. Wang 

et al. then demonstrated in a prospective analysis in the Framingham Heart Study (FHS) that 

individuals with BCAA concentrations in the highest quarter had a 2–3.5 fold higher odds 

of developing type 2 diabetes up to 12 years later compared to those in the lowest quarter33. 

These associations remained after adjustments for clinical risk factors including body 

mass index (BMI) and have subsequently been replicated in multiple other cohorts34–39. 

Growing experimental evidence have posited potential mechanisms40,41 including increased 

BCAAs, either due to increased dietary contribution and/or defective metabolism, activating 

mammalian target of rapamycin (mTOR) kinase activity that uncouples insulin signaling32 
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or leading to a buildup of cytoxic metabolites that could adversely affect the pancreatic islet 

β-cells42–44 or adipocytes45.

It is still unclear, however, if BCAAs have a causal relationship with diabetes or if these 

associations are due to reverse causality or confounders such as obesity. Work integrating 

these findings with human genetics has been completed to begin to clarify these issues. Lotta 

et al. completed a GWAS of BCAA levels in 16,596 individuals that identified several top 

SNPs, some of which also imparted an increased risk for diabetes among 47,877 cases and 

267,694 controls across several European cohorts46. Analyses in a smaller cohort utilizing 

Mendelian Randomization suggested a causal association of insulin resistance with BCAA 

levels47, but not the reveres, which was further supported by a second analysis that included 

more SNPs and individuals48. Taken together, these findings point to elevated BCAAs as 

a downstream effect of adiposity and insulin resistance but that temporally precedes the 

development of clinical diabetes, suggesting they may be mediators to some degree in 

disease development.

Several studies have also found positive associations of aromatic amino acids (AAAs), 

including tyrosine and phenylalanine, with future development of diabetes34–37,48–50. AAAs 

in solution with BCAA also alter cellular insulin signaling through the mTOR pathway51 

and they compete with BCAA for the same intracellular transporter52 but further data on 

AAA causing diabetes or insulin resistance is limited. Glutamate and glutamine, two amino 

acids central to both nitrogen and carbon cycling and linked with BCAA metabolism, have 

also been associated with the development of diabetes in several cohorts.

Glutamate, synthesized from the citric acid cycle product α-ketogluteric acid and an 

intermediate in the generation of the antioxidant glutathione53, has been consistently found 

to be positively associated with diabetes39,54. Glutamine, a transamination product of 

glutamate55, has been found to be inversely associated with the development of diabetes 

as well as the ratio of glutamine/glutamate35,37,49,54,56,57. Glycine58, an amino acid 

synthesized from serine, has also been consistently found to be inversely associated with 

development of T2D34–37,57 and impaired glucose tolerance34. The roles these metabolites 

could potentially have in diabetes development have yet to be clarified; however, each have 

central roles in several cellular metabolism pathways. An interesting proposed common 

pathway could be through their interaction with NMDA glutamate receptors that may 

regulate insulin secretion in the β-cell59. Serine, which has also been found to have an 

inverse association with incident diabetes35,36,57, could also participate in this pathway.

Higher levels of 2-aminoadipic acid (2-AAA), a lysine degradation product, was also 

found to be associated with increased risk for incident diabetes in FHS and MDC60. 

Individuals with concentrations in the highest quarter had more than a 4-fold increased 

odds of developing diabetes over 12 years. These results mirrored findings of increased 

concentrations of 2-AAA found in obese mice, hyperinsulinemic mice fed a high fat diet, 

and diabetic rats. Also, augmented insulin secretion was demonstrated in both murine and 

human islet cells that were acutely or chronically exposed to 2-AAA. While it remains 

unclear if 2-AAA levels rise prior to the development of insulin resistance, it may have a 

role in compensatory mechanisms afterward.
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Organic Acids

Alpha-hydroxybutyrate, a product of amino acid catabolism that is derived from α-

ketobutyrate, a participant in the glutathione production pathway, has been positively 

associated with incident diabetes39,57. In a group of individuals free of diabetes, α-

hydroxybutyrate levels have also been found to be inversely associated with insulin 

sensitivity61. Acetoacetate, a ketone body synthesized from fatty acids as an energy source 

when glucose is low, has also been positively associated with the risk for diabetes in a group 

of Finnish men62 and in a smaller Bavarian study63. Alpha-keto acids, specifically branched 

chain α-keto acids, are of interest because they are formed in the first irreversible step of 

BCAA catabolism64.

Bile Acids

In a European study that utilized a non-targeted approach, three bile acids—e.g., 

deoxycholic, glycocholic, and glycodeoxycholic acid—were positively associated with 

incident disease in age- and sex-adjusted models50. Only the association of deoxycholic 

acid remained significant after additional adjustments for clinical risk factors50. This study 

also identified a SNP in the CYP7A1 coding region associated with deoxycholic acid levels 

that was also associated with type 2 diabetes in published GWAS meta-analyses. While the 

genetic findings were not a formal Mendelian randomization analysis and thus cannot prove 

causality, these findings support emerging experimental evidence of both receptor-mediated 

and non-receptor-mediated mechanisms (that involve incretin stimulation) for circulating 

bile acids to effect glycemia65.

Carbohydrates

Hexose sugars—typically measured as a composite of multiple different isomers of 6 

carbon monosaccharides including glucose and fructose—are the most frequently analyzed 

carbohydrate in metabolomics studies of incident diabetes35,39,66,67. These composite 

measures consistently have a positive association with disease even after adjustments for 

clinical measures of glucose. This reflects the high degree of sensitivity of the analytical 

technologies to detect the hexose sugars present in the samples that are not measured by 

clinical glucose assays. Circulating levels of trehalose—a non-endogenous sugar obtained 

from the diet in humans—has also been positively associated with diabetes39,66. Using 

untargeted methods, a species of mannitol and several deoxy-hexose sugars were found to be 

inversely associated with diabetes risk in a nested case-control study of the EPIC-Potsdam 

Germany cohort68.

Lipids and Acylcarnitines

Lipids are an integral part of cellular energy homeostasis, serving in multiple roles 

including as metabolic substrates, signaling hormones, or cellular membrane building 

blocks. Elevated clinical measures of lipids, specifically of bulk triglycerides, is considered 

a tradition risk factor for T2D. In the 1960s, Randle et al. described the competitive 

relationship of fatty acids and glucose for oxidative cycling and proposed that excessive fatty 

acid oxidation contributed to impaired glucose homeostasis and insulin resistance69. The 

intracellular accumulation of fatty acid oxidation products such as diacylglycerols (DAGs), 
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triacylglycerols (TAGs), and ceramides have also been linked with insulin resistance70. 

Extensive experimental work is being conducted to understand the mechanisms causing 

these associations and whether these oxidation products—as well as other lipid species—are 

causative or consequences of insulin resistance67.

Traditional clinical measurements of lipids often lacked specificity, but with GC and LC-MS 

techniques, unique lipid species can now be identified by total acyl chain carbon number 

and double bond content. In FHS, individuals with higher levels of TAGs with shorter 

acyl carbon chains and fewer double bonds were at increased risk for the development of 

diabetes even after adjustments for clinical risk factors71. A similar trend was also observed 

for cholesterol esters (CEs) and specific phospholipids including lysophosphatidylcholines 

(LPCs), phosphatidylcholines (PCs), and lysophosphatidylethanolamines (LPEs). A study 

in Finnish men found a positive association of the ratio of monounsaturated fatty acids 

(FAs) to total FAs with increased risk for future T2D. The ratio of saturated and n-7 

and n-9 FAs to total FAs along with glycerol, total FAs, and total TAGs levels were 

also found to be positively associated with T2D risk while the ratios of docosahexaenoic 

acid (DHA), an omega-3 FA, and linoleic acid, a n-6 FA, with total FAs were inversely 

associated72. Lipoprotein lipid subclasses can also be profiled with NMR techniques, 

and in the Metabolic Syndrome in Men (METSIM) study of Finnish men, the ratio of 

apolipoprotein A1 to HLD was the strongest predictor of future T2D risk73. In a more recent 

study of young Fins, lipid subfractions of lipoproteins were measured and higher cholesterol 

concentrations in very large LDL particles was positively associated with T2D risk while 

higher concentrations in very large and large HDL particles—especially of non-esterified 

cholesterols—were inversely associated74. Higher relative TAG content in all lipoprotein 

subclasses was positively associated with T2D risk.

Specific phospholipid species have also been studied. Wang-Sattler et al. found an inverse 

association of C18:2 (denoting acyl chain carbon length:number of double bonds) LPC, 

along with glycine, with future development of both impaired glucose tolerance and incident 

T2D in the Cooperative Health Research in the Region of Augsburg (KORA) cohort and in 

the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort34. 

In a separate analysis that used an EPIC-Potsdam subcohort for discovery and KORA 

for validation, specific diacyl-phosphatidylcholines (C32:1, C36:1, C38:3, and C40:5) 

were positively associated with T2D risk. They also confirmed the inverse association of 

C18:2 LPC and found C16:1 sphingomyelin, and specific acyl-alkyl-phosphatidylcholines 

or plasmalogen PCs (C34:3, C40:6, C42:5, C44:4, and C44:5) were inversely associated 

with T2D risk35. Further untargeted work in the EPIC-Potsdam cohort has confirmed the 

inverse association of specific LPCs and PCs with T2D68, while work in a small American 

Indian cohort has also confirmed the findings in PCs, albeit with different subspecies75. 

Phospholipid linoleoyl-glycerophosphocholine (L-GPC)57 has also been inversely associated 

with future diabetes.

The transport of fatty acids into the mitochondria for cellular β-oxidation is facilitated by 

the formation of acylcarnitines, especially medium-length acylcarnitines. BCAA catabolism 

also leads to the production of specific acylcarnitine species. This class has been studied in 

several metabolomics cohorts given their position at the intersection of BCAA and fatty acid 
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metabolism. Elevated C3 and C5 acylcarnitines, products of BCAA catabolism, were found 

by Newgard et al. to be strongly associated with insulin resistance32. C2 acetylcarnitine was 

also found to be positively associated with incident diabetes in KORA34.

Proteomics

The study of proteins, as the final product of genetic transcription and post-transcriptional 

modifications, has also played a pivotal role in the understanding of disease. Mass 

spectrometry and immuno-assays of single proteins were utilized to identify and uncover the 

association of circulating levels of adiponectin76, leptin77, sex-hormone binding globulin78, 

and the vitamin E binding, afamin79, with type 2 diabetes risk. Recent developments, 

however, in protein profiling techniques have increased the efficiency and numbers of 

circulating proteins that can now be measured. While MS remains a powerful tool for 

the detection and quantification of proteins, the process is labor and time-intensive and 

this technique remains limited in the number of proteins it can measure simultaneously. 

The development of affinity-based methods utilizing multiplexing antibodies and/or novel 

affinity reagents has drastically expanded the number of proteins that can be quantified. 

Two high-throughput technologies now commonly used include the use of nucleic acid 

affinity reagents (aptamers) or nucleotide-labeled antibodies. With aptamers, the diverse 

structural confirmations that can be achieved with oligonucleotides are utilized to bind to 

target protein epitopes to facilitate protein detection and quantification. Nucleic acid labeling 

of antibodies has also allowed the use of polymerase chain reaction (PCR) technology 

to amplify, detect, and quantify proteins. The natural tendency of complimentary DNA 

oligonucleotide sequences to anneal and serve as PCR templates has been leveraged in 

proximity extension assays (PEAs) to improve the specificity of antibody mediated protein 

identification, especially in high-throughput methods80,81. Binding specificity of either the 

aptamer or nucleic acid labeled antibodies remains one of the greatest limitations of these 

techniques. Confirmation with traditional immunoassays, MS, and integrative genomics, 

however, can help confirm the specificity of protein identification82,83. Figure 2 depicts the 

workflow for these methods.

A Swedish study utilizing nucleic acid labeled antibodies and PEA identified 7 circulating 

proteins associated with HOMA-IR—including the novel association of cathepsin D as 

well as previously reported proteins leptin, renin, interleukin-1 receptor antagonist (IL-1ra), 

hepatocyte growth factor, fatty acid-binding protein 4 (FABP4), and tissue plasminogen 

activator (t-PA). Of these, IL-1ra and t-PA were also positively associated with incident 

diabetes, however, these associations were completely attenuated after adjustments for 

fasting glucose84. Mendelian randomization analyses also suggested insulin resistance 

had a casual effect on t-PA antigen levels. In a more recent, and larger, cross-sectional 

Swedish study, 29 proteins were found to be associated with prevalent diabetes at a false 

discovery rate < 5%. Of these, 14 were reportedly novel associations85. However, none 

of these were found to be causally associated with diabetes in Mendelian randomization 

analyses. A recent example of MS proteomics analysis, paired with 2-dimentional gel 

electrophoresis, was conducted in a small cross-sectional cohort of normoglycemic lean, 

normoglycemic abdominally obese, prediabetic, and diabetic Koreans showed higher levels 

of serpin peptidase inhibitor A1 (AAT/SERPINA1), haptoglobin protein (HP), zinc-alpha2-
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glycoprotein (ZAG), apolipoprotein A-1 (APOA1), and retinol binding protein 4 (RBP4) and 

lower levels of growth-inhibiting protein 25 (GIG25/AACT/SERPINA3), albumin (ALB), 

and transthyretin (TTR) in those with abdominal adiposity or insulin resistance compared to 

normal individuals86.

Associations with Cardiovascular Disease

Metabolomics and proteomics have also been leveraged to study biomarkers of 

cardiovascular disease. These findings have revealed some potential common metabolic 

pathways involved in insulin resistance, T2D, and cardiovascular disease. To list a few, 

BCAA and BCAA related metabolites have been positively associated with coronary artery 

disease (CAD)87–89. Levels of glutamate/glutamine and several acylcarnitines were also 

shown to differentiate between individual with CAD and controls even after adjustments 

for traditional clinical factors including BMI and diabetes87. For lipids, specific LPC 

and sphingomyelin species have been associated with incident CAD90 while higher 

levels of LPC and LPC plasmalogens containing unsaturated fatty acids—as well as PCs 

containing DAGs, sphingomyelins, and ceramides—and decreased levels of LPC and LPC 

plasmalogens containing saturated fatty acids—were associated with increased prevalent 

CAD91. For proteins, in a study conducted in Americans from the San Francisco Bay Area 

with stable coronary heart disease, 200 proteins were associated with cardiovascular events 

including several families also associated with T2D (e.g., interleukins, cathepsins, and fatty 

acid-binding proteins). The protease SERPINA3 was one of nine proteins included in a 

clinical risk prediction model that improved on previously established clinical risk factors92. 

These findings could begin to highlight important metabolic pathways that may be used to 

untangle the mechanism for T2D associated cardiovascular disease.

Future Directions

Metabolomic and proteomic studies provide a wealth of information, especially when 

combined with genomic, transcriptomic, epigenomic, and microbiome information. A 

current challenge, however, is how to organize this data into meaningful information and 

successfully prioritize relevant associations for further scientific discovery. A common 

approach, which has been described extensively above, is to leverage genomic data to 

identify biomarkers that are disease causal46,47,85. Pathway analysis is also an emerging 

statistical methodology used to cluster disparate biomarkers together into hypothetical 

pathways. Further work including statistical innovation, however, is needed to overcome 

these hurdles.

The vast majority of metabolomic and proteomic analyses have also been focused on known 

metabolites or proteins included on high-throughput platforms due to a priori knowledge 

of their associations with specific biological pathways. Still, there are hundreds to 

potentially thousands of circulating low abundance biomarkers that have yet to be described. 

Untargeted metabolomics can be utilized to study these molecules in an unbiased fashion. 

Dimethylguanidino valeric acid (DMGV), a novel circulating biomarker of nonalcoholic 

fatty liver disease also associated with the future development of T2D93 and reduced 

cardiometabolic fitness94, was identified through the integration of untargeted MS data with 

genomic and phenotypic data in large human cohorts. The availability of a growing amount 
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of genomic data will be instrumental in facilitating the identification of these unknown 

compounds.

The majority of studies described thus far in this review have been population studies 

focused on assessing biomarker associations with T2D and glycemic traits. These 

technologies can also be leveraged to study treatment effect. Individual responses to 

treatment and prevention of T2D can be markedly different8,95. Genetic variants in 

enzymes involved in drug metabolism (e.g. SLC22A1 genetic variant effects on metformin 

pharmacokinetics96) as well as differences in clinical factors8,95 can explain some of these 

differences. In the Diabetes Prevention Program, metabolomics has demonstrated that the 

baseline concentration of specific metabolites are associated with difference in lifestyle 

modification verses metformin effects on the prevention of T2D97. Changes in metabolites 

including betaine, due to changes in physical activity and diet98, and arginine and arginine 

metabolites, due to changes in diet alone99, have also been associated with decreased risk 

for development of T2D with these interventions. For proteomics, Williams et al. utilized 

the previously generated nine protein risk score for cardiovascular events in individuals with 

stable coronary heart disease92 to demonstrate they could predict that Torcetrapib, a novel 

cholesterol medicine found in clinical trials to be associated with increased cardiovascular 

events, would be associated with adverse cardiovascular effects within 3 months of clinical 

trial initiation compared to the median 550 days of follow up that occurred before trial 

termination100. These findings, taken in total, suggest that metabolomics and proteomic 

biomarkers could have a role in therapeutic prognosis as well as elucidate therapeutic 

mechanisms.

Conclusion

In conclusion, metabolomics and proteomics are powerful technologies that can be 

leveraged to study biomarkers of T2D. The integration of data from these platforms 

with genomics and other omics information could help elucidate pathways of disease 

development as well as therapeutic response. Overlapping findings with cardiovascular 

disease also highlight common pathways that may explain T2D associated cardiovascular 

morbidity and mortality. Significant care, however, must be put into technology choice, 

study design, sample preparation, and data analysis to obtain informative results. In the 

future, untargeted methods can drastically expand the pool of circulating biomarkers that can 

be studied while use of these technologies in therapeutic trials could also identify markers 

of individual response to therapies. In this way, these technologies can further the clinical 

treatment as well as scientific understanding of T2D.
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Nonstandard Abbreviations and Acronyms:

T2D type 2 diabetes
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ASCVD atherosclerotic cardiovascular disease

HbA1c hemoglobin a1C

NMR nuclear magnetic resonance

MS mass spectrometry

GC gas chromatography

LC liquid chromatography

PEA proximit extension assay

ESI Electrospray ionization

TOF time-of flight

VLDL very low density liopoprotein cholesterol

IDL intermediate density lipoprotein cholesterol

HDL high density lipoprotein cholesterol

BCAA branch chain amino acids

mTOR mammalian target of rapamycin

GWAS genome wide association study

SNP single nucleotide polymorphism

AAA aromatic amino acid

2-AAA 2-aminoadipic acid

DAG diacylglycerol

TAG triacylglycerol

LPC lysophosphatidylcholines

PC phosphatidylcholine

LPE lysophosphatidylethanolamine

FA fatty acid

DHA docosahexaenoic acid

L-GPC linoleoyl-glycerophosphocholine

p,p’-DDE or trans-nonachlo, or ordichlorodiphenyltrichloroethane

IL-1ra interleukin-1 receptor antagonist

FADBP4 fatty acid-binding protein 4
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t-PA tissue plaminogen activator

AAT/SERPINA1 serpin peptidase inhibitor A1

HP haptoglobin protein

ZAG zinc-alpha2-glycoprotein (ZAG)

APOA1 apolipoprotein A-1

RBP4 retinol binding protein 4

GIG25/AACT/SERPINA3 growth-inhibiting protein 25

ALB albumin

TTR transthyretin

CAD coronary artery disease

PCSK-9 proprotein convertase subtilisin-kexin type 9

DMGV dimethylguanidino valeric acid

NAFLD nonalcoholic fatty liver disease
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Figure 1. 
Incremental improvements in discrimination of hypothetical biomarkers based on a 

simulation of the predicted hazards ratio per 1 SD increase in a variable number of 

biomarkers with different marker-marker correlation (r). This figure was generated by 

Thomas Wang M.D., and Michael Pencina Ph.D. (Wang, Circulation. 2011.)
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Figure 2. 
Workflow for different high-throughput proteomics technologies.

DNA: deoxyribonucleic acid. m/z: mass to charge ratio. qPCR: quantitative polymerase 

chain reaction. Adapted from a figure by J. Gustav Smith, M.D., Ph.D., and Robert 

Gerszten, M.D. (Smith and Gerszten. Circulation. 2017).
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Table 1.

Comparison of metabolomics and proteomics technologies for circulating biomarker discovery

Metabolomics Proteomics

Analytes 
Measured Circulating small molecules Circulating proteins

Technologies 1. NMR
2. MS
a. GC-MS
b. LC-MS

1. MS
2. Multiplex-nucleic acid affinity reagents (aptamers)
3. PEA with nucleotide-labeled antibodies

Strengths 1. Technologies are high-throughput
2. High sensitivity and specificity
3. NMR is sample non-destructive
4. Small sample amount needed
5. Unbiased measurement of unknown compounds are 
possible

1. Most technologies are high-throughput
2. Relatively good sensitivity and specificity
3. Small sample amount needed
4. Proteins are direct products of transcription, facilitating 
integration with genomic data

Limitations 1. Identification of unknown compounds is labor intensive
2. Metabolite pathway analysis is complex

1. High-throughput methods may have slightly lower 
specificity
2. Limited ability to identify unknown proteins

NMR: nuclear magnetic resonance, MS: mass spectrometry, GC: gas chromatography, LC: liquid chromatography, PEA: proximity extension assay
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