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Summary

While many novel gene-metabolite and gene-protein associations have been identified using high 

throughput biochemical profiling, systematic studies that leverage human genetics to illuminate 

causal relationships between circulating proteins and metabolites are lacking. Here, we performed 

protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We 

detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 

365 metabolites, including established relationships in metabolic and signaling pathways such 

as the protein thyroxine binding globulin and the metabolite thyroxine – as well as thousands 

of new findings. In Mendelian Randomization (MR) analyses, we identified putative causal 

protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-

concept plasma metabolomics studies in three murine knockout strains of key protein regulators. 

These analyses identified previously unrecognized associations between bioactive proteins and 

metabolites in human plasma. We provide publicly available data to be leveraged for studies in 

human metabolism and disease.

eTOC Blurb

Benson et al. integrate proteomic, metabolomic, and genomic data in 3,626 individuals from three 

human cohorts to identify putative causal relationships amongst 1,302 circulating proteins and 

365 metabolites in human plasma. Top protein-to-metabolite associations were experimentally 

validated in plasma metabolomics studies in three murine knockout strains of key protein 

regulators.

Graphical Abstract
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Introduction

The integration of metabolomic and proteomic profiling data from large-scale population 

studies offers the opportunity to connect circulating proteins and metabolites as pathway 

partners in human physiology. Mass spectrometry-based metabolomics approaches measure 

low-molecular weight lipids, organic acids, nucleic acids, and other key chemical mediators 

of central metabolic and signaling pathways. Affinity-based proteomics techniques measure 

many of the secreted enzymes, transporters, cytokines, peptide hormones, and other proteins 

that catalyze and regulate these pathways. For example, small molecule profiling techniques 

can measure thyroxine, while proteomics can measure the transporter thyroxine binding 

globulin that regulates circulating levels of this metabolite in the thyroid hormone signaling 

pathway. Similarly, the amino acids aspartate and glutamate, as well as the enzyme aspartate 

transaminase that catalyzes the interconversion of these two compounds can be assayed by 

these complementary techniques in the same biological sample. Combining metabolomics 

and proteomics data may provide insights into new transporter-ligand, enzyme-substrate, 

and other protein-metabolite pairs that can be used for pathway discovery. However, the 

systematic integration of metabolomics and proteomics data from large-scale population 

studies to identify these biological relationships is still in its nascent stages.

Genome-wide association studies (GWAS) of plasma metabolite1–12 and protein levels13–

28 in large-scale population studies have been increasingly leveraged to identify causal 

determinants of circulating factors in human plasma. For example, plasma proline levels 

are strongly associated with genetic variants in the PRODH locus that encodes proline 

dehydrogenase, as well as variants in other enzymes that are important in the catabolism 

of this metabolite4,5. Similarly, GWAS of thrombin protein levels and other blood clotting 

factors have confirmed pathway relationships within the coagulation cascade27,29. While 

novel gene-metabolite or gene-protein associations have been identified and then validated 

in experimental model systems5,15,30–32, systematic studies that leverage human genetics to 

illuminate novel protein-metabolite associations are lacking.
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To begin to determine causal associations between circulating proteins and metabolites, we 

analyzed mass spectrometry-based metabolomics and aptamer-based proteomics profiling of 

plasma samples from 3,626 individuals in three cohorts: the Jackson Heart Study (JHS), 

the Multi-Ethnic Study of Atherosclerosis (MESA), and the Health, Risk Factors, Exercise 

Training and Genetics (HERITAGE) Family study. In total, we studied the relationships 

between circulating levels of 1,302 proteins and 365 metabolites measured in the same 

banked plasma samples. Toward this goal, we first examined correlation data between 

every pairwise combination of each protein and metabolite and then performed enrichment 

analyses to detect individual proteins that are significantly associated with specific classes 

of metabolites. We leveraged the genetic data in each study to perform Mendelian 

Randomization (MR) analyses to identify putative causal relationships of circulating 

proteins with metabolite plasma levels. Top protein-to-metabolite MR associations were 

experimentally validated in proof-of-concept plasma metabolomics studies in three murine 

knockout models. Further, we provide all protein-metabolite association results as a publicly 

available dataset for pathway discovery in human metabolism and disease.

Results

We studied the relationships between circulating levels of 1,302 proteins and 365 

metabolites measured in fasting plasma samples from participants of the Jackson Heart 

Study (JHS, n=1,985), the Multi-Ethnic Study of Atherosclerosis (MESA, n=983), and the 

Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family study (n=658). 

Clinical characteristics of the study populations are detailed in Supplementary Table 1a. A 

list of the studied proteins and metabolites are provided in Supplemental Tables 2 and 3, 

respectively. An overview of the study design is provided in Figure 1, which included 1) 

correlation analyses between every pairwise combination of each protein and metabolite, 

2) enrichment analyses to detect proteins that are highly associated with specific classes 

of metabolites, 3) Mendelian Randomization (MR) analyses to identify putative causal 

relationships of circulating proteins and metabolite plasma levels, and 4) experimental 

validation of a subset of the top protein-to-metabolite MR associations in proof of concept 

plasma metabolomics studies in three murine knockout models.

Protein-metabolite correlations in human plasma

Pearson correlation coefficients were calculated for every pairwise protein-metabolite 

combination within the JHS, MESA, and HERITAGE Family study using age- and sex-

adjusted, log-normalized, and standardized protein and metabolite levels. We identified a 

set of protein and metabolite pairs in each cohort that were significantly correlated with 

an FDR-adjusted q-value ≤ 0.05 (Figure 2a). Meta-analyses of these correlations across the 

three studies identified 171,800 significant protein-metabolite correlations (q-value ≤ 0.05) 

(Supplemental Table 4). Ninety-seven percent of these correlations remained significant 

when further adjusted for body mass index (BMI), and 87% remained significant when 

additionally adjusted for estimated glomerular filtration rate (eGFR) to account for potential 

effects of kidney function on the circulating proteins in multivariable adjusted (MVA) 

analyses (Figure 2b). Among the 1,614 participants in JHS with available medication 

histories, 76% of protein-metabolite correlations remained significant when further adjusted 
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for use of antihypertensive (n=992), antidiabetic (n=256), and statin (n=220) medications 

(Supplemental Figure 1). The magnitude and directionality of correlation coefficients were 

consistent across the individual studies (Figure 2c).

As anticipated, several of the most significant correlations reflected well-characterized 

protein-metabolite biological relationships. These included associations between plasma 

binding proteins such as thyroxine binding globulin and thyroxine (correlation coefficient 

= 0.51, q-value ≤ 1.0 × 10−300), plasma transporters such as apolipoprotein E (APOE) 

and lipids including diacylglycerol C36:3 (correlation coefficient = 0.51, q-value ≤ 1.0 

× 10−300), and plasma enzymes such as aspartate transaminase (AST) and its canonical 

substrate aspartate (correlation coefficient = −0.07, q-value = 8.4 × 10−5) and product 

glutamate (correlation coefficient = 0.23, q-value = 5.3 × 10−48). Visualization of the tens 

of thousands of additional, previously unexplored protein-metabolite correlations using a 

heat map demonstrated distinct patterns of correlations between individual proteins and 

members of specific metabolite classes (Figure 2d). For example, the protein hormone 

insulin demonstrated positive correlations with metabolites within the carbohydrate, 

glycerolipid, acyl carnitine, branched chain amino acid, and aromatic amino acid classes 

and inverse correlations with metabolites within the lysophosphatidylethanolamine (LPE), 

lysophosphatidylcholine (LPC), and polar uncharged amino acid classes (Figure 2e)

(Supplemental Table 4). The hormones adiponectin and ghrelin similarly demonstrated 

strong metabolite correlations within lipid and amino acid class lines. Finally, the hormone 

fibroblast growth factor 19 (FGF19), a regulator of bile acid synthesis33, demonstrated 

marked positive correlations within the bile acid metabolite class. While the clustering of 

these correlations within specific metabolite classes was consistent with known functions 

of each of these central metabolic hormones, these analyses also provided novel details 

regarding interactions with specific subclasses of metabolite species for each protein, 

particularly in the context of human physiology. For example, insulin demonstrated strong 

positive correlations with several saturated fatty acids (e.g., butyric acid, q-value = 5.6 × 

10−3) and quinolone carboxylic acids (e.g., xanthurenic acid, q-value = 7.3 × 10−10), as well 

as inverse correlations with unsaturated fatty acids (e.g., linoleic acid, q-value = 3.7 × 10−3), 

amino fatty acids (e.g., 2-aminoisobutyric acid, q-value = 4.9 × 10−8), N-acyl amines (e.g., 

N-oleoyl-glycine, q-value = 8.1 × 10−8) and dicarboxylic acids (e.g., malonic acid, q-value = 

2.9 × 10−3).

Protein correlations are enriched for specific classes of metabolites in human plasma

To characterize protein-metabolite correlations more systematically, we investigated whether 

ranked metabolite correlations for each protein were significantly enriched for specific sets 

of metabolite classes, analogous to Gene Set Enrichment Analyses (GSEA)34,35. As an 

initial proof of concept, we confirmed that the most significantly correlated metabolites 

with plasma levels of APOE protein were members of the lipid metabolite class, consistent 

with the well-established role of APOE in lipid transport (Figure 3a). To quantitate this 

overrepresentation of lipid metabolites among the strongest correlations with APOE, a plot 

of the running sum statistic for these lipids in the ranked correlation data was used to 

generate an enrichment score (ES)(Figure 3b). The enrichment score could be assessed for 

statistical significance from the null hypothesis of no enrichment of correlations for lipid 
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metabolites for APOE using a permutation test as detailed in Methods. This analysis was 

then repeated for each of the 1,302 measured plasma proteins in the dataset.

As shown in Figure 3c, we identified 241 proteins that were significantly enriched for 

correlations with plasma lipids (q-value ≤ 0.05; Supplemental Table 5). These included 

proteins with well-established roles in lipid metabolism such as proprotein convertase 

subtilisin/kexin type 9, apolipoprotein B, low-density lipoprotein receptor-related protein 

1B, and angiopoietin-like 4. Many novel protein-lipid findings included associations with 

several members of the cathepsin proteases (CTSA, CTSB, and CTSF), serpin peptidase 

inhibitors (AGT, SERPING1, and SERPIND1), and secreted glycoproteins (NID1, NID2, 

LAMA1, and GPC6) (Supplemental Table 5). Further, the broad survey of proteins in 

this analysis identified additional protein pathway partners that demonstrated enriched 

correlations for lipid metabolites. A notable example of this included the identification 

of a pathway node centered on the scavenger receptor CD36, which functions as a high-

affinity receptor for long chain fatty acids and other ligands in rodent models and has 

been implicated in fat metabolism traits in humans36–40. The CD36 receptor was not only 

itself highly enriched for correlations with plasma lipid metabolites (q-value = 1.1 × 10−3), 

but two well-established regulatory protein ligands of the receptor, thrombospondin 141 

and CD5 Molecule Like42, were also highly enriched for correlations with plasma lipids 

(THBS1, q-value = 8.3 × 10−3; CD5L, q-value = 4.5 × 10−3), highlighting the potential role 

for this receptor and associated ligands in human lipid metabolism.

We next expanded our analysis to identify proteins with correlations that were enriched for 

additional major classes of metabolites (Figure 3d–f, Supplemental Table 5). Interestingly, 

we identified 360 proteins with correlations that were significantly enriched for circulating 

nucleic acids. Among these were proteins with well-established roles in nucleotide 

metabolism, such as nucleoside diphosphate kinase B, nucleoside diphosphate kinase 

A, ectonucleoside triphosphate diphosphohydrolase 1, thymidine kinase 1, and adenylate 

kinase isoenzyme 1 (Supplemental Table 5). These nucleoside kinases maintain the balance 

between nucleoside mono-, di-, and triphosphates (e.g., AMP, ADP, and ATP) and several 

are known to circulate in human plasma with ~1 nM concentrations43. While they have been 

demonstrated to be secreted and to regulate extracellular ATP synthesis in model systems44–

46, their role in human plasma has not previously been fully elucidated.

We also identified 43 proteins with correlations that were significantly enriched for amino 

and organic acids. Several of these included proteins with well-established roles in the 

regulation of protein metabolism such as growth hormone receptor, insulin-like growth 

factor binding protein 2, and adiponectin (Supplemental Table 5). Interestingly, one of 

the top proteins enriched for correlations with amino and organic acids was the enzyme 

aminoacylase-1 (ACY1, q-value = 2.9 × 10−3) which can hydrolyze N-acetyl-amino acids to 

free amino acids in isolated human and murine plasma47. These enrichment data suggest that 

ACY1 may play a broader role in human plasma amino acid homeostasis, extending prior 

observations19,48–51.
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Mendelian Randomization analyses identify causal protein-to-metabolite correlations in 
human plasma.

Pearson correlations do not provide information in regard to the causality or directionality 

of the relationship between protein and metabolite. To identify potential causal relationships 

of circulating proteins on metabolite levels in human plasma, we next performed Mendelian 

Randomization (MR) analyses. This approach leveraged whole genome- or genome-wide 

association studies (WGAS, GWAS) of each plasma protein and metabolite level in JHS, 

MESA, and HERITAGE Family study participants. Genetic variants within 1 mega-base 

(Mb) of the coding gene for each protein (“cis” variants) that were independent (linkage 

disequilibrium r2 ≤ 0.001) and strongly associated with circulating levels of the protein 

(Bonferroni-adjusted p-value ≤ 0.05) were used as instrumental variables to assess whether 

plasma levels of each protein (exposure) had a causal effect on correlated plasma metabolite 

levels (outcome) using the Wald method with a single genetic variant and the inverse-

variance weighted (IVW) method when multiple genetic variants were available52–57. 

Several methods, including the limited information maximum likelihood (LIML)58, as well 

as the median59, median-weighted60, and MR-Egger61 robust methods when instruments 

contained more than two genetic variants, were used to assess the sensitivity of these 

analyses, as described in Methods and included in Supplemental Table 6.

We found that 547 of the 1302 proteins had cis variants that could be used as instrumental 

variables in MR analyses (Figure 4a) (Supplemental Tables 7–9). Proteins with available cis 
instruments spanned the genome (Figure 4b), and the majority of instruments were located 

in very close proximity to the transcriptional start site (TSS) of the protein coding gene 

(Figure 4c). We restricted our analyses to include only instruments in cis to the coding 

gene for each protein so that the effect of these instruments on the metabolite was likely to 

run through the protein exposure, rather than through an alternative, potentially pleiotropic 

biochemical pathway62–64.

In total, we identified 224 putative protein-to-metabolite causal associations between 52 

proteins and 146 metabolites that were highly significant (q-value ≤ 0.05) (Figure 4d, 

Supplemental Table 6). 162 of these associations were identified using the Wald method 

with a single genetic variant, and 62 of these associations were identified using the 

IVW method when multiple genetic variants were available. Notably, 58/62 (94%) of the 

associations that had multiple available genetic variants had concordant weighted median 

estimates with p ≤ 0.05, suggesting that a majority of the genetic variants used in these 

IVW analyses were valid instruments. Similarly, 214/224 (96%) of the associations had 

concordant LIML estimates with p ≤ 0.05, suggesting against weak instrument bias. Finally, 

although potentially under-powered (but consistent with our use of only genetic instruments 

in cis to the coding gene for the protein exposure), 61/62 (98%) of the associations that 

had multiple available genetic variants had a non-significant MR-Egger intercept test with 

p ≥ 0.05, identifying no obvious evidence of horizontal pleiotropy. A complete list of all 

protein-to-metabolite MR associations that reached nominal levels of significance (p-value ≤ 

0.05) is provided in Supplemental Table 6.

Among the top MR findings were several examples of the well-established causal role 

that APOE protein plays in modulating plasma levels of lipids and fat-soluble vitamins. 
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These included MR associations between APOE protein and several glycerophospholipids 

(e.g., C38:5 PE plasmalogen; IVW beta −0.29, q-value 1.9×10−7, LIML q-value 1.0×10−6), 

phosphosphingolipids, and the lipid-soluble vitamin retinol (Supplemental Table 6).

These analyses also detected strong putative causal associations for several other proteins 

that were identified to have correlations with lipids, amino and organic acids, and 

nucleic acids in the enrichment analyses above. For example, we detected strong 

MR associations between the CD36 scavenger receptor and numerous lipid species 

not previously associated with this protein, including glycerophospholipids (e.g., C38:7 

PE plasmalogen; IVW beta −0.28, q-value 1.2×10−15, LIML q-value 9.6×10−15), acyl 

carnitines, sphingomyelins, ceramides, and steroids (Figure 4d) (Supplemental Table 6). 

Notably, we detected strong MR associations between CD36 and several polyunsaturated 

fatty acids, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and 

arachidonic acid (Supplemental Table 6). These polyunsaturated fatty acids play a key role 

in eicosanoid signaling. CD36 has been implicated in the cellular uptake of polyunsaturated 

fatty acids using in vitro models65,66. However, these findings may suggest a broader role 

for CD36 as a central regulator of lipid homeostasis in human plasma.

There were also strong MR associations between the enzyme ACY1 and several N-acetyl 

amino acids, including N-acetyl-glutamate (IVW beta −1.25, q-value 1.9×10−33, LIML 

q-value 4.5×10−12), N-acetyl-alanine, N-acetyl-glutamine, and N-acetyl-serine (Figure 4d)

(Supplemental Table 6). Circulating levels of N-acetyl amino acids are known to be tightly 

regulated and have recently been tied to several cardiometabolic phenotypes in human 

population studies, such as insulin resistance47, incident coronary artery disease67, and 

incident heart failure68. These MR results are consistent with the known role of ACY1 in 

modulating the levels of these N-acetyl-amino acids in human plasma.

Intriguingly, proprotein convertase subtilisin/kexin type 9 (PCSK9) demonstrated putative 

causal associations with multiple acyl carnitines, including CAR 18:1 (IVW beta −0.52, 

q-value 5.8 × 10−4, LIML q-value 1.5 × 10−3), CAR 18:2, CAR 16:0, and CAR 14:1 (Figure 

4d) (Supplemental Table 6). Acyl carnitines were among the most strongly associated 

metabolites with PCSK9 protein in pairwise Pearson correlation analyses (e.g., CAR 18:1 

correlation coefficient −0.26, q-value 6.5 × 10−64) (Supplemental Table 4). Carnitines play 

a key role in the regulation of energy metabolism by facilitating the transport of long-chain 

fatty acids from adipose tissues to target cells. While PCSK9 has recently been shown to 

reduce the uptake of long-chain fatty acids by adipocytes in a cell culture system69, these 

MR association data suggest a potential role for PCSK9 in regulating the carnitine transport 

system in human plasma.

Protein-to-metabolite causal associations predicted by MR analyses in human plasma 
experimentally validated in three murine knockout models.

As a proof of concept to test the causal protein-to-metabolite associations predicted by MR 

analyses above, we conducted plasma metabolomics on available C57BL/6 murine knockout 

(KO) strains for the three proteins that had the most significant MR metabolite associations 

(CD36, APOE, and ACY1) and compared these to wild-type (WT) controls.
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The CD36 scavenger receptor was predicted to have a causal association with 68 metabolites 

in the human MR analyses above (q-value ≤ 0.10) (Supplemental Table 6), 50 of which 

were also measured in the CD36 KO mouse. We identified significant differences in the 

plasma levels of 27 of these metabolites (54%) in metabolomic profiling studies of the 

CD36 KO animals (n=6) versus WT controls (n=8; p ≤ 0.05) (Figure 5a). These included 

experimental validation of predicted causal relationships with specific glycerophospholipids, 

sphingolipids, and fatty acyls, including causal associations of CD36 with circulating levels 

of the central signaling fatty acids docosahexaenoic acid (DHA; CD36 KO/WT fold-change 

= 0.73 ± 0.06, p-value = 0.01) and arachidonic acid (CD36 KO/WT fold-change = 0.74 ± 

0.04, p-value = 0.01) (Figure 5b)(Supplemental Table 10).

Similarly, APOE was predicted to have causal associations with 13 metabolites in the 

human MR analyses (q-value ≤ 0.10) (Supplemental Table 6), and we detected significant 

differences with the expected directionality in the plasma levels of four of these metabolites 

in APOE KO animals (n=6) versus WT controls (n=8; p≤0.05) (Figure 5c). Notably, 

each of the four experimentally validated metabolites were phosphatidylethanolamine (PE) 

plasmalogens, including C38:6 (APOE KO/WT fold-change = 1.30 ± 0.05, p-value = 

9.47×10−4), C38:5, C36:3, and C40:7 PE plasmalogens (Figure 5d)(Supplemental Table 

10). PEs have been speculated to interact with APOE following the hepatic secretion of 

nascent very low density lipoprotein (VLDL) particles in cell-based in vitro studies70,71. 

These findings may suggest a causal role for APOE in the regulation of circulation PE 

plasmalogen levels in human plasma.

Finally, the circulating enzyme ACY1 was predicted to have causal associations with 

five metabolites in human MR studies, and we detected directionally-consistent significant 

differences in the plasma levels of four of these metabolites (80%) in ACY1 KO animals 

(n=6) versus WT controls (n=6; p ≤ 0.05)(Figure 5e), including N-acetyl-glutamate (ACY1 
KO/WT fold-change = 7.19 ± 0.57, p-value = 1.11×10−6), N-acetyl-glutamine, N-acetyl-

serine, and N-acetyl-alanine (Figure 5f)(Supplemental Table 10).

In total, we experimentally validated 35 of the 68 (51%) predicted protein-to-metabolite 

MR associations. Further, we experimentally validated 62 additional protein-metabolite 

associations with significant pairwise Pearson correlations (q ≤ 0.05) that either did not have 

an available MR instrumental variable or were not captured by MR analyses (Supplemental 

Table 10). These data may provide new insight into potential downstream biological 

pathways that connect disease-associated proteins to end clinical phenotypes that can be 

further investigated at the bench. Association analyses between ACY1, APOE, and CD36 

and cardiometabolic traits are provided in Supplemental Table 11.

Discussion

This study leveraged metabolomic and proteomic profiling of plasma samples from three 

human cohorts to determine if the integration of these datasets may identify novel causal 

relationships between specific circulating proteins and metabolites. The profiling data from 

the JHS, MESA, and HERITAGE Family studies were “harmonized,” in that we used 

the same mass spectrometry-based metabolomics and aptamer-based proteomics platforms 
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in parallel across each of the 3,626 samples, providing an ideal opportunity to perform 

protein-metabolite association studies. Additionally, genomic data were available for each 

participant, allowing for the study of putative protein-to-metabolite causal associations with 

Mendelian Randomization analyses and follow-up studies in a select group of knockout 

mice. This analysis provides several important initial insights into the integration of 

metabolomic and proteomic profiling data for pathway discovery.

First, we show that known protein-metabolite associations that are key to established 

metabolic and signaling pathways (e.g., thyroxine binding globulin protein and thyroxine 

metabolite) can be detected in banked samples from population studies. Further, as might be 

expected for proteins and metabolites that are related though a shared biological pathway, 

these associations persist despite adjustment for broad baseline characteristics of study 

participants (e.g., age, sex, BMI, eGFR, medication use) and are reproducible across studies 

conducted at different geographical locations at different times, and in participants of diverse 

race and ethnicity. Finally, the directionality of these associations may provide insight 

into the biological relationship between each protein and metabolite. For example, we 

detected strong correlations between the enzyme aspartate transaminase in the biologically-

expected negative direction with its catalytic substrate aspartate and positive direction with 

its catalytic product glutamate (higher protein enzyme levels are associated with lower 

metabolite substrate and higher metabolite product levels. It is important to note that these 

correlation data reflect a single cross-sectional point in time, however, and the directionality 

of certain protein-metabolite relationships may change over different physiological (and 

pathophysiological) states.

Second, this study leverages protein-metabolite association data to link protein-metabolite 

relationships previously identified in model systems to human biology. We used protein-

metabolite correlation data to perform enrichment analyses and identify several examples 

of protein-lipid, protein-amino acid, and protein-nucleic acid associations that have been 

studied in cell- and animal-based systems, but that have not to our knowledge been 

previously demonstrated in human plasma. For example, the secreted protease Cathepsin 

B has emerged as a potential novel lipid regulatory protein in several experimental model 

systems. Knockout of the Cathepsin B gene results in marked improvements in liver 

triglyceride and blood total cholesterol levels in a murine model of nonalcoholic fatty 

liver disease72. Mechanistically, Cathepsin B has been shown in cultured cell-based model 

systems to regulate very-low-density lipoprotein (VLDL) secretion and free fatty acid uptake 

by cleaving liver fatty acid-binding protein (LFAB)73. The protein-metabolite enrichment 

analyses presented here extend these experimental findings and provide strong rationale for 

further study of Cathepsin B in human plasma lipid homeostasis.

Similarly, extensive experimental data have demonstrated a key role for adenylate kinase 

and ecto-nucleoside diphosphokinase nucleotide conversion enzymes in the regulation 

of extracellular ATP levels in cultured hepatocytes74, endothelial cells75, and lymphoid 

cells75, as well as in human vitreous fluid76. The protein-metabolite association data in the 

current study build on these mechanistic observations and suggest a role for these enzymes 

in the regulation of extracellular ATP and purine signaling that is reflected in human 

plasma. Importantly, while we used an enrichment analysis strategy based on GSEA34,35 to 
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interrogate the protein-metabolite association data in this study, additional methods could 

be employed to query these extensive data for pathway discovery. Thus, we have made the 

complete protein-metabolite association study dataset publicly available for further analyses.

Third, this study demonstrates how Mendelian Randomization analyses can be leveraged 

to “triage” putative causal protein-to-metabolite associations from protein-metabolite 

correlation data for further experimental study. By integrating genetic data with our protein-

metabolite association findings, we were able to use genetic variants located in or near the 

coding gene for a measured protein to examine the causal effect of that protein exposure 

on a metabolite outcome in human plasma. Approximately 40% of the measured proteins 

in our studies had strong, independent associations with genetic variants in cis to the 

protein cognate gene that could be used as instruments in MR analyses. Notably, the use of 

three cohorts representing diverse race/ethnicities and minor allele frequencies improved the 

ability to identify MR instruments. For example, the inclusion of African Americans in the 

JHS highlighted the variant rs2229152 (JHS MAF=1.7%) as an instrument for circulating 

ACY1 protein. This missense variant has been linked to the rare autosomal recessive inborn 

error of metabolism ACY1 deficiency that often manifests with neurologic symptoms in 

humans (MIM 609924)77, was strongly associated with circulating levels of ACY1 protein 

in JHS, and provided an MR instrument to support putative causal roles for ACY1 protein 

on plasma levels of N-acetyl-glutamate, N-acetyl-glutamine, N-acetyl-serine, and N-acetyl-

alanine in JHS, each of which was experimentally validated in our murine ACY1 knockout 

studies. This variant is too rare in European populations (ALFA European MAF=0.0003) 

to have been captured for study in the MESA (MAF=0.006) or HERITAGE Family study 

(MAF=0.004), and thus would not have been available for analysis if not for inclusion 

of the JHS. This suggests that as an increasing number of multi-omics studies in diverse 

populations become available, our ability to study biologically significant protein-metabolite 

relationships will also improve.

It is also notable that over half (51%, 35 of 68) of the tested protein-to-metabolite MR 

associations experimentally validated in our three murine knockout models with at least 

nominal levels of significance (p ≤ 0.05). This suggests that a significant fraction of the 

224 total protein-to-metabolite MR associations that we have identified point to biological 

relationships that can be further elucidated in model systems. Further, 62 additional protein-

metabolite associations that were identified in the pair-wise Pearson correlation analyses 

but either did not have an available MR instrumental variable or were not captured by 

MR analyses validated in the murine models. This indicates that the protein-metabolite 

association data may highlight a substantial number of additional, biologically significant 

relationships, and that MR and Pearson correlation data can identify both overlapping and 

distinct causal associations. In terms of the protein-to-metabolite MR associations that did 

not experimentally validate, there were examples of strong MR associations that closely 

missed statistically-significant experimental validation in the studied knockout models. For 

example, we identified an MR association between the fatty acid scavenger receptor CD36 

and the fatty acid EPA in humans with an IVW beta of 0.17 and a q-value of 8.8 × 10−5 that 

closely missed the statistical threshold for validation in the CD36 knockout studies (CD36 

KO/WT fold-change = 1.31 ± 0.06, p-value = 0.08). It is possible that this relationship 

would have experimentally validated with increased statistical power. Whether our findings 
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reflect the specific experimental conditions of our studies (e.g. 5-week old male mice 

maintained on a normal chow diet) or bona-fide biological differences in protein-metabolite 

relationships between the human populations and mouse models that we analyzed will be the 

subject of future study.

We have identified several specific examples of protein-metabolite associations that suggest 

novel regulatory mechanisms affecting plasma metabolites. These included experimental 

validation of 27 (54%) of the predicted MR associations between the scavenger receptor 

CD36 protein and levels of plasma lipid metabolites. CD36 has been well-documented 

to regulate fatty acid uptake in a number of cell types and rodent models, including 

hematopoietic stem cells78, leukemic stem cells79, cardiac myocytes80, adipocytes81, 

endothelial cells81, and macrophages82. CD36 is further known to regulate plasma levels 

of non-esterified fatty acids in murine models83. Our experimentally-validated protein-

metabolite association data extend these findings and suggest that CD36 may play a 

central role in regulating plasma levels of a range of glycerophospholipid, sphingolipid, 

and fatty acyl metabolites. These include the polyunsaturated fatty acids arachidonic 

acid and docosahexaenoic acid (DHA), two key metabolites that participate in a wide 

array of eicosanoid-mediated biological pathways important in inflammation, nociception, 

the immune response, cell growth, atherosclerosis, and blood pressure regulation. DHA 

has furthermore been used clinically to reduce the risk of coronary heart disease, 

hypertension, and hypertriglyceridemia. While CD36 has been implicated in the regulation 

of polyunsaturated fatty acid cellular uptake using cultured cell-based in vitro models65,66, 

these findings provide a rationale for further studies of the role of CD36 in regulating key 

lipid metabolites in human plasma.

Finally, we note that circulating levels of ACY1, APOE, and CD36 proteins are strongly 

associated with several cardiometabolic traits in humans. For example, plasma levels of 

ACY1 and APOE have previously been associated with the future development of type 

2 diabetes (T2D) in healthy, non-diabetic individuals47,84. Interestingly, several of the 

metabolites that are predicted to be downstream of ACY1 and APOE in the current MR 

analyses have also been associated with the future risk of T2D in the same populations. For 

example, plasma levels of N-acetyl-alanine are associated with future T2D in participants 

of the JHS85 and are modulated by ACY1 in our human MR analyses and in murine 

ACY1 knockout studies. Similarly, plasma levels of C36:3 PE plasmalogen and C34:3 PC 

plasmalogen are associated with future T2D in JHS85 and modulated by APOE in our 

human MR analyses and murine APOE knockout studies. These MR data may provide 

new insight into potential downstream biological pathways that connect disease-associated 

proteins to end clinical phenotypes that can be further investigated at the bench.

In summary, we demonstrate that the integration of proteomic and metabolomic profiling 

data can be used to identify novel protein determinants of circulating metabolite levels in 

human plasma. We provide proof-of-concept that these insights can be tested successfully 

in model systems. Finally, we are making all protein-metabolite association data from 

three large human cohorts available as a public resource for the further study of human 

metabolism.
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Limitations of Study

Our study had several limitations. Although the metabolomics and proteomics platforms 

applied in these studies provide broad coverage, they are targeted platforms that include 

sentinel proteins and metabolites designed to survey a wide array of biological processes 

and do not provide a complete catalogue of every circulating protein and metabolite species 

in human plasma. The proteomics platform is further agnostic to post-translational changes 

in proteins. We expect that our ability to refine these initial association data for pathway 

discovery will improve as platform coverage improves. Similarly, although our study used 

“harmonized” metabolomics and proteomics data across three human cohort studies, the 

sample size is relatively modest compared with many GWAS. We expect that insight from 

protein-metabolite association studies will improve as increasing numbers of multi-omics 

studies become available, especially in populations including diverse ethnicities and races. It 

should be noted that we were only able to perform MR analyses on the 42% of proteins with 

available cis instrumental variables. We limited our analyses to include only cis instruments 

to limit the risk for horizontal pleiotropy and to validate the specificity of the affinity-based 

aptamer, but note that many additional causal protein-to-metabolite relationships likely exist 

within our data. Finally, while the use of cis instruments provided a biologically-plausible 

link to the protein exposure and thus allowed for the identification of putative causal 

association in the direction of protein-to-metabolite, we were not able to definitively assess 

for possible causal associations flowing in the opposite direction from metabolite-to-protein. 

In exploratory studies, we attempted to perform bidirectional (i.e. metabolite-to-protein) MR 

analyses for the 146 metabolites that we identified in our protein-to-metabolite MR studies 

above. A challenge in conducting metabolite-to-protein MR analyses has been in identifying 

genetic instruments that have as clear a biological tie to the metabolite exposure as is the 

case for a protein exposure (which has a coding gene). Despite a systematic search using 

data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Maps, we were 

unable to identify candidate genetic instruments for these metabolites that were located in 

cis (1Mb upstream or downstream) to genes that encoded enzymes with a biological link 

to the metabolite exposure (e.g., the gene MAOA, which encodes the enzyme serotonin 

deaminase, for the metabolite exposure serotonin). We anticipate that our ability to perform 

metabolite-to-protein MR associations will improve as larger multiomics datasets becomes 

available.

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Robert E. Gerszten, MD 

(rgerszte@bidmc.harvard.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• Individual-level metabolomic, proteomic, and genomic data from JHS, MESA, 

and the HERITAGE Family study are available through application to the 
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respective cohorts. All protein-metabolite association data, including pairwise 

Pearson correlation, enrichment, and Mendelian Randomization data, are 

included in the article and Supplemental Data. An excel file containing the 

values that were used to create all graphs in the article are available in Data S1 

– Source Data. Data are also available through a Shiny app user interface that 

can be accessed through the following link: https://github.com/aeisman/protein-

metabolite. Any additional information required to reanalyze the data reported in 

this paper is available from the lead contact upon request.

• All analyses except where specifically noted were performed using code 

written in The Julia Programming Language86 and R project for statistical 

computing. All original code has been deposited at https://github.com/aeisman/

protein-metabolite and is publicly available as of the date of publication. DOIs 

are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Study Participant Details

Human Cohort Study Participants—The JHS, MESA, and the HERITAGE Family 

studies have been previously described87–89. Briefly, JHS is a community-based longitudinal 

cohort study that started in 2000 and included 5306 self-identified Black individuals from 

the Jackson, Mississippi metropolitan area. Proteomic profiling was performed on fasting 

baseline plasma samples from 2143 individuals; 399 samples were from a nested case-

cohort study of incident coronary artery disease and the remaining were randomly selected 

from individuals with available plasma samples, as previously described90. Metabolomic 

profiling was performed on 2750 individuals as nested case-control studies for coronary 

disease (n=400) and chronic kidney disease (759) with the remaining samples randomly 

selected (n=1,591), as previously described68. Samples from 1985 individuals from JHS 

had available baseline metabolomics, proteomics, and genomics data from Visit 1 and 

were included in the present study. Baseline characteristics of the participants with 

available multi-omics profiling were comparable to the broader JHS population, as shown 

Supplemental Table 1b. MESA is a population-based study that started in 2000 and included 

6814 self-identified White, Black, Hispanic, and Asian individuals recruited from six 

clinical centers across the United States. Samples from 983 randomly-selected individuals 

with available baseline metabolomics, proteomics, and genomics data from Visit 1 were 

included in the present study. The HERITAGE Family study is an exercise training study 

that started in 1994 and included 763 self-identified White and Black individuals in family 

units recruited from four clinical centers across the United States and Canada. Samples from 

658 individuals with available baseline metabolomics and proteomics data from Visit 1 were 

included in the present study.

Study Approval—The JHS human study protocol was approved by the Jackson State 

University, Tougaloo College, and the University of Mississippi Medical Center Institutional 

Review Boards, and all participants provided written informed consent. The MESA human 

protocol was approved by The Lundquist Institute (formerly Los Angeles BioMedical 
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Research Institute) at Harbor-University of California, Los Angeles Medical Center, 

University of Washington, Wake Forest School of Medicine, Northwestern University, 

University of Minnesota, Columbia University, Johns Hopkins University, and University 

of California, Los Angeles Institutional Review Boards, and all participants provided written 

informed consent. The HERITAGE Family study human study protocol was approved by 

the Institutional Review Boards at the Beth Israel Deaconess Medical Center, University 

of Washington, and the four clinical centers of the HERITAGE Family study, and all 

participants provided written informed consent. All animal experiments were approved by 

the Institutional Animal Care and Use Committee at Beth Israel Deaconess Medical Center.

Animal Studies—Plasma was collected for LC-MS studies by cardiac puncture from the 

following fasting 5-week old, male mice maintained on a normal chow diet in housing 

conditions with a 14-hour light/10-hour dark cycle and temperatures of 18–23 deg C 

with 40–60% humidity: B6.129P2-Apoetm1Unc/J (RRID:IMSR_JAX:002052, obtained 

from Jackson Labs), B6.129S1-Cd36tm1Mfe/J (RRID:IMSR_JAX:019006, obtained 

from Jackson Labs), C57BL/6N-Acy1em1(IMPC)J/Mmucd (RRID:MMRRC_046467-

UCD, obtained from The Knockout Mouse Project (KOMP)), and C57BL/6J 

(RRID:IMSR_JAX:000664, obtained from Jackson Labs). Homozygous APOE and CD36 

knockout animals were compared to wild-type C57BL/6J controls. Homozygous ACY1 

knockout animals were compared to wild-type littermates. LC-MS was conducted using the 

same methods as described above.

Method Details

Proteomic Profiling—Aptamer-based proteomic profiling methods using the SOMAscan 

platform have been described previously91–93. Briefly, in each study, proteomics was 

performed on baseline plasma samples that were collected during Visit 1 in EDTA tubes and 

subsequently stored at −70 degrees C. The SOMAscan 1.3k platform was used in JHS and 

MESA studies, and the SOMAscan 5k platform was used in the HERITAGE Family study. 

Only proteins included in the 1.3k platform were used for this analysis in HERITAGE. A list 

of SOMAmer IDs and corresponding protein targets is included in Supplemental Table 2.

Metabolomics Profiling—Metabolomics profiling was performed using liquid 

chromatography mass spectrometry (LC-MS) on fasting baseline plasma samples that were 

collected during Visit 1 in JHS, MESA, and the HERITAGE Family study, as previously 

described68,94. Briefly, amino acids, amines, acylcarnitines, lipids, and other water-soluble, 

polar metabolites were measured using a Nexera X2 U-HPLC (Shimadzu) equipped with 

a 150 × 2 mm, 3 μm Atlantis hydrophilic interaction LC column (Waters) coupled 

to a Q Exactive hybrid quadrupole Orbitrap MS (ThermoFisher Scientific). Metabolites 

were extracted from 10 μl plasma by adding 90 μl of Acetonitrile:Methanol:Formic 

acid (74.9:24.9:0.2,v/v/v) solution spiked with valine-d8 (Sigma) and Phenylalanine-d8 

(Cambridge Isotope Laboratories). The metabolites were eluted at 0.25 ml/min with 5% 

buffer A (10 mM Ammonium-Formate, 0.1% formic acid in water) for 0.5 minutes followed 

by a linear gradient to 40% buffer B (0.1% formic acid in acetonitrile) over 10 minutes. MS 

analyses were carried out using electrospray ionization in the positive mode and full scan 

spectra were acquired over 70–800 m/z. Raw data were processed using Trace Finder (v3.3, 
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Thermo Fisher Scientific) and Progenesis QI (Waters). Sugars, purines, pyrimidines, organic 

acids and other intermediary metabolites were measured using a 1290 Infinity LC system 

(Agilent Technologies) equipped with a 100 × 2.1 mm XBridge amide column (Waters) 

coupled to a 6490 Triple Quad MS (Agilent Technologies) in negative ionization mode 

via multiple reaction monitoring (MRM) scanning. Data were quantified using MassHunter 

Quantitative Analysis software (V10.1, Agilent).

To ensure quality control, a mixture of ~150 reference standards was analyzed before, 

during periodic intervals throughout, and after each MS run to ensure reproducibility of 

LC retention times, LC peak shapes, and MS sensitivity. Isotope labeled internal standards 

were monitored in each sample throughout the duration of each run. Pooled plasma samples 

were monitored after every 10 participant samples to standardize for MS drift over time 

using “nearest neighbor” normalization and between batches. Separate pooled plasma 

samples were monitored after every 20 participant samples to determine coefficient of 

variation (CV) for each metabolite. Metabolite identities were confirmed using authentic 

reference standards. All metabolite peaks were manually reviewed for peak quality in a 

blinded manner. None of the included metabolites had poor peak quality or CVs ≥ 30% 

averaged across batches. A complete list of metabolites included in this study is included in 

Supplemental Table 3.

Genotyping—Whole-genome sequencing (WGS) in JHS and MESA has been described95. 

Participant samples underwent >30× WGS through the Trans-Omics for Precision Medicine 

project at the Northwest Genome Center at University of Washington and joint genotype 

calling with participants in Freeze 6. Genotype calling was performed by the Informatics 

Resource Center at the University of Michigan. Genotyping in HERITAGE was performed 

on the Illumina Infinium Global Screening Array, and genotypes were called using 

Illumina’s GenCall based on the TOP/BOT strand method. Genotype imputation to 

the TOPMed Freeze5 reference panel was performed using the University of Michigan 

Imputation Server Minimac4. Phasing was performed with Eagle v2.4. Sites with call rate 

<90%, mismatched alleles, or invalid alleles were excluded.

Genome-Wide Association Studies—Metabolite and protein levels in the JHS, MESA, 

and HERITAGE Family Study were log-transformed, scaled to a mean of zero and standard 

deviation of 1, and residualized on age, sex, batch (for metabolites), plate (for proteins), 

and principal components of ancestry 1–10 as determined by the Genetic Estimation and 

Inference in Structured samples (GENESIS)95. These values were inverse normalized and 

tested for association with genetic variants using linear mixed effects models adjusted for 

age, sex, the genetic relationship matrix, and principal components of ancestry 1–10 using 

the fastGWA model implemented in the GCTA software package.

Correlation Analyses—Metabolite and protein levels were log-transformed, scaled to 

a mean of zero and standard deviation of 1, and residualized on age, sex, batch (for 

metabolites), and plate (for proteins). Additional models included further adjustment for 

body mass index (BMI) and estimated glomerular filtration rate (eGFR; not available in 

HERITAGE Family study), where indicated. Pearson correlation coefficients were calculated 

for each pairwise protein-metabolite combination within each study and meta-analyzed 
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across studies using the metacor function within the General Package for Meta-Analysis in 

R96. A correlation heat map was generated using the Heatmap3 R package97, in which the 

organization of metabolites was fixed by RefMet superclass, main class, and subclass98, and 

proteins were allowed to self-organize using the default complete linkage method of the 

hierarchical clustering function.

Enrichment Analyses—Enrichment analyses were performed to identify proteins with 

pairwise metabolite correlations that were enriched for a specific metabolite class using 

a method analogous to Gene Set Enrichment Analysis (GSEA) 34,35. Sets of metabolites 

were generated according to RefMet superclasses, with fatty acyls, glycerolipids, 

glycerophospholipids, prenol lipids, sphingolipids, and sterol lipids combined into a single, 

combined lipid set. Members of the lipid set were evaluated in the lipid enrichment analysis 

and not included in other metabolite set enrichment analyses due to the large size of this set.

Meta-analyzed metabolite correlation results for each protein were ranked by p-value, 

annotated by metabolite RefMet class set, and a running sum statistic was calculated to 

generate an enrichment score (ES). The running sum statistic increased when it encountered 

a member of the analyzed RefMet metabolite class set and decreased when it encountered 

a nonmember of the analyzed set. Each increase was weighted by the strength of the 

metabolite correlation with the protein (according to p-value) normalized by the sum of the 

correlations over all the metabolites (p=1 in equation 1)35. The significance of each ES was 

assessed by comparison to the null distribution of calculated ES for each metabolite class 

generated by running 100000 simulations of the analysis.

Mendelian Randomization Analyses—Genetic instrumental variables (IV) for MR 

were selected from variants that were located in cis to the coding gene for each protein (≤ 1 

million bases upstream or downstream of the transcriptional start site for the protein cognate 

gene, or to the transcription end site for genes > 1 million bases) that had a study-specific 

observed minor allele frequency (MAF) ≥ 0.01 and were associated with circulating levels 

of the measured protein with a p ≤ 0.05 that was Bonferroni-adjusted for the total number 

of variants within this cis window. Candidate instruments that met these criteria were then 

pruned using a study-specific linkage disequilibrium (LD) threshold of 0.001 with PLINK 

1.999–101. A complete list of MR IVs used in this study is available in Supplemental Tables 

7–9. One-sample MR using individual level data was performed since genetic variants, 

plasma protein levels, and plasma metabolite levels were available in the same individuals, 

and because samples between studies represented different ethnic groups with different 

patterns of linkage disequilibrium, minor allele frequencies, and population characteristics 

(Supplementary Table 1). Pairwise significant associations from meta-analyzed Pearson 

correlation and enrichment analyses were considered candidate protein-to-metabolite causal 

associations for MR. Causal effect estimates were obtained using the inverse-variance 

weighted (IVW) method using the MendelianRandomization R package102 and then meta-

analyzed across all three studies using a fixed effect model96. The limited information 

maximum likelihood (LIML) robust method was performed to assess the sensitivity for 

findings, and further supplemented with MR-Egger, median, and median-weighted methods 

when instruments contained more than two genetic variants (Supplemental Table 6). MR 
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was performed on each protein that had ≥ 1 available IV and associated metabolites with 

q-value ≤ 0.05 (either by pairwise correlation analysis or enrichment analysis).

Quantification and Statistical Analyses

Reported p-values were estimated using the Fisher transformation. Throughout the 

manuscript, significance levels were adjusted for multiple hypothesis testing by computing 

Benjamini-Hochberg FDR-adjusted q-values for each protein using the Bioconductor q-

value package in R103. The significance of metabolite associations was calculated for each 

protein so that findings would remain agnostic to the specific proteomic platform used in 

each study, and to establish an analytical pipeline that will be scalable to the addition of 

future datasets that may use different proteomics platforms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Integrating human plasma proteomic and metabolomic data informs pathway 

discovery

• Genomic data can help identify putative protein-to-metabolite causal 

associations

• Top protein-metabolite causal associations validated in experimental mouse 

models

• Protein-metabolite association data have been made publicly available
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Figure 1. The integration of human plasma proteomic, metabolomic, and genomic profiling data 
for pathway discovery.
Flow diagram detailing the experimental pipeline and main results from the integration 

of plasma proteomic, metabolomic, and genomic profiling datasets in the Jackson Heart 

Study (JHS), Multi-Ethnic Study of Atherosclerosis (MESA), and Health, Risk Factors, 

Exercise Training and Genetics Study (HERITAGE Family study). WGAS = whole genome 

association study, GWAS = genome wide association study.
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Figure 2. Protein-metabolite correlations in human plasma.
Pearson correlation coefficients were calculated for every pairwise protein-metabolite 

combination within the JHS, MESA, and HERITAGE Family study using age- and sex-

adjusted, log-normalized, and standardized protein and metabolite levels. (A) A subset of 

proteins and metabolites were positively (red) or negatively (blue) correlated with an FDR-

adjusted q-value ≤ 0.05 in each study, and in a meta-analysis of the three studies. (B) Ninety-

seven percent of the meta-analyzed age- and sex-adjusted protein-metabolite correlations 

remained significant with an FDR-adjusted q-value ≤0.05 when further adjusted for BMI, 

and 87% remained significant when additionally adjusted for eGFR. (C) The magnitude 
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and directionality of the meta-analyzed age- and sex-adjusted protein-metabolite correlations 

were consistent across studies. (D) Visualization of the protein-metabolite correlations using 

a heat map demonstrated distinct patterns of associations between individual proteins and 

members of specific classes of metabolites. Individual metabolites were ordered according 

to RefMet class along the y-axis, and proteins were allowed to order using a hierarchical 

cluster analysis along the x-axis. The magnitude and directionality of the correlation 

coefficient for each protein-metabolite association is depicted by color, as indicated in 

the legend. (E) The statistical significance (−log(p-value)) of the correlation between each 

metabolite and four representative protein hormones is shown.
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Figure 3. Protein correlations are significantly enriched for specific metabolite classes.
(A) A volcano plot demonstrates that the most significantly correlated metabolites with 

plasma levels of APOE protein were members of the lipid metabolite class. (B) To evaluate 

this enrichment for lipids more quantitatively, an enrichment score (ES) was computed 

and visualized as the maximum point (marked with ●) of a running sum statistic that 

increases proportionally with each lipid and decreases with non-lipids along the ranked list 

of metabolite correlations with plasma levels of APOE. (C) 241 proteins were significantly 

enriched for correlations with plasma lipids (FDR-adjusted q-value ≤ 0.05). In the top 

panel, the ES tracings are shown for each individual protein, and the ten proteins with the 

highest enrichment scores are listed. In the bottom panel, proteins are ordered in descending 

order of calculated enrichment scores (x-axis), and the number of proteins significantly 

enriched for correlations with lipids (FDR-adjusted q-value ≤ 0.05) is indicated with the 

vertical red line. Similar enrichment analyses are shown for Amino and Organic Acids (D), 

Carbohydrates (E), and Nucleic Acids (F). The complete enrichment analysis dataset is 

available in Supplemental Table 5.
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Figure 4. Mendelian Randomization analyses identify putative causal protein-to-metabolite 
associations in humans.
Proteins with at least one pQTL in cis (located within 1Mb) of the protein coding gene that 

could be used as an instrumental variable (IV) in Mendelian Randomization (MR) analyses 

are depicted in blue (a). The proteins with available cis instruments were distributed evenly 

across the genome (b). pQTLs used in IVs were generally located near the transcriptional 

start site (TSS) of the protein coding gene (c). A volcano plot depicts the 224 significant MR 

associations between 52 proteins and 146 metabolites with an FDR-adjusted q-value ≤ 0.05 

(d). The three proteins with the most significant MR metabolite associations are depicted by 

distinct shapes described in the figure legend.
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Figure 5. Protein-to-metabolite causal associations predicted by Mendelian Randomization 
analyses in humans experimentally validate in murine knockout models.
Plasma metabolomics was conducted on C57BL/6 murine knockout (KO) strains for 

CD36 (n=6), APOE (n=6), and ACY1 (n=6) and compared to wild type (WT) controls 

(n=8). Scatterplots depict the number of predicted protein-to-metabolite MR associations 

in humans (with q≤0.1) that validated in each murine model (with p≤0.05, highlighted 

in color), as well as the concordance in directionality of these associations (a, c, e). The 

position on the x axis represents the p-value of the predicted MR association between each 

protein and metabolite level in the human studies. The position on the y axis represents 
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the p-value of the difference in metabolite level between KO and WT mice. Metabolites 

on the right half of the scatterplots are predicted to be positively associated with each 

protein by MR, whereas metabolites on the left half are predicted to be inversely associated 

with each protein. Similarly, metabolites on the top half of the scatterplots were higher in 

KO vs WT animals, whereas metabolites on the bottom half were lower in KO vs. WT 

animals. The northwest and southeast quadrants of each scatter plot are shaded to depict 

consistent directionality between the MR predictions and KO experiments. The levels of 

each metabolite that were significantly different in KO vs. WT animals (p≤0.05) are shown 

as fold changes compared to WT animals (b, d, f). * indicates P<0.05, and ** indicates 

P<0.01 by students two tailed t-test.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

Experimental models: Cell lines

Experimental models: Organisms/strains

B6.129P2-Apoetm1Unc/J Jackson Labs RRID:IMSR_JAX:002052

B6.129S1-Cd36tm1Mfe/J Jackson Labs RRID:IMSR_JAX:019006

C57BL/6N-Acy1em1(IMPC)J/Mmucd The Knockout Mouse Project RRID:MMRRC_046467-UCD

C57BL/6J Jackson Labs RRID:IMSR_JAX:000664

Oligonucleotides

Recombinant DNA

Software and algorithms

Original code to perform protein-metabolite association studies This paper https://zenodo.org/record/7930898
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

protein-metabolite association data This paper https://zenodo.org/record/7930898
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