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Abstract 

Background: Aortic structure impacts cardiovascular health through multiple mechanisms. 

Aortic structural degeneration occurs with aging, increasing left ventricular afterload and 

promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic 

structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been 

comprehensively characterized in large populations. 

Methods: We segmented the complete thoracic aorta using a deep learning architecture and used 

morphological image operations to extract multiple aortic geometric phenotypes (AGPs, 

including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic 

aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the 

UK Biobank and 8,456 participants in the Penn Medicine Biobank. 

Conclusion: Our method provides a fully automated approach towards quantifying the three-

dimensional structural parameters of the aorta. This approach expands the available phenotypes 

in two large representative biobanks and will allow large-scale studies to elucidate the biology 

and clinical consequences of aortic degeneration related to aging and disease states.  
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1. Introduction 

The aorta is the largest conduit artery in the human body1. In addition to its conduit function, the 

aorta plays a key role in modulating pulsatile arterial hemodynamics, mediated by its cushioning 

function of the intermittent left ventricular ejection. Aortic structural parameters (including 

geometry and wall stiffness) have been shown to be key determinants of aortic hemodynamic 

function1,2. Despite its prominent age-associated changes and its key hemodynamic role, studies 

related to structural properties of aortic geometric phenotypes (AGPs) are lacking3,4. For 

example, previous cross-sectional studies among 210-250 patients undergoing aortic imaging 

demonstrated that the aorta elongates with age and that thoracic aortic length is greater among 

patients with acute aortic dissection.3,4 Moreover, other studies have been limited to two-

dimensional cross-sectional geometric parameters of the aorta, neglecting important three-

dimensional (3D) aspects of its geometry, including elongation, tortuosity/unfolding, and 

curvature, all of which influence aortic function.  

Three-dimensional tomographic imaging (i.e. magnetic resonance imaging, computed 

tomography) has become a valuable resource for quantifying structural properties of the heart. 

Previous analyses of cardiac phenotypes acquired through the segmentation of CMR imaging 

data have developed a comprehensive atlas of cardiac structure and function in over 50,000 

participants of the UK Biobank5,6; however, such analyses of three-dimensional aortic geometry 

have not been performed to date.  

In this study, we present a deep learning approach to segment and comprehensively 

characterize the three-dimensional geometry of the thoracic aorta, and measure key phenotypes 

(diameter, length, curvature, tortuosity/unfolding) across various thoracic aortic subsegments. 

Our segmentation approach consists of (1) modality specific image segmentation, and (2) 3D 
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mesh phenotype extraction. We deployed our segmentation approach on imaging data from 

54,241 participants enrolled in the UK Biobank7 (UKB) and 8,456 individuals enrolled in the 

Penn Medicine Biobank8 (PMBB).  

 

2. Methods 

Data Sources 

The UKB  is composed of  >500,000 participating individuals aged 37-73 years at the time of 

recruitment, who underwent various questionnaires, physical measurements, biological sampling 

(blood and urine), and genome sequencing across 22 assessment centers in the UK9. A subset of 

participants were invited to complete an additional examination that included magnetic 

resonance imaging of the heart7. Data from a subset of individuals (n=54,241) enrolled in the 

UKB who underwent cardiac magnetic resonance imaging (CMR) were included for this 

analysis7 (Table 1).  

The PMBB is composed of >250,000 consenting patients of the Penn Medicine health 

network8. Additionally, all participants medical records including imaging results are de-

identified and linked to their identifier. We identified 8,456 patients enrolled who had thoracic 

computed tomography (CT) imaging data (Table 1). 

Aortic segmentation 

We created a dataset of 233 axial steady-state free precision (SSFP) CMR images from the UKB 

to train and validate a deep learning segmentation algorithm to delineate the thoracic aorta. All 

CMR images were manually segmented by two trained medical doctors using in-house software. 

A variation of the U-Net convolutional neural network (CNN) segmentation architecture was 

used to segment the aorta10. The U-Net architecture is an encoder-decoder consisting of two-
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dimensional convolutional layers of increasing depth (shown in Fig. 2.). The encoder consisted 

of sequential convolutional and max-pooling layers, allowing the network to learn feature-

representations across multiple spatial representations. The decoder consisted of an equivalent 

implementation with max-pooling layers being supplemented for up-sampling layers. 

Furthermore, all encoder feature-representations were concatenated onto their corresponding 

decoder feature-representations. The model was trained on 194 manually segmented CMR scans 

and validated on an independent subset of 39 CMR scans.  

The network was trained using the dice similarity coefficient (DSC) as the loss function 

and was optimized using the Adam optimizer with a learning rate of 0.00111. Training was 

performed for 20 epochs with a batch-size of 16. Image preprocessing consisted of zero-padding 

the 238x238 axial images to 240x240 followed by geometric and intensity augmentations being 

randomly performed on the training data, and Z-score normalization. Axial CMR image slices 

were segmented individually before being merged to form the three-dimensional aorta 

segmentation. The model achieved an average DSC of 0.934 (0.013) on the validation dataset. 

PMBB CT-scan data was segmented using the previously developed Totalsegmentator 

algorithm12. To extract the thoracic aorta region, the segmentation was cut at the T12 vertebral 

level.  

 

Three-dimensional aortic geometric phenotyping 

The voxelized aorta segmentation was then post-processed using morphological erosion 

and dilation operations with a kernel size of 3 voxels to remove any holes in the segmentation. 

Mesh generation and centerline extraction were performed using the VMTK toolkit13. Iterative 

smoothing of the three-dimensional aortic mesh was performed using the Taubin algorithm14. 
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The centerline of the aortic mesh was then interpolated to have 100 points using B-spline 

interpolation. Identification of aortic subsegments was accomplished through exploiting 

properties of the vertical axis (z-axis) of the aorta’s centerline to identify: (1) the apex of the 

aorta, defined as the maximum centerline point on the vertical axis; (2) the centerline point on 

the descending aorta with smallest Euclidean distance on the vertical axis with the aortic root. 

The segment extending from the root to the apex of the aorta was identified as a single segment, 

hereby named ascending aorta/proximal arch. Similarly, the segment from the aortic apex to the 

point on the descending aorta vertically corresponding to the level of the aortic root was 

identified as a single segment, hereby named distal arch/proximal descending aorta. We note that 

these do not necessarily correspond to standard anatomical segmental definitions, since the latter 

are defined by the location of the major arch branches, which have variable relationships with the 

three-dimensional aortic apex3. Figure 2.a provides an aortic geometric phenotype key to 

understand each region, whereas Figure 2.b provides a three-dimensional mesh segmentation. 

Centerline length was computed as the summation of distances between consecutive 

points. Minimal linear length was computed as the distance between the first and last point 

within each aortic segment. Tortuosity was computed as the ratio of centerline length to minimal 

linear length minus 1: 

Tortuosity = ((Segment length /Segment linear length)-1) 

Aortic curvature was calculated using the VMTK toolkit13. The aortic radius was computed 

across every point on the centerline by calculating the nearest distance from the centerline to the 

aorta mesh and doubled to compute short-axis aortic diameter.  

In addition to cross-sectional diameter, centerline length, tortuosity, and curvature, 

various key AGPs were computed from the overall aorta and from specific subsegments using 
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the 3D-mesh. Given that the aortic arch and adjacent aortic segments are expected to be curved, 

standard curvature and tortuosity metrics do not intuitively characterize the expected aortic 

geometry. Therefore, to characterize thoracic aortic geometry, we used length, height and width 

of the segment from the aortic root to the corresponding vertical level in the descending thoracic 

aorta. We also computed the thoracic aortic unfolding index as follows: 

Unfolding Index = - ((Segments 1+2 Length /Arch Width)-1) 

Inferencing in the UKB and PMBB 

We automatically segmented the entire thoracic aorta and derived 20 unique 3D- AGPs 

from 54,241 UKB participants and 8,456 PMBB participants (Table 2). 

3. Discussion 

This study leveraged aortic imaging data from two large independent cohorts, the UKB and the 

PMBB, to comprehensively characterize three-dimensional structural parameters of the thoracic 

aorta. We developed, for the first time, a phenotype extraction protocol consisting of (1) a deep 

learning segmentation architecture that accurately segments the thoracic aorta, and (2) 

morphological operations that operate directly on three-dimensional mesh representations to 

compute aortic length, diameter, tortuosity, curvature and arch measurements, as well as identify 

subsegments of the aorta. Our UKB segmentation model generated a DSC performance of 0.934, 

whereas the previously developed Totalsegmentator generated a DSC of 0.98112. We then 

successfully deployed our segmentation approach on 54,241 UKB imaging participants and 

8,456 PMBB participants (Table 2). Our method provides reliable and quantitative phenotyping 

of three-dimensional aortic phenotypes. The two-stage segmentation approach allows for AGPs 

to be computed for any aortic segmentation map regardless of its initial modality. This method 

provides a fully automated approach towards quantifying the three-dimensional structural 
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parameters of the aorta and expands the available phenotypes in two large representative 

biobanks. This will allow large-scale studies to elucidate the genetics, biologic mechanisms and 

clinical consequences of aortic degeneration related to aging and disease states in humans.  

Our method is limited by the image resolution of our tomographic imaging data. 

Specifically, we were unable to identify the brachiocephalic and left subclavian artery to 

biologically delineate the aortic arch; however, we were able to provide geometric alternatives 

that approximate the anatomical regions in question. We note that the aortic subsegments do not 

necessarily correspond to standard anatomical segmental definitions or aortic subsegments with 

different embryological origins but were rather derived based on objective unequivocal 

landmarks in the three-dimensionally segmented thoracic aorta. In particular, the segment 

extending from the root to the apex of the aorta (segment 1 in Fig. 2.a), comprising the proximal 

transverse aortic arch, was identified as a single segment. Similarly, the segment from the apex to 

the plane intersecting the aortic root (segment 2 in Fig. 2.c) was identified as a single segment, 

whereas the sum of the two segments above were used to calculate the height and width of 

segments 1+2. Given that this height computation incorporates the ascending aorta and the 

proximal descending aorta, we note that these height and width indices from our study are not 

directly comparable to previous studies that measured aortic arch height and width starting from 

an arbitrarily defined plane intersecting some point of the middle of the anatomic ascending and 

descending aorta15. 

In conclusion, we present a novel segmentation approach that accurately quantifies the 

three-dimensional geometry of the thoracic aorta, key subsegments, and provides comprehensive 

phenotyping of key 3D aortic geometric properties. We leverage our segmentation approach to 

perform inferencing on all participants in the UK Biobank and Penn Medicine Biobank with 
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available imaging data. Future work should investigate the prognostic value as well as the 

biological foundation of AGPs. 
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Figure Legends 

 

Fig. 1. Overview of the U-Net segmentation architecture for performing segmentation of axial 

MRI images in the UK Biobank. 
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Fig. 2. (A) Aortic mesh legend for each AGP region. (B) Visualization of three-dimensional 

aortic mesh. 
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