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Abstract 
 
Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have 
revoluKonized the study of isoform diversity. These full-length transcripts enhance the detecKon 
of various transcriptome structural variaKons, including novel isoforms, alternaKve splicing 
events, and fusion transcripts. By shi`ing the open reading frame or altering gene expressions, 
studies have proved that these transcript alteraKons can serve as crucial biomarkers for disease 
diagnosis and therapeuKc targets. In this project, we proposed IFDlong, a bioinformaKcs and 
biostaKsKcs tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq 
data. Specifically, the so`ware performed gene and isoform annotaKon for each long-read, 
defined novel isoforms, quanKfied isoform expression by a novel expectaKon-maximizaKon 
algorithm, and profiled the fusion transcripts. For evaluaKon, IFDlong pipeline achieved overall 
the best performance when compared with several exisKng tools in large-scale simulaKon studies. 
In both isoform and fusion transcript quanKficaKon, IFDlong is able to reach more than 0.8 
Spearman’s correlaKon with the truth, and more than 0.9 cosine similarity when disKnguishing 
mulKple alternaKve splicing events. In novel isoform simulaKon, IFDlong can successfully balance 
the sensiKvity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has 
proved its accuracy and robustness in diverse in-house and public datasets on healthy Kssues, cell 
lines and mulKple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its 
compaKbility to single-cell long-RNA-seq data. This new so`ware may hold promise for significant 
impact on long-read transcriptome analysis. The IFDlong so`ware is available at 
hOps://github.com/wenjiaking/IFDlong.   
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Introduc5on 
 
Long-read technology has brought the high-throughput genomic sequencing into the third 
generaKon to study genomes, transcriptomes, and metagenomes. Long-read sequencing is able 
to generate reads up to several million base pairs, while short-read sequencing typically yields 
reads with only 50 to 300 base pairs. For transcriptome sequencing, long-read RNA-seq (long-
RNA-seq) can successfully reveal the full-length transcripts at an unprecedented resoluKon. 
Compare with short-read RNA-seq, long-RNA-seq presents addiKonal advantages. First, long-
RNA-seq can reduce the noise caused by arKficial amplificaKon and can dramaKcally increase the 
alignment certainty. Second, by covering full-length (or almost full-length) of the transcript 
sequence, long reads not only enable the precise idenKficaKon and quanKficaKon of known 
isoforms, but also show power to discover the novel isoforms. In addiKon, long reads have 
advantages to detect transcriptomic structural variants by precisely locaKng the exon donor-
acceptor merging points for alternaKve splicing analyses or covering the fusion juncKon points 
for fusion transcript idenKficaKon. Several plakorms have facilitated this culng-edge technique. 
Techniques from two companies have been widely applied for long-read sequencing: Pacific 
Biosciences (PacBio) Iso-Seq1 and Oxford Nanopore Technology (ONT) whole-transcriptome 
sequencing2, 3. Other than these direct long-read sequencing plakorms, several syntheKc long-
read strategies have been developed as well, including 10X Genomics Linked-reads4 and Element 
Biosciences LoopSeq5, 6.  
 
One of the major applicaKons for long-RNA-seq is to analyze isoforms and transcriptomic 
structural variants (TSVs).  TSV refers to the transcriptome sequence alteraKons that are caused 
by genomic structural variants (SVs) or transcriptomic splicing. It usually describes large variant 
with more than thousands of base pairs. Other than genomic-level analysis, transcriptome-level 
variant study can add flexibility to describe alternaKve splicing, differences in expression levels 
and potenKal funcKonal alteraKon in protein expression. These variant events may play roles as 
biomarkers for disease diagnoses and serve as therapeuKc targets. Two major TSVs will be 
explored in this study: alternaKve splicing and fusion transcript. AlternaKve splicing (or pre-mRNA 
splicing) refers to the exon splicing events on pre-mRNA, where exons can be alternaKvely 
included or removed when forming mature mRNA7, 8. Given the fact that over- or under- 
expressed isoforms (or proteins) and novel isoforms will influence the regulaKon system, 
deregulaKon of alternaKve splicing events is a hall mark of cancer. Thus, disease-associated 
isoform-specific events can serve as biomarkers for disease diagnosis and treatment9-11. For 
isoform study, limited by read length, short-read sequencing is not adequate to capture the full 
transcripts, which can only quanKfy the isoform abundance by staKsKcal inference and hard to 
discover novel isoforms. In contrast, long read shows its advantage in idenKfying the exact 
isoform and cover the splicing points by full-length transcript. However, besides complete long-
reads, truncated long-reads will be generated in the meanwhile, which will cause the uncertainty 
of isoform assignments (Fig. 1A). Thus, staKsKcal esKmaKon for isoform expression by long-RNA-
seq is sKll urgently needed. Several bioinformaKcs tools have been developed to idenKfy isoforms 
on long-RNA-seq data. LIQA12 and Mandalorion13 are able to perform isoform quanKficaKon, but 
cannot perform isoform annotaKon for individual long-read. TALON14 can perform both, but its 
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accuracy can be further improved. In addiKon, only TALON is able to discover novel isoforms, 
while LIQA and Mandalorion are merely focused on known ones.  
 
Fusion transcripts (Fig. 1B) are caused by fusion genes or trans-splicing events resulKng from 
chromosomal rearrangements or ligaKon of two different primary RNA transcripts. Fusion 
transcripts play important roles in tumorigenesis by potenKally shi`ing the open reading frame 
(ORF) for the tail protein, forming novel chimera proteins, or altering gene expression15-18. 
Previous studies have proved that fusions are highly associated with occurrence and recurrence 
of caners19-21. Suicide-gene inserKon on the fusion gene can serve as genotype-specific cancer 
therapy. In addiKon to the DNA-level of fusion gene study, fusion transcript analysis can reveal 
mulKple alternaKve splicing events22. As the toy example shown in Fig. 1B, gene A can fuse with 
three different isoforms of gene B. Short-read RNA-seq has been largely applied to discover 
fusions23. However, it has limitaKon in either performing isoform resoluKon analysis or requiring 
extremely deep sequencing (e.g. 1300x sequencing depth to detect rare fusion events in our 
previous study24). To overcome this, long reads possess advantage over short reads in capturing 
the fusion isoform and precisely locate the fusion juncKon point25. Currently, bioinformaKcs tools 
such as Genion26 and JAFFAL27, have been developed to call fusion transcripts from long-RNA-seq 
that. However, they can only detect fusion events at gene level, but not isoform resoluKon. 
AddiKonally, neither tool will perform fusion isoform quanKficaKon to esKmate the expression 
level of normal and fusion isoforms. Tool such as AERON28 is newly developed and its Github script 
is sKll under development.  
 
In this arKcle, we proposed a new bioinformaKcs pipeline IFDlong, an Isoform Fusion Detector 
that was tailored for long-RNA-seq data for the annotaKon and quanKficaKon of isoform and 
fusion transcripts. As shown in Fig. 1C, the pipeline can take in either bulk or single-cell long-RNA-
seq data. Based on the reference genome and gene/isoform annotaKon profile, the long reads 
were aligned to reference genome and were annotate to genes and isoforms. For the case where 
no known isoform/genes can be annotated to the long-read, novel isoforms were defined. 
Followed by staKsKcal inference methods, isoform and fusion quanKficaKon profiles were 
generated as output. Compared with the exisKng tools, IFDlong presents four major advantages: 
(1) IFDlong is compaKble with both bulk and single-cell long-RNA-seq data; (2) IFDlong is able to 
perform read-level gene/isoform annotaKon and detect novel isoforms; (3) IFDlong performs 
staKsKcal esKmaKon on the truncated long-reads with mulKple alignment for high-accurate 
isoform and fusion quanKficaKon; (4) IFDlong is the only tool that can do discover fusion 
transcripts at isoform resoluKon. To test the performance of proposed pipeline, we first compared 
IFDlong with several exisKng tools in in-silico data generated by long-read simulator to evaluate 
their performance under different sequencing parameters. Next, mulKple published long-read 
data sets were employed and proved that our tool is compaKble with different long-read 
plakorms and its ability to accurately profile alternaKve splicing and fusion events. In summary, 
IFDlong showed overall best performance in terms of isoform quanKficaKon, novel isoform 
detecKon, and fusion isoform quanKficaKon. IFDlong will serve as a generalizable tool for 
advanced long-RNA-seq data analysis. 
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Methods and Materials 
 
Reference and annota9on file prepara9on 
IFDlong requires the reference genome in FASTA format, the transcript annotaKon profile in BED 
format, the gene annotaKon profile in BED format, the amino acid (AA) annotaKon profile in TXT 
format, pseudo gene database in RDS format, and the root gene symbols of all gene families in 
TXT format. All the reference and annotaKon files for human and mouse are well prepared 
(available for download in Github) and will be fully described below. If the users are working on 
species other than human and mouse, please apply the IFDlong refDataSetup.sh funcKon to build 
up the reference files. 
 
IFDlong can take in both raw sequencing read (in FASTQ format) and aligned file (in BAM format). 
If working on FASTQ file, a reference genome in FASTA format is required to call Minimap2 aligner 
29 (Fig. 1C). For gene and isoform annotaKon, gene annotaKon profile in BED format is required 
by IFDlong. For example, the annotaKon file in GTF format can be downloaded from the UCSC 
genome reference ConsorKum (e.g. GRCh38 for human and GRCm38 for mouse downloaded from 
hOps://hgdownload2.soe.ucsc.edu/downloads.html). Then the GTF file will be formaOed by 
IFDlong (via command IFDlong.sh) into BED format, where each row records the chromosome, 
start posiKon, end posiKon, name, score, and strand of each consisKng exon. UlKmately, a known 
gene and a known transcript profile will be used by IFDlong pipeline for gene and transcript 
annotaKon. 
 
IFDlong will build the AA annotaKon profile per known transcripts. Based on the reference 
genome (in FASTA format, described above) and the transcript profile (in BED format, described 
above), IFDlong will first apply the ge*asta funcKon in bedtools30 to extract the DNA/RNA 
sequences per transcript, followed by the translate funcKon in Biostrings R package to translate 
the DNA/RNA sequences into AA sequences. These AA sequences will be saved in the TXT format 
as the AA annotaKon profile to be used for the predicKon of AA sequence of the long read.  
 
To filter out false posiKve fusion candidates, database for gene families and pseudo genes are 
required by IFDlong. The human pseudo gene database was downloaded from Pseudogene.org 
(hOp://pseudogene.org/psicube/data/gencode.v10.pseudogene.txt), and the mouse pseudo 
gene database was collected from Mouse Genome InformaKcs 
(hOps://www.informaKcs.jax.org/downloads/reports/MGI_BioTypeConflict.rpt). To play a 
complementary role, addiKonal pseudo genes were idenKfied based on the gene descripKons 
obtained from Bioconductor packages org.Hs.eg.db (for human) and org.Mm.eg.db (for mouse). 
The pseudo gene names were saved in an RDS file. To collect the gene family informaKon, human 
database was downloaded from the HGNC BioMart server (hOps://biomart.genenames.org), 
which contains the family names and common root gene symbols of each human gene family. For 
mouse gene family informaKon, given no reliable open-source database was found to the best of 
our knowledge, the mouse genes were first mapped to human homologous genes by MGI Data 
and StaKsKcal Reports (hOps://www.informaKcs.jax.org/downloads/reports/index.html). Then 
the mapped mouse genes will employ the same gene family database as the human one.  
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Isoform quan9ty es9mates 
The IFDlong isoform quanKficaKon method is derived from the LIQA12, with improved esKmaKon 
algorithm uKlizing the results from the upstream isoform annotaKon analysis. MathemaKcally, 
given a gene of interest denoted by 𝑔, let 𝑅! represent the set of reads (denoted by 𝑟) that are 
aligned to the gene 𝑔, and 𝐼! is the set of known isoforms (denoted by 𝑖)  from gene 𝑔. For a 
specific isoform 𝑖 ∈ 𝐼!, let 𝜃"

! denote its relaKve abundance, with 0 ≤ 𝜃"
! ≤ 1 and ∑ 𝜃"

!
"∈$! =1. 

The probability that a read originates from isoform 𝑖 is defined as Pr(𝑖𝑠𝑜𝑓𝑜𝑟𝑚 = 𝑖) = 𝜃"
!. We 

further define the indicator matrix 𝑍%!,$! ∈ {0,1}|%
!|×|$!| that is unobserved with entry 𝑧)," = 1 

if the read 𝑟 is generated from a molecule that is originated from isoform 𝑖, and otherwise 𝑧)," =
0. For isoform quanKficaKon, the goal is to esKmate the relaKve abundance Θ! = {𝜃"

!, 𝑖 ∈ 𝐼!} 
based on RNA-seq long reads annotated to the gene 𝑔. 
 
With the notaKon above, the complete data likelihood of the long-RNA-seq aligned to gene 𝑔 can 
be wriOen as  

𝐿<𝑅!, 𝑍%!,$!=Θ!> = ??{Pr(𝑟𝑒𝑎𝑑 = 𝑟, 𝑖𝑠𝑜𝑓𝑜𝑟𝑚 = 𝑖|Θ!)}*",$
"∈$!)∈%!

 

																																																													= ∏ ∏ FPr(𝑟𝑒𝑎𝑑 = 𝑟|𝑖𝑠𝑜𝑓𝑜𝑟𝑚 = 𝑖, Θ!)𝜃"
!G*",$"∈$!)∈%! , 

where  Pr(𝑟𝑒𝑎𝑑 = 𝑟|𝑖𝑠𝑜𝑓𝑜𝑟𝑚 = 𝑖, Θ!) = H
+

,%!$,
, 𝑖 ∈ 𝐼!)

0				, 𝑖 ∉ 𝐼!)
, 𝑅!"  denotes the set of reads that are 

annotated to isoform 𝑖 (i.e., a subset of 𝑅!, 𝑅!" ⊂ 𝑅!), and 𝐼!)  represents the set of isoforms 
that the read 𝑟 is annotated to (similarly, 𝐼!) ⊂ 𝐼!). Note that it is possible that IFDlong annotates 
a read to mulKple known isoforms which are highly overlapped with each other, and in this case, 
|𝐼!)|>1. 
 
Next, with the complete data likelihood, the update procedure of the ExpectaKon-MaximizaKon 
(EM) algorithm to esKmate the parameter Θ! is as follows: 
 
Ini9aliza9on: Take the reads aligned to mulKple isoforms as a supporKng read for each of the 
isoforms (e.g., if one read is aligned to two isoforms of gene 𝑔, it will serve as a supporKng read 
for both isoforms, as the red long-read illustrated in Fig. 1A), Θ! will be iniKalized as proporKon 
of the supporKng reads aligned to each isoform for gene 𝑔.  
 
Expecta9on-step (E-step): Calculate the expectaKon of the log likelihood with the following 
funcKon: 
 𝑄LΘ-MΘ!(/)N = ∑ ∑ 𝐸

1𝑍%!,$!2Θ!
(/)

3
F𝑧),"G logS𝑃𝑟(𝑟𝑒𝑎𝑑 = 𝑟|𝑖𝑠𝑜𝑓𝑜𝑟𝑚 = 𝑖, 𝛩!) 𝜃"

!V"∈$!)∈%! , 

where 𝐸
1𝑍%!,$! 2Θ!

(/)
3
F𝑧),"G =

4$
!(&)

∑ 4(
!(&)

(∈*!"
. 

 
Maximiza9on-step (M-step): Maximize funcKon	𝑄LΘ-MΘ!(/)N	by	Θ!	with	the	following	formula,		

𝜃"
!(/6+) = ∑ 𝐸

1𝑍%!,$!2Θ!
(/)

3
F𝑧),"G)∈%! /|𝑅!|,	for	𝑖 ∈ 𝐼!. 
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The EM algorithm iteraKvely update the parameter by alternaKng between the E-step and M-step 
unKl convergence.  
 
Fusion quan9ty es9mates 
We use similar idea to perform fusion quanKficaKon. Given a gene fusion 𝑓 consisKng of all genes 
𝑔7
8 in gene set 𝐺8, let 𝑅8 denote the set of reads that are annotated to the gene fusion 𝑓, and 𝐶8 

is the set of fusion transcripts from the gene fusion (i.e., each isoform component 𝑖97  of a fusion 
transcript 𝑐 ∈ 𝐶8 is from one of the gene 𝑔7

8	in 𝐺8). Then, we denote the relaKve abundance of 
each fusion transcript to be 𝜃9

8 with 0 ≤ 𝜃9
8 ≤ 1 and ∑ 𝜃9

8
9∈:+ =1, so the probability that a read 

originates from fusion transcript 𝑡 is Pr(𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐) = 𝜃9
8. Similarly, we define the unobserved 

read-fusion transcript compaKbility matrix 𝑍%+,:+ ∈ {0,1}
,%+,×,:+, with entry 𝑧),9 = 1 if the read 

𝑟 is generated from a molecule that is originated from fusion transcript 𝑐8, and otherwise 𝑧),9 =
0 . For fusion transcript quanKficaKon, our goal is to esKmate the relaKve abundance Θ8 =
{𝜃9

8 , 𝑐 ∈ 𝐶8} based on RNA-seq long reads annotated to the gene fusion 𝑓. 
 
Similarly, the complete data likelihood  is	

𝐿<𝑅8 , 𝑍%+,:+=Θ8> = ? ?FPr(𝑟𝑒𝑎𝑑 = 𝑟, 𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐=Θ8)G*",,

9∈:+)∈%+
 

																																																													= ∏ ∏ FPr(𝑟𝑒𝑎𝑑 = 𝑟=𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐, Θ8)𝜃9
8G
*",,

9∈:+)∈%+ , 

where  Pr(𝑟𝑒𝑎𝑑 = 𝑟=𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐, Θ8) = k
+

,%+,,
, 𝑐 ∈ 𝐶8)

0				, 𝑐 ∉ 𝐶8)
, 𝑅89  denotes the set of reads that are 

annotated to fusion transcript 𝑐 (i.e., a subset of 𝑅8 , 𝑅89 ⊂ 𝑅8), and 𝐶8)  represents the set of 
fusion transcripts that the read 𝑟 is annotated to (similarly, 𝐶8) ⊂ 𝐶8). Again, it is possible that 
IFDlong annotates a read to mulKple fusion transcripts which are are highly overlapped with each 
other, and in this case, |𝐶8)|>1. 
 
The EM algorithm iteraKvely update the parameter Θ8 by alternaKng between the E-step and M-
step as below unKl convergence.  
 
E-step: calculate the expectaKon of the log likelihood by  
 𝑄 LΘ;MΘ8(/)N = ∑ ∑ 𝐸

<𝑍%+,:+ =Θ8
(/)

>
F𝑧),9G logS𝑃𝑟(𝑟𝑒𝑎𝑑 = 𝑟=𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐, 𝛩8) 𝜃9

8V9∈:+)∈%+ , 

where 𝐸
<𝑍%+,:+ =Θ8

(/)
>
F𝑧),9G =

4,
+(&)

∑ 4(
+(&)

(∈-+"

. 

 
M-step: maximize funcKon	𝑄 LΘ;MΘ8(/)N	with	respect	to	Θ8	and	have		

𝜃9
8(/6+) = ∑ 𝐸

<𝑍%+,:+ =Θ8
(/)

>
F𝑧),9G)∈%+ /=𝑅8=,	for	𝑐 ∈ 𝐶8 . 
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Simula9on data genera9on 
In silico simulaKon data were generated to benchmark the so`ware performance with underlying 
truth. Type I and Type F simulaKon datasets were generated for isoform and fusion evaluaKon, 
respecKvely.  
 
The Type I1 simulaKon datasets were generated to mimic the distribuKon of whole transcriptome 
expression. First, to simulate the distribuKon of isoform expression in real data, Universal Human 
Reference (UHR) data was employed, and 28157 isoforms were detected and quanKfied (Fig. S1A). 
Second, sequence templates were constructed using these isoforms by synthesizing the exons of 
each isoform according to the transcript annotaKon profile. Next, mulKple datasets of long-RNA-
seq were generated by long-read simulator PBSIM231 with different accuracy selngs and 
gradient mean read lengths. Three accuracy selng were generated by adjusKng the PBSIM2 
parameters: accurate sequencing (--difference-ra7o=1:1:0 for subsKtuKon:inserKon:deleKon, 
and --accuracy-mean=0.99); ONT-like accuracy (--difference-ra7o=23:31:46 and --accuracy-
mean=0.85); and PacBio-like accuracy (--difference-ra7o=6:50:54 and --accuracy-mean=0.85). 
Under the selng of high-accurate sequencing, simulaKon datasets with gradient mean read 
lengths were generated by selng --length-mean to be 200bps, 500bps, 800bps, 1000bps, 
1200bps, 1500bps, 1800bps, and 2000bps (Fig. S2). Finally, each pool of simulated reads with a 
specific accuracy and mean read length selng was subsampled to gradient sequencing depth 
with 0.5 million, 1 million, 2 million and 4 million reads, respecKvely (Fig. S1B). Note that, the 
expression intensiKes of the 28157 isoforms follow the distribuKon of isoform expressions in the 
UHR data. In the meanwhile, the transcript and gene origin of each simulated long read was 
recorded to serve as the underlying truth.  
 
The Type I2 simulaKon datasets were designed to generate long reads from mulKple isoforms that 
were sourcing from the same gene. The sequence template consists of 16 transcripts of gene 
CTCFL (NM_001269043, NM_001269040, NM_001269041, NM_001269042, NM_080618, 
NM_001269046, NM_001269044, NM_001269049, NM_001269054, NM_001269045, 
NM_001269050, NM_001269048, NM_001269047, NM_001269055, NM_001269051, 
NM_001269052). Next, similar as the Type I1 simulaKon, mulKple Type I2 datasets were 
generated with sequencing depth of 400 under the gradient mean read lengths (200bps, 500bps, 
800bps, 1000bps, 1200bps, 1500bps, 1800bps, and 2000bps) and the three accuracy selngs 
(accurate, PacBio and ONT).  
 
The Type I3 simulaKon datasets aim to benchmark the novel isoform detecKon. First, the 
sequence templates were constructed by two isoform sets: 1000 known isoforms and novel 
isoforms. Novel isoforms were derived from the 1000 known transcripts with six different types: 
859 templates with skipping exon, 1406 templates with addiKonal exon, 873 templates with 
truncated alternaKve 5’ splice site, 1329 templates with extended alternaKve 5’ splice site, 873 
templates with truncated alternaKve 3’ splice site, and 1325 templates with extended alternaKve 
3’ splice site. Each individual type of novel isoforms was pooled with the 1000 known transcripts 
to generate six sequence templates in total. Per novelty type, simulator PBSIM2 was employed to 
generate long-RNA-seq datasets with sequencing depth of 40 under the mean read length of 
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1000bps and 2000bps, and the three different accuracy selngs. The origin source and the novel 
type of each simulated long read were recorded to serve as the truth for performance evaluaKon. 
 
The Type F1 datasets were simulated for fusion transcript quanKficaKon. The sequence templates 
consist of two sets of isoforms: 1000 selected known isoforms sourcing from different genes, and 
1000 mosaic fusion transcript fusing two known isoforms from the 1000 known list with random 
breakpoints. Based on these template sequences, PBSIM2 was employed to generate simulaKon 
datasets under three accuracy selngs with mean read length of 1500bps and sequencing depth 
of 400. According to the simulaKon log files, the read fusion status (fusion transcripts or normal 
isoform) and the isoform/ gene origin informaKon of each long-read sequence were collected as 
underlying truth.  
 
The Type F2 simulaKon datasets were intenKonally designed to mimic the genes fused with 
mulKple mates. To simulate the gene pairs that have high occurrence in real data, the TCGA fusion 
database (hOps://www.kobic.re.kr/chimerdb/download) was used as reference. Among the top 
10 cancer types with the highest number of fusion transcripts, top 5 genes (referred as popular 
genes) with the highest number of paired genes were selected: FBXL20 (Breast Invasive 
Carcinoma, BRCA), CDS1 (Bladder Urothelial Carcinoma, BLCA), TMPRSS2 (Prostate 
Adenocarcinoma, PRAD), FRS2 (Sarcoma, SARC) and SFTPB (Lung Adenocarcinoma, LUAD). All the 
mate genes for these five popular genes are listed in the Table S7. For each popular gene, the 
fusion templates were constructed by fusing the popular gene and their mates according to the 
fusion breakpoints in the TCGA fusion database. Then based on these fusion templates, long-
RNA-seq datasets were simulated under different mean read lengths (200bps, 1000bps, and 
1500bps) and three accuracy selngs (accurate, PacBio and ONT) with sequencing depth of 40 by 
PBSIM2. In the meanwhile, the fusion origins and breakpoint of each simulated long-read 
sequence was collected as the truth. 
 
 
Real data collec9on and pre-processing 
 
Universal Human Reference (UHR). Long-RNA-seq on the UHR sample was used to evaluate 
isoform quanKficaKon. The direct mRNA data sequenced by ONT plakorm was download from 
Gene Expression Omnibus (GEO) PRJNA63936612 with in total 476,000 reads and 896 base pairs 
in median, and 441,138 reads were aligned to human reference by Minimap2 aligner29. The UHR 
RNA (Agilent) + SIRV Isoform Mix E0 (Lexogen) sample measured by PacBio plakorm was 
downloaded from the PacBio website 
(hOps://downloads.pacbcloud.com/public/dataset/UHR_IsoSeq/). In total 6,775,127 reads with 
1835 base pairs in median length were collected, and 6,385,883 reads was aligned to human 
reference by Minimap2 aligner. To serve as the underlying truth, measurements by the TaqMan 
Real-Time PCR Assays on the Stratagene UHR RNA samples were collected from the MicroArray 
Quality Control (MAQC) project via GEO GSE535032. The geometric mean of the four repeaKng 
measurements was calculated as the true expression. In total 1044 isoforms were quanKfied and 
964 of them have passed detecKon flag that will be used for this project.  
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Mouse data. For isoform quanKficaKon, long-RNA-seq data on mouse C2C12 cell line and heart 
Kssue was downloaded from ENCODE project33. For C2C12, four repeats were downloaded from 
GEO database with accession ID GSE219813 and GSE219595. For mouse heart data, two repeats 
were downloaded from GSE219825. The isoform expression of both mouse datasets were 
quanKfied by TALON pipeline14.  
 
Single-cell long-RNA-seq on hepatocellular carcinoma (HCC) pa9ent. The data was downloaded 
from GEO GSE223743, including a paired liver benign – tumor samples from an HCC paKent34. 
This dataset was applied for isoform quanKficaKon, differenKal expression analysis and fusion 
detecKon analysis. Single cells with at least 1000 long-reads were defined as valid cells, and in 
total 162 and 285 cells were analyzed from benign and tumor library. For fusion transcript 
detecKon, three fusion transcripts (EML4 - ACTR2, CCDC127 - PDCD6, and FGG - PLG) were 
validated by Sanger sequencing in the previous study34 that will serve as the truth. 
 
Colon cancer samples. Tissue samples were collected from 3 colon cancer paKents, including 
benign colon Kssues (N), primary colon cancer samples (T), and lymph node metastasis samples 
(M). The samples were sequenced by Element Biosciences LoopSeq plakorm and the long-read 
data was deposited to GEO database with accession GSE1559216. Among the 8 samples, in total 
4 two-way fusions (STAMBPL1 - FAS, SMYD3 - ZNF124, VAPB - GNAS, and ECHDC1 - PTPRK) were 
detected and validated using Taqman qRT-PCR and Sanger sequencing6, which will serve as the 
underlying truth for this study.  
 
MCF7 human breast cancer cell line. MCF7 RNA extracKon sequenced by both PacBio and ONT 
plakorms were downloaded for isoform and fusion analysis. For PacBio SMRT sequencing, long-
read FASTQ files were downloaded from NCBI SRA database with accession ID SRP055913 
(hOps://www.ncbi.nlm.nih.gov/sra/?term=SRP055913). The 113 runs were concatenated into 
one file for analysis. For SGNex ONT sequencing, data was downloaded from 
hOps://github.com/GoekeLab/sg-nex-data. MCF7-EV_directRNA, MCF7_cDNA, MCF7_directRNA, 
and MCF7_directcDNA with mulKple replicates were used in this study. As the true isoform 
expression, the RNA-seq on MCF7 with RSEM quanKficaKon of transcripts35 downloaded from 
Cancer Cell Line Encyclopedia (CCLE)36 were employed. Both two-way and three-way fusions that 
have been summarized in the previous research were used as fusion truth27.  
 
H838 human lung adenocarcinoma cell line. Single-cell long-RNA-seq data on H838 sequenced 
by ONT plakorm was downloaded from GEO database with accession ID GSE15486937. Both two-
way and three-way fusion transcripts were detected from this dataset for performance evaluaKon.  
 
 
Performance evalua9on  
 
Spearman’s correla9on is a nonparametric measure of staKsKcal dependence between the 
rankings of two vectors. The correlaKon ranges from -1 to 1, with 1 indicKng the same ranking 
between the two vectors, and -1 represenKng a fully opposed correlaKon. For both isoform or 
fusion transcript quanKficaKon, the Spearman’s correlaKon between the true number of 
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supporKng reads (denoted as vector 𝑋⃗) and the detected number of supporKng reads (denoted 
as vector 𝑌t⃗  ) by each algorithm can be evaluated by the formula: 
 

𝜌 =
𝑐𝑜𝑣F𝑅<𝑋⃗	>, 𝑅<𝑌t⃗ 	>G

𝜎%?@A⃗ 	D𝜎%?EA⃗ 	D
, 

where 𝑅<𝑋⃗>, 𝑅(𝑌t⃗ )  are the ranks of 𝑋⃗  and 𝑌t⃗  respecKvely; 𝜎%?@A⃗ 	D, 𝜎%?EA⃗ 	D	 are the standard 

deviaKons of the rank variables, and 𝑐𝑜𝑣F𝑅<𝑋⃗	>, 𝑅<𝑌t⃗ 	>G is the covariance of the rank variables. 
 
Root Mean Squared Error (RMSE) is employed to measure the differences between true and 
esKmated values. Following the above notaKon, the RMSE is applied to benchmark the isoform 
quanKficaKon in the Type I1 simulaKon data by the formula: 
 

𝑅𝑀𝑆𝐸 = z{𝑋⃗ − 𝑌t⃗ {
F

𝑛 , 

where ‖ ∙ ‖ is 𝑙F-norm operator, and 𝑛 is the length of the vector 𝑋⃗ and 𝑌t⃗ . 
 
Consistency measurement. −𝑙𝑜𝑔10(𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑅𝑀𝑆𝐸) is used to evaluate the agreement across 
mulKple repeats for isoform quanKficaKon. Isoform proporKons were first averaged across all the 
repeats. Then for each repeat, the root mean squared error (RMSE) of the esKmated isoform 
proporKons was calculated compared to this mean proporKon. UlKmately, RMSE values of all the 
repeats were averaged and -log10 transformed as described below, 

− log+G 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑅𝑀𝑆𝐸 =
1
𝑅�

z�𝑋⃗) − 𝑋�⃗.�
F

𝑛 		
)

	, 

where ‖ ∙ ‖ is 𝑙F -norm operator; 𝑛  is the length of the isoform proporKon vector 𝑋⃗) ; 𝑋�⃗. is the 
mean of 𝑋⃗)  over 𝑟 = {1,2, … , 𝑅}, and 𝑅 is the number of repeats (e.g. four repeats for C2C12 
mouse cell line or two repeats for mouse heart dataset). 
 
Sensi9vity and Specificity.  SensiKvity (true posiKve rate) is the probability of a posiKve test result, 
condiKoned on the individual truly being posiKve. Specificity (true negaKve rate) is the probability 
of a negaKve test result, condiKoned on the individual truly being negaKve. To benchmark novel 
isoforms detecKon in the Type I3 simulaKon data, the sensiKvity and specificity are calculated as: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑡𝑟𝑢𝑙𝑦	𝑛𝑜𝑣𝑒𝑙	𝑎𝑛𝑑	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑛𝑜𝑣𝑒𝑙

𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑡𝑟𝑢𝑙𝑙𝑦	𝑛𝑜𝑣𝑒𝑙 , 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑡𝑟𝑢𝑙𝑦	𝑛𝑜𝑟𝑚𝑎𝑙	𝑎𝑛𝑑	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑛𝑜𝑟𝑚𝑎𝑙

𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑡𝑟𝑢𝑙𝑙𝑦	𝑛𝑜𝑟𝑚𝑎𝑙 . 
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Precision, Recall and F1 score. Precision (also called posiKve predicKve value) is the fracKon of 
relevant instances among the retrieved instances. Recall (also known as sensiKvity) is the fracKon 
of relevant instances that were retrieved. The precision and recall are defined as:  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑓𝑢𝑠𝑖𝑜𝑛𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑢𝑠𝑖𝑜𝑛𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 , 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑓𝑢𝑠𝑖𝑜𝑛𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑓𝑢𝑠𝑖𝑜𝑛𝑠 . 

 
To balance the precision and recall, the F-measure (or F1 score) is the defined as the harmonic 
mean of these two values: 
 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 . 

 
Cosine similarity is a measure of similarity between two non-zero vectors defined in an inner 
product space. It is defined as the cosine of the angle between the two vectors, i.e., the dot 
product of the vectors divided by the product of their lengths. In the Type I2 simulaKon, the cosine 
similarity for each so`ware is the cosine of the angle (denoted as 𝜃) between the vector of true 
isoform proporKon (denoted as 𝐴) and the vector of esKmated isoform proporKon by the method 
(denoted as 𝐵t⃗ ). Similarly, in the Type F2. simulaKon, the cosine similarity for each method is the 
cosine of the angle between the vector of true fusion proporKon and the vector of esKmated 
fusion proporKon by the method. The formula of cosine similarity is defined as 
 

cos(𝜃) =
𝐴 ∙ 𝐵t⃗

{𝐴{{𝐵t⃗ {
, 

where ‖ ∙ ‖ is 𝑙F-norm operator. 
 
 
 
Results 
 
IFDlong development   
We developed so`ware IFDlong, an isoform and fusion detector tailored for long-RNA-seq data. 
The so`ware consists of six major steps, as shown in Fig. 1C.  
 
(Step 1) Long read alignment and filtering. IFDlong first takes in long-RNA-seq data and aligns 
long reads to a reference genome (e.g. GRCh38 for human and GRCm38 for mouse) using the 
noise tolerant long-read aligner Minimap229. Unmapped long reads as well as reads with mulKple 
alignments are filtered out. 
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(Step 2) Gene, isoform and amino acid (AA) annota9on. Long reads are intersected with 
gene/isoform annotaKon profile (described in Materials and Method for preparaKon) by 
BEDTools30. Reads with consecuKve overlapping with known exons will be further annotated to 
known isoforms. While reads that cannot be fully covered by known exons will be defined as novel 
isoform. These reads will be further subject to gene-level annotaKon to be assigned into known 
genes or novel genes. UlKmately, all the long reads will be annotated three categories: known 
genes with known isoforms, known genes with novel isoforms, or novel genes. Note that, a long 
read will to be either uniquely assigned to one isoform or uncertainly aligned into mulKple 
isoforms (Fig. 1A). As a special case, a long read is potenKally aligned into more than one gene, 
which will serve as a supporKng read for fusion transcript. Based on the transcript level 
annotaKon, IFDlong will predict the corresponding amino acid sequence using the AA annotaKon 
profile as reference (described in Materials and Method for preparaKon).  
 
(Step 3) Fusion transcript filtering. For the detecKon of fusion transcripts, false posiKves will be 
introduced due to nature of long-read sequencing (such as high error rate or arKficial effect) and 
the complexity of the transcriptome (such as gene similarity and complex regulaKon mechanisms). 
To control the false posiKves, IFDlong applied the following filtering criteria. (1) Anchor length is 
defined as the number of base pairs that a supporKng read is aligned to each fusion gene23. Short 
anchor length may result from misalignment, sequencing error or genome similarity. A long read 
is defined as a fusion supporKng read by IFDlong only if it has a minimum of 10bp (by default) of 
anchor length to each fusion gene. (2) Fusion transcripts involving pseudo-genes are large likely 
to be false posiKves. (3) Fusion candidates with genes sourcing from the same family will be 
filtered out, because these are large likely result from mulKple alignment due to the 
transcriptome similarity. Finally, a read-based report file will be generated to summarize the gene, 
isoform, amino acid, and fusion annotaKon. We would suggest the users to further filter the 
fusion transcripts will readthrough gene pairs or genes with short distance.  
 
(Step 4) Es9ma9on of Isoform and fusion transcript expression. Based on the gene/isoform 
annotaKon report, IFDlong will esKmate the isoform and fusion transcript expression. Per gene 
or fusion gene group, IFDlong esKmates the relaKve abundance of isoforms and fusion transcripts 
by an ExpectaKon-MaximizaKon (EM) algorithm for those uncertain isoform assignments (for 
example, result from truncated long reads in Fig 1A, or fusion genes with mulKple isoforms in Fig 
1B). In the expectaKon step (E-step), IFDlong takes in read annotaKon informaKon to calculate 
the likelihood of isoform/ fusion expression. And in the maximizaKon step (M-step), the relaKve 
abundance will be calculated to opKmize the likelihood funcKon. The E-step and M-step will be 
performed iteraKvely unKl converge. The details were described in the Methods and Materials. 
Finally, IFDlong will output reports for isoform and fusion quanKty esKmates.  
 
Isoform annota9on and quan9fica9on in simula9on data 
MulKple simulaKon data sets were generated to evaluate the pipeline performance in terms of 
isoform annotaKon and quanKficaKon. To mimic the real sequencing data, our IFDlong pipeline 
was first applied into the ONT long-RNA-seq data on Universal Human Reference (UHR) sample12 
and quanKfied the expression intensiKes of 28157 isoforms (Fig. S1A). Based on this distribuKon 
of isoform expression, the Type I1 simulaKon datasets were generated by tool PBSIM231 with 
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different accuracy selngs (accurate, PacBio and ONT), gradient number of long reads (around 
0.5 million, 1 million, 2 millions, and 4 millions reads, see Fig. S1B ), and gradient mean read 
length (200bps, 500bps, 800bps, 1000bps, 1200bps, 1500bps, 1800bps, and 2000bps, see Fig. S2). 
SimulaKon details were described in Materials and Methods.  
 
As a representaKve of the Type I1 simulaKon, Fig. 2A shows the performance comparison in the 
simulaKon data with accurate sequencing, 0.5 million reads and 1500bps mean read length. The 
proposed IFDlong pipeline and three culng-edge isoform quanKficaKon tools (LIQA12, TALON14, 
and Mandalorion13) were applied into the simulaKon data and compared with the true isoform 
distribuKon. The distribuKon histograms of isoform intensiKes are shown in the diagonal blocks 
of Fig. 1A, and all their pairwise distribuKon scaOer plots and Spearman’s correlaKons are 
presented in the boOom and upper blocks, respecKvely. Among all the tools, the IFDlong achieves 
the highest correlaKon with the truth (0.83), while the other tools in general under-esKmate the 
isoform expression (scaOer plot under the diagonal when compared with the truth) or unable to 
capture a subset of the known isoforms (mulKple zero-expressed isoforms in the scaOer plot). 
The same conclusion holds for the simulaKon datasets with gradient parameter selngs. Fig. 2B 
and S3A illustrate the Spearman’s correlaKon and root mean squared error (RMSE) in the three 
sequencing accuracy selngs. The IFDlong reaches the highest performance followed by LIQA. In 
general, all the tools are robust to different plakorms. The IFDlong shows slightly higher 
performance in the high-accurate selng compared with the ONT and PacBio selngs. When 
checking the pipeline performance in terms of sequencing depth, Fig. 2C and S3B indicate that 
all the tools are robust to different sequencing coverage and are able to quanKfy isoform 
expression at relaKvely lower depth (such as 0.5M). The IFDlong presents slightly beOer 
performance along the increasing number of reads. In addiKon to sequencing accuracy and depth, 
tool performances were evaluated in gradient numbers of read length. As shown in Fig. 1D and 
S3C, all the tools yield dramaKcally increasing accuracy as the sequencing reads extending longer, 
which strongly prove the advantage of long-read techniques compared with short-read 
sequencing. Specifically, the IFDlong has already achieved high correlaKon (0.74) with the truth 
in the simulaKon data with 200bps mean length, and its performance further increases to 0.85 in 
2000bps length. 
 
Besides the accuracy, computaKonal costs were benchmarked among mulKple tools in the 
meanwhile. In general, all the tools consume longer running Kme for larger sequencing coverage 
and longer read length with some excepKons (Fig. S4A and S4B). While the largest memory used 
is not a monotone funcKon of the read length (Fig. S4), but all within acceptable cost. The IFDlong 
algorithm requires longer but manageable running Kme and similar memory cost compared with 
most of the other tools. 
 
Dis9nguishing mul9ple alterna9ve splicing events sourcing from the same gene in simula9on 
data 
Other than gene-level quanKficaKon, one of the major advantages of long-read technique is to 
idenKfy mulKple alternaKve splicing events and quanKfy their expressions. As illustrated in Fig. 
1A, a long read will be either uniquely aligned to one isoform or uncertainly assigned to mulKple 
isoforms. To address this issue, the IFDlong pipeline developed the EM algorithm to esKmate 
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isoform relaKve abundance (see the Methods and Materials for algorithm details).  In the Type I2 
simulaKon, we generated long-reads on 16 isoforms sourcing from gene CTCFL as an example. 
Some isoforms were merged into one group given they share the same coding sequence 
(NM_001269040 includes NM_001269040, NM_001269041, NM_001269042, and NM_080618; 
NM_001269051 includes NM_001269051 and NM_001269052). UlKmately, in total 12 isoform 
groups were quanKfied for the performance evaluaKon. The isoform tools (IFDlong, LIQA, TALON 
and Mandalorion) were applied into this simulaKon data to quanKfy the abundance of all the 
alternaKve splicing events. Importantly, IFDlong and TALON are the only tools that can perform 
read-level isoform annotaKon, while the other pipelines only report the overall isoform 
abundancy/ intensity. Fig. 2E shows the conKngency table (in percentage) between the true and 
the IFDlong annotated isoform assignments for the simulaKon data with 1500 bps median read 
length in high-accurate selng, where larger percentages in the diagonal block of the heatmap 
indicate higher consistency. In terms of abundance esKmates, we compared the relaKve 
abundance (sum up to be 100%) among the truth and the esKmates by the four tools in Fig. 2F. 
The IFDlong and LIQA show out the highest consistency with the truth (cosine similarity to be 
0.94 and 0.90, respecKvely), followed by the Mandalorion and TALON. Similar as the Type I1 
simulaKon selng, we simulated gradient read lengths in this Type I2 simulaKon selng. Fig. S5 
illustrates the conKngency heatmap between the truth and the IFDlong pipeline with different 
read lengths. And the results show out increasing similarity when the read length extends longer.  
 
Novel isoform detec9on in simula9on data 
In addiKon to quanKfying known isoforms, IFDlong can call novel isoforms from the long-RNA-seq 
data. As the toy example shown in Fig. 3A, four types of novel isoforms were defined: skipping 
exon, addiKonal exon, alternaKve 5’ splice site, and alternaKve 3’ splice site. MulKple factors will 
cause the alteraKons of the reads compared with the reference sequences, such as inserKon, 
deleKon or mismatches caused by SNP, mutaKon and sequencing errors, or misalignment caused 
by mulKple alignment and aligner performance. To avoid these false posiKves when calling novel 
isoforms, we proposed a buffer parameter for tolerance region next to the edge of the known 
exon. The buffer length is 9bps by default and can be adjusted by user selng. As shown in Fig. 
3B, if the edge of the detected exon locates within the buffer region of the reference exon, the 
so`ware will regard it as normal isoform, otherwise novel isoform with either truncaKon or 
extension. To simulate these novel isoform events, in the Type I3 datasets, we generated six 
libraries for each category of novel isoform. Each library contains half long-reads that are derived 
from normal isoforms, and another half reads supporKng the novel isoforms of each category 
(details were described in Methods and Materials). Given only IFDlong and TALON can perform 
read-level isoform annotaKon, Fig. 3C compares the sensiKvity and specificity between IFDlong 
and TALON in terms of detecKng the long reads supporKng the novel isoforms. Two buffer 
tolerance lengths were applied to IFDlong: 0bp (exact edge-matching between the reference and 
detected exon) and 9bps, while the buffer length for TALON is not allowed to be customized.  
 
We are expecKng that a reasonable buffer selng (suggested selng: 3-6bp) will dramaKcally 
control the false posiKves without missing a lot of true posiKves.  
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As shown in Fig. 3C, compared with zero buffer selng, IFDlong with 9 bps buffer region can 
significantly increase the specificity with reasonable sacrifice of sensiKvity in high-accurate 
sequencing data. In this Type I3 simulaKon datasets, we generated datasets with mean read 
length to be 1000bps and 2000bps. As illustrated in Fig. 3C, IFDlong achieves higher performance 
in the longer read length datasets. For example, when detecKng novel type of addiKonal exon, 
IFDlong with 9bps buffer region can reach 99.5% sensiKvity and 94.6% specificity, while the 
1000bp can already reach saKsfiable performance (e.g., with 9bps buffer, 58.3% sensiKvity and 
96.8% specificity for the novel type of addiKonal exon). When compared with TALON, IFDlong 
with 9bps buffer region achieved higher sensiKvity and specificity in all the 2000bps mean length 
datasets, and showed higher specificity and equivalent sensiKvity in the 1000bps mean length 
datasets. In addiKon to high-accurate sequencing selng, simulaKon data with ONT and PacBio 
accuracy were generated, where similar conclusion holds in these two plakorms (Fig. S6). 
Moreover, compared with the high-accurate sequencing reads in Fig. 3C, the 9bps buffer length 
benefits IFDlong more with significant increasing specificity and negligible sensiKvity loss than 
0bp buffer length when the sequencing error rate is high (Fig. S6). Overall, compared with TALON, 
our IFDlong pipeline is able to achieve higher sensiKvity and specificity in most of the simulaKon 
scenarios (Fig. 3C, S6 and S7).  
 
Applica9on into real human datasets for isoform detec9on 
SimulaKon data has its limitaKon to present the real sequencing. In order to evaluate the tool 
performance in a comprehensive manner, we applied the proposed IFDlong pipeline as well as 
the three exisKng isoform quanKficaKon tools into real sequencing data. For human data 
applicaKon, RNA extracKons from both Universal Human Reference (UHR) and MCF7 human 
breast cancer cell line were sequenced by both ONT and PacBio plakorms. Data were downloaded 
from public resources and fully described in Materials and Method. Fig. 4A and S8 illustrates the 
Spearmen’s correlaKon of the true isoform distribuKon compared with the esKmates by each one 
of the four tools. For UHR datasets, 964 isoforms quanKfied by TaqMan Real-Time PCR Assays is 
serving as the truth32. IFDlong achieved the highest correlaKon with the RT-PCR results (0.65 and 
0.69 in ONT and PacBio dataset), indicaKng the high performance of our proposed tool. Among 
the 964 isoforms, the IFDlong has successfully captured 677 (70%) and 812 (84%) of them in ONT 
and PacBio dataset, respecKvely. Beyound these PCR quanKfied isoform set, in total 16578 and 
28078 isoforms were detected by IFDlong pipeline in both datasets (Table S1), while the 
addiKonal isoforms cannot be evaluated given the limitaKon of the RT-PCR measurement set. 
Similar analysis was performed on MCF7 datasets, where transcript expressions quanKfied by 
RNA-seq were used as underlying truth. As shown in Fig. 4A and S8, our IFDlong pipeline sKll 
performs the best compared with the other tools (Spearman’s correlaKon of 0.66 and 0.63 in both 
selected ONT and PacBio datasets). The full list of detected isoforms by IFDlong were summarized 
in Table S2. 
 
As an illustraKon, Fig. 4B takes the house-keeping gene glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh) as an example to show how the long-reads can quanKfy the transcript 
expression at isoform resoluKon. Gapdh is a highly expressed gene in human samples. Among the 
mulKple alternaKve splicing events, NM_002046 plays a dominant role in the UHR datasets as 
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quanKfied by IFDlong pipeline (Table S1). In both ONT and PacBio datasets, the long reads can 
successfully disKnguish the differences in exon 1, 4, 6, and 7 among mulKple isoforms.  
 
Applica9on into mouse datasets for isoform detec9on 
In addiKon to human data, our proposed pipeline can be applied into other species as long as the 
reference genome and annotaKon files are provided as the input. In this project, we’ve collected 
long-read data on mouse cell cline C2C12 (with four repeats) and heart Kssues (with two repeats) 
from ENCODE project33 to illustrate the generalizability of our proposed tool into broad 
applicaKons. For both datasets, TALON pipeline was employed by the ENCODE project to quanKfy 
the isoform expression. In addiKon, we applied IFDlong, LIQA and Mandalorion into these two 
mouse datasets for performance evaluaKon and applicaKon. Isoforms quanKfied by IFDlong were 
summarized in Table S3 and S4. For the mouse data, no golden standard truth is available, such 
as RT-PCR quanKfied isoforms or short-read RNA-seq measurements as a reference. Given this 
limitaKon, we can only check the performance similarity across the four tools. As shown in Fig. 
S9, IFDlong presents high agreement with LIQA and with TALON in all the datasets. In addiKon, 
the mouse datasets were applied to benchmark the consistency of isoform quanKficaKon in 
mulKple repeats. Per so`ware, mean isoform abundance was first calculated across mulKple 
repeats, and then the average RMSE were derived based on this mean abundance. As shown in 
Fig. 4C, our IFDlong pipeline and TALON (result provided by ENCODE project33) achieves the 
largest -log10(average RMSE) value in both C2C12 and heart datasets, indicaKng the high 
robustness properKes of the two tools.  
 
Besides robustness, biological insights summarized from the isoform quanKficaKon can serve as 
indirect evaluaKon of the IFDlong pipeline. The heart Kssues are collected from mouse at 14 days, 
which is the transiKon Kme of fetal isoforms to adult ones. The isoform quanKficaKon by our 
IFDlong pipeline (Table S4) has strongly supported this conclusion. For example, KKn (TTN) is a 
massive sarcomeric protein serving as a molecular spring within the sarcomere, determining the 
passive sKffness of cardiomyocytes. During the perinatal period, there is a transiKon in KKn 
isoforms from the compliant fetal KKn N2BA (NM_011652) to the sKffer N2B (NM_028004) adult 
isoform in the heart, adapKng to postnatal cardiac load demands38. Altered splicing of TTN is 
implicated in heart failure, and lowering the N2BA:N2B raKo has been proposed as a therapeuKc 
strategy for heart failure39-41. The expression levels of N2BA and N2B that have been quanKfied 
by IFDlong presents this dynamic transiKon status (Fig. 4D). Besides TTN, the switching of several 
myofibril proteins during postnatal period are observed. For example, myosins are acKn-based 
motor molecules with ATPase acKvity essenKal for muscle contracKon. During perinatal period, 
the fetal isoform of myosin heavy chain 7 (Myh7, NM_080728) is gradually switching to adult 
isoform Myh6 (NM_001164171 and NM_010856)42. Similar isoform transiKon event was 
observed on troponin I (TNNI), which is the inhibitory subunit of troponin and the thin filament 
regulatory complex. During the postnatal period, the slow skeletal TNNI (TNNI1) transiKons to the 
cardiac-type troponin (TNNI3)43. As shown in Fig. 4D, the IFDlong quanKfied isoforms have 
captured this transiKon process and more adult isoforms were observed than their corresponding 
fetal isoforms.  
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In addiKon, the mouse data also shows the distribuKon of mulKple isoforms sourcing from the 
same gene. For instance, calcium/calmodulin dependent protein kinase II delta (CaMKIIδ) plays a 
central role in a variety of cardiac diseases44 [cite], which presents several alternaKve splicing 
forms as shown in Fig. 4E. CaMKIIδB (NM_023813) is a dominant isoform containing exon 14, 
which plays a criKcal role in gene transcripKon regulaKon and may play a protecKve role in cardiac 
diseases45. CaMKIIδC (NM_001025438) is another dominant isoform lacking exons 14-16, which 
is the major contributor of the pathological process of cardiac diseases46. CaMKIIδA 
(NM_001025439) comprises exon 13 and 15–17 and regulates L-type Ca2+ channel and 
contributes to the calcium mishandling in heart failure47. Besides CaMKIIδ, as shown in Fig. S10. 
the IFDlong analysis has revealed the isoform distribuKon of many other cardiac disease related 
genes, such as Calcium Voltage-Gated Channel Subunit Alpha1 C (Cacna1c), Troponin T2 (Tnnt2), 
Calcium/Calmodulin Dependent Protein Kinase II Gamma (Camk2g) and Myocyte Enhancer Factor 
2C (Mef2c). All these have proved the addiKonal resoluKons that have been revealed by isoform-
level analysis when compared with convenKonal gene-level quanKficaKon.  
 
Detec9ng differen9ally expressed isoforms in single-cell long-read RNA-seq data 
The IFDlong pipeline is not only compaKble with bulk long-RNA-seq, but also can be applied into 
single-cell long-RNA-seq data to invesKgate the isoform expression at single-cell resoluKon. A 
paired tumor-normal liver sample from a hepatocellular carcinoma (HCC) paKent sequenced by 
LoopSeq was used in this project (details described in Materials and Methods)34. By IFDlong 
pipeline, in total 32,124 isoforms across 162 cells from the benign libraries and 285 cells from the 
tumor libraries were finally analyzed. Instead of the tradiKonal gene-based analysis, we 
performed single-cell clustering and differenKal analysis based on the isoform profile. As shown 
in Fig. 5A, cells from tumor and normal libraries are well separable from each other. Due to the 
heterogeneity of the tumor and benign Kssues, few cells sourced from the tumor library present 
benign expression paOerns. Next, differenKal expression analysis was performed comparing 
tumor and normal cells to define differenKally expressed isoforms (DEI) (Table S5). Fold changes 
of isoform were uKlized for downstream Gene set enrichment analysis on KEGG database (Fig. 5B 
and Table S6) and GO database (Fig. S11A and Table S6). Top DEIs were subject to pathway 
enrichment test by Ingenuity Pathway Analysis (IPA on up-regulated DEI, Fig. S11B and Table S6). 
Top pathways primarily associated with the tumor immune microenvironment and immune 
evasion processes. These pathways play a crucial role in HCC tumorigenesis and in the response 
to immune checkpoint inhibitor (ICI) therapies. ParKcularly, the top pathways encompass various 
aspects of immune processes, including heterogeneity within the tumor microenvironment, 
immune cell infiltraKon, immune evasion mechanisms employed by tumor cells, and potenKal 
targets for immunotherapy (Fig. 5B).  
 
For instance, considering the human leukocyte anKgen (HLA)48-50 and B2M51, 52 genes, which 
encode proteins crucial for anKgen presentaKon process criKcal for acKvaKng T cells and iniKaKng 
an immune response against tumor cells. DysregulaKon or alteraKons in the expression of these 
HLA genes can impact the immune system's ability to recognize and eliminate cancer cells, 
directly influencing the success of ICIs49, 51. In addiKon, validated HCC immune players, CD7453, 54 
(Fig. 5C), CCL555, 56 (Fig. S12A), and IL7R57, 58 (Fig. S12B), known for their involvement in HCC ICI 
response, have been idenKfied as top isoforms in pathway analysis. Their isoforms exhibit a 
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significant increase in tumor cells compared to non-tumor regions, supporKng the validated role 
of these isoforms in HCC pathogenesis, which underscores the necessity for understanding 
mechanisms of ICI resistance. Notably, CD74 contains three isoforms (Fig. 5C, NM_004355, 
NM_001025159, and NM_001025158). Based on IFDlong analysis, isoform NM_004355 and 
NM_001025159 present similar expression paOerns, while NM_001025158 shows overall low 
expression. CD74 plays mulKfaceted roles in HCC pathogenesis by directly influencing anKgen 
presentaKon through the regulaKon of major histocompaKbility complex (MHC) class II molecules, 
influencing immune modulaKon and tumor cell behavior53, 54. Furthermore, several isoforms of 
CCL5 (Fig. S12A, dominant by isoform NM_002985) and IL7R (Fig. S12B, with both NR_120485 
and NM_002185 highly expressed) have been reported, resulKng from alternaKve splicing or 
post-translaKonal modificaKons59-61, may exert disKnct biological funcKons in HCC, beyond their 
major roles as chemo-aOractants and cognate receptors for various immune cell types, including 
T cells, monocytes, macrophages, and dendriKc cells. Isoform diversity contributes to the 
establishment of an immunosuppressive microenvironment within the tumor, thereby facilitaKng 
tumor progression and immune evasion.  
 
Fusion isoform detec9on and quan9fica9on in simula9on data 
IFDlong is designed to detect and quanKfy fusion transcript at isoform resoluKon. For 
performance evaluaKon, the Type F1 dataset was generated by pooling reads simulated from 
1000 normal isoforms and 1000 fusion transcripts. The proposed IFDlong pipeline and two 
exisKng fusion quanKficaKon tools (Genion26 and JAFFAL27) were applied into the simulaKon data 
and compared with the true fusion distribuKon. As a representaKve, Fig. 6A shows performance 
comparison in the data with approximately 0.5 million high-accurate sequencing reads. 
Considering that the Genion and JAFFAL can only detect fusion transcript at gene resoluKon, Fig. 
6A illustrates the fusion gene expression in the diagonal blocks, and all their pairwise expression 
scaOer plots and Spearman’s correlaKons in the boOom and upper blocks. Among all the tools, 
the IFDlong achieves the highest correlaKon with the truth (0.83), followed by JAFFAL (0.79) and 
Genion (0.75). The same conclusion holds for the simulaKon datasets with ONT and PacBio 
accuracy sequencing. As shown in Fig. 6B and S13, IFDlong always reaches the best performance 
for different accuracy selngs. All the tools are generally robust to high sequencing errors, where 
the Spearman’s correlaKons for ONT and PacBio sequencing are equivalent to the ones for high-
accurate sequencing.  
 
Exploring fusion transcript at isoform resoluKon is one of the major advantages of IFDlong. 
Compared with Genion and JAFFAL, IFDLong is the only tool that can annotate and quanKfy fusion 
isoforms (Fig. 1B). The scaOer plots comparing the true fusion isoform intensiKes and the IFDlong 
esKmated expression were shown in Fig. S14, where IFDlong can reach Spearman’s correlaKon of 
0.47, 0.48 and 0.50 in the high-accurate, PacBio and ONT dataset, respecKvely. Given the 
increasing complexiKes of fusion quanKficaKon at isoform resoluKon compared with gene-level 
analysis, some fusion isoforms were under-esKmate by IFDlong (dots locate underneath the 
diagonal in Fig. S14). One of the key factors for fusion detecKon is the selng of anchor length, 
which indicates the minimum base pairs of read alignment to each fusion gene23. Shorter anchor 
length resulted in high recall rate, but with the sacrifice of precision, because larger number of 
false posiKves with short aligned supporKng reads were introduced. In contrast, longer anchor 
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length can reach highest precision with the loss of recall given true fusions with shorter alignment 
will be mis-detected (large false negaKve). To test the tool sensiKvity to anchor length, Fig. 6C 
illustrates the precision and recall (PR) curve of fusion transcript detecKon with anchor length 
ranging from 0bp to 100bps. Within this range, IFDlong can reach both high precision and recall 
rates (precision > 0.99 and recall > 0.83). Fig. 6D highlights the highest F1-score at anchor length 
to be 78bps. In addiKon to this high-accurate sequencing data (Fig. 6D), RR curves were drawn in 
the Type F1 simulaKon data with PacBio and ONT sequencing accuracy (Fig. S12). Decreasing 
sequencing accuracy resulted in comparaKvely lower precision recall rates, and required higher 
anchor length to reach the best F1-score. In pracKce, to discover more fusion candidates, a 
relaKvely small anchor length is suggested. IFDlong sets 10bps by default, but users can adjust 
this parameter to beOer balance the precision and recall and adapt to the real data. 
 
Dis9nguishing mul9ple fusion-mates paired with the same gene in simula9on data 
A popular gene may potenKally pair with mulKple mates in real pracKce. The Type F2 datasets 
were simulated to esKmate the so`ware performance in disKnguishing different fusion-mates. 
Specifically, based on the TCGA fusion database, top five popular genes (FBXL20, CDS1, TMPRSS2, 
FRS2 and SFTPB) with their corresponding mate gene panels (Table S7) were selected as template 
to generate the simulaKon data. IFDlong, Genion and JAFFAL were then applied into this dataset 
to quanKfy the expression level of all fusion pairs. The relaKve abundances of all the fusion mates 
were compared across the truth and the so`ware esKmaKons in Fig. 6D, and their corresponding 
cosine similariKes were summarized in Fig. 6E. For example, TMPRSS2 is a popular fusion gene in 
prostate cancer. Other than the most prevalent TMPRSS2-ERG fusion62, in total 19 genes were 
reported to be fused with TMPRSS2 in TCGA database (Table S7). Compared with the truth, both 
IFDlong and JAFFAL achieved high agreement (cosine similarity = 0.96) when esKmaKng the 
relevant abundance of these 19 fusion transcripts in the simulaKon data with high-accurate 
sequencing and mean read length to be 1500bp (Fig. 6D and 6E). In all the five simulaKons, 
IFDlong presented the highest cosine similarity with the truth, while JAFFAL and Genion resulted 
in unrobust performance. All the three tools showed high consistency with the truth in FBXL20 
simulaKon, but JAFFAL and Genion failed in CDS1 simulaKon. Similar results were observed in the 
simulaKon data with different accuracy selngs (accurate, PacBio and ONT) and mean read 
lengths (200bp, 1000bp and 1500bp) (Fig. S16-S18). IFDlong achieved the highest cosine 
similarity (higher than 0.94) for all the simulaKon scenarios, followed by JAFFAL which performed 
well in all the selngs other than CDS1.  
 
Two-segment and three-segment fusion detec9on in real data applica9on 
Besides in silico simulaKon datasets, the fusion callers were applied into real sequencing data for 
performance evaluaKon and novel fusion transcripts detecKon. The IFDlong fusion detecKon 
pipeline, as well as two exisKng tools (Genion and JAFFAL) were evaluated in four real data sets: 
MCF7 breast cancer (bulk long-RNA-seq by PacBio and ONT), H838 Lung adenocarcinoma cell line 
(single-cell long-RNA-seq by ONT), samples from colon cancer paKents (bulk long-RNA-seq by 
LoopSeq), and liver Kssue samples from hepatocellular carcinoma (HCC) paKents (single-cell long-
RNA-seq by LoopSeq). Among them, colon cancer and HCC cohorts are in-house samples, where 
novel fusions were detected and validated in our previous research6, 34. As shown in Table 1, The 
IFDlong pipeline successfully detected all these two-segment fusions, while Genion and JAFFAL 
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can only idenKfy 10/11 and 5/11 fusions. All the fusion callers were applied into MCF7 and H383 
datasets and the two-segment fusions idenKfied by IFDlong were listed in Table S8.   
 
In addiKon to two-segment fusions that are frequently observed, three-segment fusion were 
discovered in the previous research63, while majority of the predicted three-segment fusions may 
result from arKficial chimera events or mis-alignment. To test the ability of three-segment fusion 
discovery, Table 1 lists 12 fusion transcripts detected from MCF7 and H838 by JAFFAL27. The 
IFDlong pipeline can successfully detect all of them, while Genion failed to report three-segment 
fusions.    
 
 
Discussion 
 
In this paper, we introduced IFDlong, a novel bioinformaKcs tool tailored for the analysis of long-
RNA-seq data. IFDlong offers several disKnct advantages over exisKng tools, making it a 
comprehensive soluKon for accurate annotaKon and quanKficaKon of isoforms and fusions. First, 
IFDlong offers a suite of funcKons that encompass various aspects of long-RNA-seq analysis (Fig. 
1C), including long-read annotaKon at both gene and isoform resoluKon (Fig. 2), predicKon of 
amino acid sequences, known isoform quanKficaKon (Fig. 2), novel isoform discovery (Fig. 3), and 
detecKon of fusion transcripts (Fig. 6).  
 
Second, IFDlong performs staKsKcal esKmaKon to accurately infer the isoform and fusion 
abundance. Specifically, the EM algorithm was developed to address the long reads with 
ambiguous annotaKons (reads with uncertain isoform assignments, Fig. 1A) and fusion transcripts 
consist of mulKple alternaKve splicing variants (Fig. 1B). IFDlong shows higher accuracy in terms 
of isoform and fusion quanKficaKon when compared with the exisKng tools (Fig. 2 and 6). 
 
Third, IFDlong employs mulKple selecKon criteria to control false posiKves in the detecKon of 
novel isoforms and fusion transcripts. IFDlong enhances the accuracy of fusion detecKon by 
filtering out fusion candidates involving pseudogenes, genes from the same family, and 
readthrough events. Moreover, the user-adjustable parameters, such as buffer length for novel 
isoform detecKon (Fig. 3) and anchor length for fusion idenKficaKon (Fig. 6), provide flexibiliKes 
in customizing the analysis pipeline to adapt to specific experimental condiKons.  
 
Fourth, IFDlong presents advantages in its versaKlity and compaKbility with diverse experimental 
setups and species. Specifically, IFDlong is applicable for both human and mouse data (Fig. 4), and 
can be easily generalized to other species given the corresponding reference and annotaKon 
profiles. Moreover, IFDlong is compaKble with different experimental plakorms (PacBio, ONT and 
linked-short-read plakorms) and mulKple library preparaKon strategies (bulk and single-cell RNA-
seq, as shown in Fig. 5; direct RNA and cDNA libraries, as shown in Fig. S8). In addiKon, IFDlong 
can take in the alignment file by different long-read aligners, such as minimap229 by default or 
STAR-long64. All these properKes make IFDlong a generalizable tool that can be applied for broad 
applicaKons and adjusted to best suits individual dataset.  
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In this project, comprehensive comparisons against exisKng tools were performed to 
demonstrate the superior performance of IFDlong through extensive simulaKons and real-data 
applicaKons. Five types of simulaKon datasets were generated to prove the high performance of 
IFDlong in terms of isoform quanKficaKon (Type I1 and I2), novel isoform detecKon (Type I3), and 
fusion quanKficaKon (Type F1 and F2). MulKple real datasets were employed to test the 
generalizability of the IFDlong pipeline. The robustness and reliability of IFDlong make it a 
prioriKzed tool for researchers seeking accurate and comprehensive analysis of long-RNA-seq 
data. 
 
Our analysis pipeline also highlights the significant potenKal of the single-cell long-RNA-seq data 
analysis. The HCC study enables the delineaKon of mulKple isoform components at the single-cell 
resoluKon. This approach facilitates the idenKficaKon of rare cell populaKons, evaluaKon of cell-
to-cell variability, and the reconstrucKon of cellular trajectories, thereby offering a 
comprehensive view of the immune landscape in HCC. These approaches can be generalizable to 
comprehend the molecular mechanism underlying diverse disease and biological processes. 
These insights guide the development of more targeted and effecKve therapeuKc strategies 
tailored to individual paKents. 
 
AdmiOedly, this study contains limitaKons to be addressed. In the comparison with other exisKng 
tools, the simulaKon data and the IFDlong pipeline were using the same hg38 annotaKon profile 
that was downloaded from UCSC Genome Browser. If the exisKng tools can be built from the user-
defined annotaKon file, we will apply the same profile. If not, the embedded annotaKon file may 
not be the same as the one that is used by IFDlong, which will potenKally cause mismatching due 
the different number of genes or alternaKve gene names in different databases. While for the 
comparison using real datasets, the qPCR or short-read RNA-seq data served as the truth, 
avoiding the annotaKon bias issue. For the performance comparisons, all the tools applied their 
default parameter selngs, including our IFDlong pipeline. We admit that tuning parameters may 
influence the so`ware performance, but this is out of the scope of this project.  
 
Given all the advantages of the IFDlong, further improvements can be made as the future work. 
First, we will further increase the compuKng efficiency of the proposed so`ware to make the 
running Kme and memory cost to be manageable for larger dataset. In addiKon, the current 
pipeline is based on the alignment profile by a single aligner (Minimap2 by default). To take the 
advantages of mulKple aligners (such as STAR-long64, GMAP65 or other long-read aligners), the 
pipeline can be further improved by integraKng mulKple alignment files by more than one aligners. 
 
In conclusion, IFDlong presents significant advancements in long-RNA-seq analysis for the 
annotaKon and quanKficaKon of isoforms and fusion transcripts. Its unique features, including 
the integraKon of the EM algorithm, stringent false-posiKve control, compaKbility, and superior 
performance, posiKon IFDlong as a versaKle tool for long-read transcriptome research. This novel 
bioinformaKcs so`ware will contribute to the community by its broad applicaKon into biomedical 
research. 
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Table  
 
Table 1: Two-way and three-way fusion detec9on in real data applica9on.  
 

Fusion 
type Cohort Fusion transcript 

Sample 
ID 

Fusion detection 
IFDlong Genion JAFFAL 

Two-
segment 

fusion 

Colon 
Cancer 
(bulk) 

STAMBPL1 - FAS 
C1M Y Y N 
C2M Y Y N 

SMYD3 - ZNF124 
C3T Y Y N 
C3M Y Y N 

VAPB - GNAS C3M Y Y Y 

ECHDC1 - PTPRK 
C3T Y Y Y 
C3M Y Y Y 

HCC  
(sc) 

EML4 - ACTR2 H1T Y Y Y 
CCDC127 - PDCD6 H1T Y N Y 

FGG - PLG 
H1T Y Y N 
H1N Y Y N 

Three-
segment 

fusion 

MCF7 
(bulk) 

TXLNG - SYAP1 - RRM2 PB Y N Y* 
BCAS4 - BCAS3 - REG4 PB Y N Y* 

COPS7B - AVL9 - ZFYVE1 PB Y N Y* 
GBF1 - MACROD2 - C14orf132 ONT Y N Y* 

YY1 - PPP1R12A - EVL ONT Y N Y* 
VMP1 - BTBD1 - YPEL5 ONT Y N Y* 

RAD51B - CCDC170 - EPB41L5 ONT Y N Y* 
IKZF2 - NCOR1 - SPATA33 ONT Y N Y* 

CFL1 - SLC4A7 - URI1 ONT Y N Y* 

H838 
(sc) 

BMPR2 - TYW5 - ALS2CR11 ONT Y N Y* 
ALS2CR11 - BMPR2 - TYW5 ONT Y N Y* 
ACBD6 - RABGAP1L - XPR1 ONT Y N Y* 

Y*: JAFFAL reported three-segment fusions. 
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Figure Legend 
 
Figure 1: Illustra9on of alterna9ve splicing, fusion isoform and IFDlong pipeline. (A) Long-read 
annotaKon and isoform abundance quanKficaKon. The red and purple reads represent the 
truncated and completed long-reads, which can serve as supporKng reads by alignment to 
different isoforms. (B) IllustraKon of fusion isoforms. Head gene A and tail gene B will potenKally 
form into different fusion isoforms. (C) IFDlong pipeline. The proposed pipeline will take in the 
raw long-read sequences and annotaKon files, and ulKmately output the gene/isoform 
annotaKon reports, isoform quanKficaKon reports and fusion quanKficaKon reports for 
downstream analysis.  
 
Figure 2: Isoform annota9on and quan9fica9on in simula9on analyses. (A) Pairwise comparison 
of the isoform quanKficaKon tools in the Type I1 simulaKon data with accurate-sequencing, 0.5M 
reads and 1500 bp median length. The boOom le` cells present the pairwise scaOer plot of 
isoform expression. The upper right cells indicate the Spearman’s correlaKon. (B) Spearman’s 
correlaKon of isoform expression between the truth and each tool under different sequencing 
accuracy in the Type I1 simulaKon with 0.5M reads and 1500 bp median length. (C) Spearman’s 
correlaKon of isoform expression between the truth and each tool under different sequencing 
depth in the Type I1 simulaKon with accurate sequencing and 1500 bp median length. (D) 
Spearman’s correlaKon of isoform expression between the truth and each tool under gradient 
median read lengths in the Type I1 simulaKon with 0.5M reads and accurate sequencing. (E)The 
percentage conKngency table between the true isoform assignments and the annotaKon by 
IFDlong in the Type I2 simulaKon data. (F) Comparison of isoform relaKve abundance among the 
true simulaKons and the expression esKmaKon by different tools in the Type-I2 simulaKon.  
 
Figure 3: Illustra9on and detec9on of novel isoform. (A) Major types of novel isoforms. (B) Buffer 
tolerance to define novel isoform. Compared with the reference exon (blue), if the difference is 
within the buffer tolerance region, the isoform is sKll defined as normal one (yellow and green 
isoforms); otherwise, it will be defined as novel isoform with either truncaKon (orange) or 
extension (red).  (C) SensiKvity (le`) and Specificity (right) of IFDlong (top) and TALON (boOom) 
when detecKng novel isoforms in the Type I3 simulaKon. The bars are colored by different buffer 
length seOer (0bp or 9bp) and median length (1000 bp or 2000 bp) selngs.   
 
Figure 4: Applica9on of isoform detec9on in real human and mouse studies. (A) Spearman’s 
correlaKon of isoform quanKficaKon in human studies: UHR sequenced by ONT and PacBio, and 
MCF7 breast cancer cell line sequenced by ONT and PacBio. (B) IllustraKon of mulKple isoforms 
of gene Gapdh supported by long reads in UHR dataset. (C) Consistency measurement  (-
log10(average RMSE)) of isoform quanKficaKon in mouse studies: C2C12 cell line with four 
repeats and mouse heart Kssues with two repeats. (D) RelaKve abundance of adult and fetal 
isoforms quanKfied by IFDlong pipeline on mouse heart Kssues. (E) RelaKve abundance of 
mulKple alternaKve splicing events of Camk2d quanKfied by IFDlong pipeline on mouse heart 
Kssues.  
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Figure 5: Applica9on of IFDlong pipeline into single-cell long-read RNA-seq data on human HCC. 
(A) t-SNE visualizaKon on the single-cell data based on isoform expression profile. (B) Top KEGG 
pathways enriched by the differenKally expressed isoforms (DEI) comparing tumor and normal 
cells. (C) MulKple alternaKve splicing events of gene CD74 present differenKal expression paOerns 
between normal and tumor cells.  
 
Figure 6: Detec9on and quan9fica9on of fusion transcripts in simula9on studies. (A) Pairwise 
comparison of the fusion gene quanKficaKon tools in the Tpe-F1 simulaKon data with accurate 
sequencing. The boOom le` cells present the pairwise scaOer plot of fusion expression. The upper 
right cells indicate the Spearman’s correlaKon. (B) Spearman’s correlaKon of fusion expression 
between the truth and each tool under different sequencing accuracy in the Type F1 simulaKon 
data. (C) Cosine similarity of the relaKve abundance of mulKple paired genes in the Type F2 
simulaKon data. (D) Precision and Recall curve for fusion transcript detecKon by IFDlong pipeline 
using different anchor lengths. (E) RelaKve abundance of mulKple paired genes in the Type F2 
simulaKon data.  
 
 
Supplementary Figure Legend 
 
Figure S1: Read count distribu9on for the (A) Universal Human Reference real data and the (B) 
The Type I1 simula9on data with gradient depth. 
 
Figure S2: Read length distribu9on of the Type I1 simula9on data with gradient median read 
length.  
 
Figure S3: Root mean squared error (RMSE) between the true and the es9mated isoform 
expression in the Type I1 simula9on data. (A) RMSE of isoform expression between the truth and 
each tool under different sequencing accuracy with 0.5M reads and 1500 bp median length. (B) 
RMSE of isoform expression between the truth and each tool under different sequencing depth 
with accurate sequencing and 1500 bp median length. (c) RMSE of isoform expression between 
the truth and each tool under gradient median read lengths with 0.5M reads and accurate 
sequencing. 
 
Figure S4: Computa9onal cost for isoform quan9fica9on tools in the Type I1 simula9on. (A&B) 
Time cost along different number of reads and read lengths. (C) Memory cost across different 
read lengths when working on 4M reads. 
 
Figure S5: The percentage con9ngency table between the true isoform assignments and the 
annota9on by IFDlong in the Type I2 simula9on data with gradient median read lengths.  
 
Figure S6: Sensi9vity (le`) and Specificity (right) of IFDlong when detec9ng novel isoforms in 
the Type I3 simula9on with ONT (top) and PacBio (bobom) accuracy. The bars are colored by 
different buffer length seOer (0bp or 9bp) and median length (1000 bp or 2000 bp) selngs.   
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Figure S7: Sensi9vity (le`) and Specificity (right) of TALON when detec9ng novel isoforms in the 
Type I3 simula9on with ONT (top) and PacBio (bobom) accuracy. The bars are colored by 
different median length (1000 bp or 2000 bp) selngs.   
 
Figure S8: Spearman’s correla9on of isoform quan9fica9on in human MCF7 breast cancer cell 
line by different ONT sequencing secngs.  
 
Figure S9: Pairwise comparison of isoform quan9fica9on in mouse C2C12 and Heart samples. 
The boOom le` cells present the pairwise scaOer plot of isoform expression. The upper right cells 
indicate the Spearman’s correlaKon.  
 
Figure S10:  Isoform distribu9on of Calcium Voltage-Gated Channel Subunit Alpha1 C (Cacna1c), 
Troponin T2 (Tnnt2), Calcium/Calmodulin Dependent Protein Kinase II Gamma (Camk2g) and 
Myocyte Enhancer Factor 2C (Mef2c) in heart 9ssue.  
 
Figure S11: Pathway analysis on isoform differen9al expression analysis in HCC data. (A) Gene 
set enrichment analysis (GSEA) on Gene ontology (GO) database. (B) Ingenuity pathway 
analysis (IPA). 
 
Figure S12:  Feature plot of isoform expression for gene CCL5 and IL7R in HCC data. 
 
Figure S13: Pairwise comparison of fusion quan9fica9on in the Type F1 simula9on. (A) The Type 
F1 simulaKon with median length of 1500 bp and PacBio accuracy. (B) The Type F1 simulaKon 
with median length of 1500 bp and ONT accuracy. The boOom le` cells present the pairwise 
scaOer plot of isoform expression. The upper right cells indicate the Spearman’s correlaKon.  
 
Figure S14: Scaber plot of isoform-level fusion quan9fica9on comparing the truth the IFDlong 
es9ma9on in the Type F1 simula9on. (A) The Type F1 simulaKon with median length of 1500 bp 
and accurate selng. (B) The Type F1 simulaKon with median length of 1500 bp and PacBio 
accuracy. (C) The Type F1 simulaKon with median length of 1500 bp and ONT accuracy.  
 
Figure S15: Precision and Recall curve for fusion transcript detec9on by IFDlong pipeline using 
different anchor lengths. (A) The Type F1 simulaKon with median length of 1500 bp and PacBio 
accuracy. (B) The Type F1 simulaKon with median length of 1500 bp and ONT accuracy. 
 
Figure S16: Rela9ve abundance of mul9ple paired genes in the Type F2 simula9on data with 
different accuracy secng. (A) The Type F2 simulaKon with 1500 bp median length and PacBio 
selng. (B) The Type F2 simulaKon with 1500 bp median length and ONT selng. 
 
Figure S17: Cosine similarity of the rela9ve abundance of mul9ple paired genes in the Type F2 
simula9on data. (A) The Type F2 simulaKon with median length to be 200bp and accurate selng. 
(B) The Type F2 simulaKon with median length to be 1000bp and accurate selng. (C) The Type 
F2 simulaKon with median length to be 1500bp and PacBio selng. (D) The Type F2 simulaKon 
with median length to be 1500bp and ONT selng.  
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Figure S18: Rela9ve abundance of mul9ple paired genes in the Type F2 simula9on data with 
gradient median length. (A) The Type F2 simulaKon with 200 bp median length and accurate 
selng. (B) The Type F2 simulaKon with 1000 bp median length and accurate selng. 
 
 
Supplementary Table  
 
Table S1: Isoform quan9fica9on by IFDlong on UHR dataset. 
Table S2: Isoform quan9fica9on by IFDlong on MCF7 dataset. 
Table S3: Isoform quan9fica9on by IFDlong on mouse C2C12 dataset. 
Table S4: Isoform quan9fica9on by IFDlong on mouse heart dataset. 
Table S5: Differen9ally expressed isoforms in HCC dataset comparing tumor and normal. 
Table S6: Pathway analysis on the differen9ally expressed isoforms in HCC dataset. 
Table S7: Popular fusion transcripts in TCGA dataset that were employed in the Type F2 
simula9on. 
Table S8: Two-way fusions detected in MCF7 ONT dataset by IFDlong. 
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