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Abstract

Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have
revolutionized the study of isoform diversity. These full-length transcripts enhance the detection
of various transcriptome structural variations, including novel isoforms, alternative splicing
events, and fusion transcripts. By shifting the open reading frame or altering gene expressions,
studies have proved that these transcript alterations can serve as crucial biomarkers for disease
diagnosis and therapeutic targets. In this project, we proposed IFDlong, a bioinformatics and
biostatistics tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq
data. Specifically, the software performed gene and isoform annotation for each long-read,
defined novel isoforms, quantified isoform expression by a novel expectation-maximization
algorithm, and profiled the fusion transcripts. For evaluation, IFDlong pipeline achieved overall
the best performance when compared with several existing tools in large-scale simulation studies.
In both isoform and fusion transcript quantification, IFDlong is able to reach more than 0.8
Spearman’s correlation with the truth, and more than 0.9 cosine similarity when distinguishing
multiple alternative splicing events. In novel isoform simulation, IFDlong can successfully balance
the sensitivity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has
proved its accuracy and robustness in diverse in-house and public datasets on healthy tissues, cell
lines and multiple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its
compatibility to single-cell long-RNA-seq data. This new software may hold promise for significant
impact on long-read transcriptome analysis. The IFDlong software is available at
https://github.com/wenjiaking/IFDlong.
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Introduction

Long-read technology has brought the high-throughput genomic sequencing into the third
generation to study genomes, transcriptomes, and metagenomes. Long-read sequencing is able
to generate reads up to several million base pairs, while short-read sequencing typically yields
reads with only 50 to 300 base pairs. For transcriptome sequencing, long-read RNA-seq (long-
RNA-seq) can successfully reveal the full-length transcripts at an unprecedented resolution.
Compare with short-read RNA-seq, long-RNA-seq presents additional advantages. First, long-
RNA-seq can reduce the noise caused by artificial amplification and can dramatically increase the
alignment certainty. Second, by covering full-length (or almost full-length) of the transcript
sequence, long reads not only enable the precise identification and quantification of known
isoforms, but also show power to discover the novel isoforms. In addition, long reads have
advantages to detect transcriptomic structural variants by precisely locating the exon donor-
acceptor merging points for alternative splicing analyses or covering the fusion junction points
for fusion transcript identification. Several platforms have facilitated this cutting-edge technique.
Techniques from two companies have been widely applied for long-read sequencing: Pacific
Biosciences (PacBio) Iso-Seq' and Oxford Nanopore Technology (ONT) whole-transcriptome
sequencing? 3. Other than these direct long-read sequencing platforms, several synthetic long-
read strategies have been developed as well, including 10X Genomics Linked-reads* and Element
Biosciences LoopSeq> ©.

One of the major applications for long-RNA-seq is to analyze isoforms and transcriptomic
structural variants (TSVs). TSV refers to the transcriptome sequence alterations that are caused
by genomic structural variants (SVs) or transcriptomic splicing. It usually describes large variant
with more than thousands of base pairs. Other than genomic-level analysis, transcriptome-level
variant study can add flexibility to describe alternative splicing, differences in expression levels
and potential functional alteration in protein expression. These variant events may play roles as
biomarkers for disease diagnoses and serve as therapeutic targets. Two major TSVs will be
explored in this study: alternative splicing and fusion transcript. Alternative splicing (or pre-mRNA
splicing) refers to the exon splicing events on pre-mRNA, where exons can be alternatively
included or removed when forming mature mRNA” 8, Given the fact that over- or under-
expressed isoforms (or proteins) and novel isoforms will influence the regulation system,
deregulation of alternative splicing events is a hall mark of cancer. Thus, disease-associated
isoform-specific events can serve as biomarkers for disease diagnosis and treatment®''. For
isoform study, limited by read length, short-read sequencing is not adequate to capture the full
transcripts, which can only quantify the isoform abundance by statistical inference and hard to
discover novel isoforms. In contrast, long read shows its advantage in identifying the exact
isoform and cover the splicing points by full-length transcript. However, besides complete long-
reads, truncated long-reads will be generated in the meanwhile, which will cause the uncertainty
of isoform assignments (Fig. 1A). Thus, statistical estimation for isoform expression by long-RNA-
seq is still urgently needed. Several bioinformatics tools have been developed to identify isoforms
on long-RNA-seq data. LIQA'? and Mandalorion®? are able to perform isoform quantification, but
cannot perform isoform annotation for individual long-read. TALON!* can perform both, but its
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accuracy can be further improved. In addition, only TALON is able to discover novel isoforms,
while LIQA and Mandalorion are merely focused on known ones.

Fusion transcripts (Fig. 1B) are caused by fusion genes or trans-splicing events resulting from
chromosomal rearrangements or ligation of two different primary RNA transcripts. Fusion
transcripts play important roles in tumorigenesis by potentially shifting the open reading frame
(ORF) for the tail protein, forming novel chimera proteins, or altering gene expression' "8,
Previous studies have proved that fusions are highly associated with occurrence and recurrence
of caners'®?', Suicide-gene insertion on the fusion gene can serve as genotype-specific cancer
therapy. In addition to the DNA-level of fusion gene study, fusion transcript analysis can reveal
multiple alternative splicing events??. As the toy example shown in Fig. 1B, gene A can fuse with
three different isoforms of gene B. Short-read RNA-seq has been largely applied to discover
fusions?3. However, it has limitation in either performing isoform resolution analysis or requiring
extremely deep sequencing (e.g. 1300x sequencing depth to detect rare fusion events in our
previous study?*). To overcome this, long reads possess advantage over short reads in capturing
the fusion isoform and precisely locate the fusion junction point?>. Currently, bioinformatics tools
such as Genion?® and JAFFAL?’, have been developed to call fusion transcripts from long-RNA-seq
that. However, they can only detect fusion events at gene level, but not isoform resolution.
Additionally, neither tool will perform fusion isoform quantification to estimate the expression
level of normal and fusion isoforms. Tool such as AERON?8is newly developed and its Github script
is still under development.

In this article, we proposed a new bioinformatics pipeline IFDlong, an Isoform Fusion Detector
that was tailored for long-RNA-seq data for the annotation and quantification of isoform and
fusion transcripts. As shown in Fig. 1C, the pipeline can take in either bulk or single-cell long-RNA-
seq data. Based on the reference genome and gene/isoform annotation profile, the long reads
were aligned to reference genome and were annotate to genes and isoforms. For the case where
no known isoform/genes can be annotated to the long-read, novel isoforms were defined.
Followed by statistical inference methods, isoform and fusion quantification profiles were
generated as output. Compared with the existing tools, IFDlong presents four major advantages:
(1) IFDlong is compatible with both bulk and single-cell long-RNA-seq data; (2) IFDlong is able to
perform read-level gene/isoform annotation and detect novel isoforms; (3) IFDlong performs
statistical estimation on the truncated long-reads with multiple alignment for high-accurate
isoform and fusion quantification; (4) IFDlong is the only tool that can do discover fusion
transcripts at isoform resolution. To test the performance of proposed pipeline, we first compared
IFDlong with several existing tools in in-silico data generated by long-read simulator to evaluate
their performance under different sequencing parameters. Next, multiple published long-read
data sets were employed and proved that our tool is compatible with different long-read
platforms and its ability to accurately profile alternative splicing and fusion events. In summary,
IFDlong showed overall best performance in terms of isoform quantification, novel isoform
detection, and fusion isoform quantification. IFDlong will serve as a generalizable tool for
advanced long-RNA-seq data analysis.
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Methods and Materials

Reference and annotation file preparation

IFDlong requires the reference genome in FASTA format, the transcript annotation profile in BED
format, the gene annotation profile in BED format, the amino acid (AA) annotation profile in TXT
format, pseudo gene database in RDS format, and the root gene symbols of all gene families in
TXT format. All the reference and annotation files for human and mouse are well prepared
(available for download in Github) and will be fully described below. If the users are working on
species other than human and mouse, please apply the IFDlong refDataSetup.sh function to build
up the reference files.

IFDlong can take in both raw sequencing read (in FASTQ format) and aligned file (in BAM format).
If working on FASTQ file, a reference genome in FASTA format is required to call Minimap2 aligner
29 (Fig. 1C). For gene and isoform annotation, gene annotation profile in BED format is required
by IFDlong. For example, the annotation file in GTF format can be downloaded from the UCSC
genome reference Consortium (e.g. GRCh38 for human and GRCm38 for mouse downloaded from
https://hgdownload2.soe.ucsc.edu/downloads.html). Then the GTF file will be formatted by
IFDlong (via command IFDlong.sh) into BED format, where each row records the chromosome,
start position, end position, name, score, and strand of each consisting exon. Ultimately, a known
gene and a known transcript profile will be used by IFDlong pipeline for gene and transcript
annotation.

IFDlong will build the AA annotation profile per known transcripts. Based on the reference
genome (in FASTA format, described above) and the transcript profile (in BED format, described
above), IFDlong will first apply the getfasta function in bedtools®® to extract the DNA/RNA
sequences per transcript, followed by the translate function in Biostrings R package to translate
the DNA/RNA sequences into AA sequences. These AA sequences will be saved in the TXT format
as the AA annotation profile to be used for the prediction of AA sequence of the long read.

To filter out false positive fusion candidates, database for gene families and pseudo genes are
required by IFDlong. The human pseudo gene database was downloaded from Pseudogene.org
(http://pseudogene.org/psicube/data/gencode.v10.pseudogene.txt), and the mouse pseudo
gene database was collected from Mouse Genome Informatics
(https://www.informatics.jax.org/downloads/reports/MGI| BioTypeConflict.rpt). To play a
complementary role, additional pseudo genes were identified based on the gene descriptions
obtained from Bioconductor packages org.Hs.eg.db (for human) and org.Mm.eg.db (for mouse).
The pseudo gene names were saved in an RDS file. To collect the gene family information, human
database was downloaded from the HGNC BioMart server (https://biomart.genenames.org),
which contains the family names and common root gene symbols of each human gene family. For
mouse gene family information, given no reliable open-source database was found to the best of
our knowledge, the mouse genes were first mapped to human homologous genes by MGI Data
and Statistical Reports (https://www.informatics.jax.org/downloads/reports/index.html). Then
the mapped mouse genes will employ the same gene family database as the human one.
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Isoform quantity estimates

The IFDlong isoform quantification method is derived from the LIQA?, with improved estimation
algorithm utilizing the results from the upstream isoform annotation analysis. Mathematically,
given a gene of interest denoted by g, let RY represent the set of reads (denoted by r) that are
aligned to the gene g, and 19 is the set of known isoforms (denoted by i) from gene g. For a
specific isoform i € 19, let Hig denote its relative abundance, with 0 < Hig < 1land;eq9 Bi“q:l.
The probability that a read originates from isoform i is defined as Pr(isoform =1i) = Hig. We
further define the indicator matrix Zzg ;0 € {0,1}/R?IXI"l that is unobserved with entry z,; = 1
if the read r is generated from a molecule that is originated from isoform i, and otherwise z, ; =
0. For isoform quantification, the goal is to estimate the relative abundance 09 = {Oig,i €19}
based on RNA-seq long reads annotated to the gene g.

With the notation above, the complete data likelihood of the long-RNA-seq aligned to gene g can

be written as
L(Rg,ZRg,1g|®g) = 1_[ H{Pr(read =r,isoform = i|@9)}*ri
T€ERY i€ld -
= [l,ero HiE,g{Pr(read =rlisoform =i, G)g)Hig} o
1 gr
where Pr(read = rlisoform =1i,09) = {le‘l' ,R9" denotes the set of reads that are
0 ,iegld"

annotated to isoform i (i.e., a subset of R9,R9* c R9), and 197 represents the set of isoforms
that the read r is annotated to (similarly, /9" < 19). Note that it is possible that IFDlong annotates
a read to multiple known isoforms which are highly overlapped with each other, and in this case,
[197 |>1.

Next, with the complete data likelihood, the update procedure of the Expectation-Maximization
(EM) algorithm to estimate the parameter @9 is as follows:

Initialization: Take the reads aligned to multiple isoforms as a supporting read for each of the
isoforms (e.g., if one read is aligned to two isoforms of gene g, it will serve as a supporting read
for both isoforms, as the red long-read illustrated in Fig. 1A), ©®9 will be initialized as proportion
of the supporting reads aligned to each isoform for gene g.

Expectation-step (E-step): Calculate the expectation of the log likelihood with the following

function:

Q(®g|@g(t)) =Y cro Dicig E(ZRg Ig|®g(t)){zr,i}log[Pr(read =rlisoform =1i,09) Hig] ,
9.9‘“)

where £y o olos @)l =5

Maximization-step (M-step): Maximize function Q(®g|®9(t)) by 09 with the following formula,

9 23 E(ZRg Ig|®g(t)){zr’i} /IR9|, for i € I9.
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The EM algorithm iteratively update the parameter by alternating between the E-step and M-step
until convergence.

Fusion quantity estimates
We use similar idea to perform fusion quantification. Given a gene fusion f consisting of all genes

g{ in gene set G', let R denote the set of reads that are annotated to the gene fusion f, and cr
is the set of fusion transcripts from the gene fusion (i.e., each isoform component i; of a fusion
transcript ¢ € C/ is from one of the gene gf in G¥). Then, we denote the relative abundance of

each fusion transcript to be Bcf with 0 < Bcf <land ) .ccr 96f=1, so the probability that a read
originates from fusion transcript t is Pr(fusion = ¢) = Hcf. Similarly, we define the unobserved

IR7IxIc7] with entry z, . = 1if the read

read-fusion transcript compatibility matrix Z ¢ .r € {0,1}
r is generated from a molecule that is originated from fusion transcript ¢/, and otherwise Zyo =
0. For fusion transcript quantification, our goal is to estimate the relative abundance 6/ =

{ch, c € C'} based on RNA-seq long reads annotated to the gene fusion f.

Similarly, the complete data likelihood is
L(R!, Zpr cr|0)) = 1_[ H{Pr(read =7, fusion = c|®)}"*
rerf cecf
. fy?re
= [yers [eecr{Pr(read = r|fusion = c,0/)6/} ™,
1 fr
i T,C eEC fe
where Pr(read = r|fusmn =c,00) = I~ ,R7¢ denotes the set of reads that are
0 ,cegcClm

annotated to fusion transcript c (i.e., a subset of R/, R/¢ c RY), and C/7 represents the set of
fusion transcripts that the read r is annotated to (similarly, C/™ c C/). Again, it is possible that
IFDlong annotates a read to multiple fusion transcripts which are are highly overlapped with each
other, and in this case, |C/"|>1.

The EM algorithm iteratively update the parameter ®/ by alternating between the E-step and M-
step as below until convergence.

E-step: calculate the expectation of the log likelihood by

Q (®f|®f(t)) =Y. crf Deect E( ‘ f(t)>{zr,c}log[Pr(read = r|fusion = ¢,67) 6/] ,

ZRf,Cf 0]

where E zZ =—c
(ZRf'Cf‘Gf(t)>{ T,C} f(f)

M-step: maximize function Q (®f|®f(t)) with respect to ©/ and have
(t+1)

96 = ZrERf E(

Gf(t)>{zr,c}/|Rf|, forc € C'.

Zprf‘
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Simulation data generation

In silico simulation data were generated to benchmark the software performance with underlying
truth. Type | and Type F simulation datasets were generated for isoform and fusion evaluation,
respectively.

The Type I1 simulation datasets were generated to mimic the distribution of whole transcriptome
expression. First, to simulate the distribution of isoform expression in real data, Universal Human
Reference (UHR) data was employed, and 28157 isoforms were detected and quantified (Fig. S1A).
Second, sequence templates were constructed using these isoforms by synthesizing the exons of
each isoform according to the transcript annotation profile. Next, multiple datasets of long-RNA-
seq were generated by long-read simulator PBSIM23! with different accuracy settings and
gradient mean read lengths. Three accuracy setting were generated by adjusting the PBSIM2
parameters: accurate sequencing (--difference-ratio=1:1:0 for substitution:insertion:deletion,
and --accuracy-mean=0.99); ONT-like accuracy (--difference-ratio=23:31:46 and --accuracy-
mean=0.85); and PacBio-like accuracy (--difference-ratio=6:50:54 and --accuracy-mean=0.85).
Under the setting of high-accurate sequencing, simulation datasets with gradient mean read
lengths were generated by setting --length-mean to be 200bps, 500bps, 800bps, 1000bps,
1200bps, 1500bps, 1800bps, and 2000bps (Fig. S2). Finally, each pool of simulated reads with a
specific accuracy and mean read length setting was subsampled to gradient sequencing depth
with 0.5 million, 1 million, 2 million and 4 million reads, respectively (Fig. S1B). Note that, the
expression intensities of the 28157 isoforms follow the distribution of isoform expressions in the
UHR data. In the meanwhile, the transcript and gene origin of each simulated long read was
recorded to serve as the underlying truth.

The Type 12 simulation datasets were designed to generate long reads from multiple isoforms that
were sourcing from the same gene. The sequence template consists of 16 transcripts of gene
CTCFL (NM_001269043, NM_001269040, NM_001269041, NM_001269042, NM_080618,
NM_001269046, NM_001269044, NM_001269049, NM_001269054, NM_001269045,
NM_001269050, NM_001269048, NM_001269047, NM_001269055, NM_001269051,
NM_001269052). Next, similar as the Type I1 simulation, multiple Type 12 datasets were
generated with sequencing depth of 400 under the gradient mean read lengths (200bps, 500bps,
800bps, 1000bps, 1200bps, 1500bps, 1800bps, and 2000bps) and the three accuracy settings
(accurate, PacBio and ONT).

The Type 13 simulation datasets aim to benchmark the novel isoform detection. First, the
sequence templates were constructed by two isoform sets: 1000 known isoforms and novel
isoforms. Novel isoforms were derived from the 1000 known transcripts with six different types:
859 templates with skipping exon, 1406 templates with additional exon, 873 templates with
truncated alternative 5’ splice site, 1329 templates with extended alternative 5’ splice site, 873
templates with truncated alternative 3’ splice site, and 1325 templates with extended alternative
3’ splice site. Each individual type of novel isoforms was pooled with the 1000 known transcripts
to generate six sequence templates in total. Per novelty type, simulator PBSIM2 was employed to
generate long-RNA-seq datasets with sequencing depth of 40 under the mean read length of
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1000bps and 2000bps, and the three different accuracy settings. The origin source and the novel
type of each simulated long read were recorded to serve as the truth for performance evaluation.

The Type F1 datasets were simulated for fusion transcript quantification. The sequence templates
consist of two sets of isoforms: 1000 selected known isoforms sourcing from different genes, and
1000 mosaic fusion transcript fusing two known isoforms from the 1000 known list with random
breakpoints. Based on these template sequences, PBSIM2 was employed to generate simulation
datasets under three accuracy settings with mean read length of 1500bps and sequencing depth
of 400. According to the simulation log files, the read fusion status (fusion transcripts or normal
isoform) and the isoform/ gene origin information of each long-read sequence were collected as
underlying truth.

The Type F2 simulation datasets were intentionally designed to mimic the genes fused with
multiple mates. To simulate the gene pairs that have high occurrence in real data, the TCGA fusion
database (https://www.kobic.re.kr/chimerdb/download) was used as reference. Among the top
10 cancer types with the highest number of fusion transcripts, top 5 genes (referred as popular
genes) with the highest number of paired genes were selected: FBXL20 (Breast Invasive
Carcinoma, BRCA), CDS1 (Bladder Urothelial Carcinoma, BLCA), TMPRSS2 (Prostate
Adenocarcinoma, PRAD), FRS2 (Sarcoma, SARC) and SFTPB (Lung Adenocarcinoma, LUAD). All the
mate genes for these five popular genes are listed in the Table S7. For each popular gene, the
fusion templates were constructed by fusing the popular gene and their mates according to the
fusion breakpoints in the TCGA fusion database. Then based on these fusion templates, long-
RNA-seq datasets were simulated under different mean read lengths (200bps, 1000bps, and
1500bps) and three accuracy settings (accurate, PacBio and ONT) with sequencing depth of 40 by
PBSIM2. In the meanwhile, the fusion origins and breakpoint of each simulated long-read
sequence was collected as the truth.

Real data collection and pre-processing

Universal Human Reference (UHR). Long-RNA-seq on the UHR sample was used to evaluate
isoform quantification. The direct mRNA data sequenced by ONT platform was download from
Gene Expression Omnibus (GEO) PRINA639366'? with in total 476,000 reads and 896 base pairs
in median, and 441,138 reads were aligned to human reference by Minimap2 aligner?®. The UHR
RNA (Agilent) + SIRV Isoform Mix EO (Lexogen) sample measured by PacBio platform was
downloaded from the PacBio website
(https://downloads.pachcloud.com/public/dataset/UHR IsoSeq/). In total 6,775,127 reads with
1835 base pairs in median length were collected, and 6,385,883 reads was aligned to human
reference by Minimap2 aligner. To serve as the underlying truth, measurements by the TagMan
Real-Time PCR Assays on the Stratagene UHR RNA samples were collected from the MicroArray
Quality Control (MAQC) project via GEO GSE535032. The geometric mean of the four repeating
measurements was calculated as the true expression. In total 1044 isoforms were quantified and
964 of them have passed detection flag that will be used for this project.
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Mouse data. For isoform quantification, long-RNA-seq data on mouse C2C12 cell line and heart
tissue was downloaded from ENCODE project®3. For C2C12, four repeats were downloaded from
GEO database with accession ID GSE219813 and GSE219595. For mouse heart data, two repeats
were downloaded from GSE219825. The isoform expression of both mouse datasets were
quantified by TALON pipeline!“.

Single-cell long-RNA-seq on hepatocellular carcinoma (HCC) patient. The data was downloaded
from GEO GSE223743, including a paired liver benign — tumor samples from an HCC patient34.
This dataset was applied for isoform quantification, differential expression analysis and fusion
detection analysis. Single cells with at least 1000 long-reads were defined as valid cells, and in
total 162 and 285 cells were analyzed from benign and tumor library. For fusion transcript
detection, three fusion transcripts (EML4 - ACTR2, CCDC127 - PDCD6, and FGG - PLG) were
validated by Sanger sequencing in the previous study3* that will serve as the truth.

Colon cancer samples. Tissue samples were collected from 3 colon cancer patients, including
benign colon tissues (N), primary colon cancer samples (T), and lymph node metastasis samples
(M). The samples were sequenced by Element Biosciences LoopSeq platform and the long-read
data was deposited to GEO database with accession GSE155921°. Among the 8 samples, in total
4 two-way fusions (STAMBPL1 - FAS, SMYD3 - ZNF124, VAPB - GNAS, and ECHDC1 - PTPRK) were
detected and validated using Tagman gRT-PCR and Sanger sequencing®, which will serve as the
underlying truth for this study.

MCF7 human breast cancer cell line. MCF7 RNA extraction sequenced by both PacBio and ONT
platforms were downloaded for isoform and fusion analysis. For PacBio SMRT sequencing, long-
read FASTQ files were downloaded from NCBI SRA database with accession ID SRP055913
(https://www.ncbi.nlm.nih.gov/sra/?term=SRP055913). The 113 runs were concatenated into
one file for analysis. For SGNex ONT sequencing, data was downloaded from
https://github.com/GoekelLab/sg-nex-data. MCF7-EV_directRNA, MCF7_cDNA, MCF7_directRNA,
and MCF7_directcDNA with multiple replicates were used in this study. As the true isoform
expression, the RNA-seq on MCF7 with RSEM quantification of transcripts®®> downloaded from
Cancer Cell Line Encyclopedia (CCLE)3® were employed. Both two-way and three-way fusions that
have been summarized in the previous research were used as fusion truth?’.

H838 human lung adenocarcinoma cell line. Single-cell long-RNA-seq data on H838 sequenced
by ONT platform was downloaded from GEO database with accession ID GSE1548693’. Both two-
way and three-way fusion transcripts were detected from this dataset for performance evaluation.

Performance evaluation

Spearman’s correlation is a nonparametric measure of statistical dependence between the
rankings of two vectors. The correlation ranges from -1 to 1, with 1 indicting the same ranking
between the two vectors, and -1 representing a fully opposed correlation. For both isoform or
fusion transcript quantification, the Spearman’s correlation between the true number of
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supporting reads (denoted as vector )_()) and the detected number of supporting reads (denoted
as vector Y ) by each algorithm can be evaluated by the formula:

_ cov{R()_() ),R(l_/) )}
TR(%)IR(F)

where R()_()),R()_’)) are the ranks of X and Y respectively; ORr(%) Or(7) are the standard

deviations of the rank variables, and cov{R()_() ), R()7 )} is the covariance of the rank variables.

Root Mean Squared Error (RMSE) is employed to measure the differences between true and
estimated values. Following the above notation, the RMSE is applied to benchmark the isoform
quantification in the Type 11 simulation data by the formula:

where || - || is [,-norm operator, and n is the length of the vector X and Y.

Consistency measurement. —log10(average RMSE) is used to evaluate the agreement across
multiple repeats for isoform quantification. Isoform proportions were first averaged across all the
repeats. Then for each repeat, the root mean squared error (RMSE) of the estimated isoform
proportions was calculated compared to this mean proportion. Ultimately, RMSE values of all the
repeats were averaged and -log10 transformed as described below,

1
—log,o average RMSE = Ez
T

where || - || is ,-norm operator; n is the length of the isoform proportion vector )_()r; Xis the

mean of )_()r overr = {1,2,...,R}, and R is the number of repeats (e.g. four repeats for C2C12
mouse cell line or two repeats for mouse heart dataset).

Sensitivity and Specificity. Sensitivity (true positive rate) is the probability of a positive test result,
conditioned on the individual truly being positive. Specificity (true negative rate) is the probability
of a negative test result, conditioned on the individual truly being negative. To benchmark novel
isoforms detection in the Type I3 simulation data, the sensitivity and specificity are calculated as:

the number of isoforms that are truly novel and detected novel

Sensitivity =

)

the number of isoforms that are trully novel

the number of isoforms that are truly normal and detected normal

Specificity =
pecificity the number of isoforms that are trully normal
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Precision, Recall and F1 score. Precision (also called positive predictive value) is the fraction of
relevant instances among the retrieved instances. Recall (also known as sensitivity) is the fraction
of relevant instances that were retrieved. The precision and recall are defined as:

the number of true fusions detected

Precision = -
the number of fusions detected

the number of true fusions detected

Recall =
the number of true fusions

To balance the precision and recall, the F-measure (or F1 score) is the defined as the harmonic
mean of these two values:

2 * Precision * Recall
F1=

Precision + Recall

Cosine similarity is a measure of similarity between two non-zero vectors defined in an inner
product space. It is defined as the cosine of the angle between the two vectors, i.e., the dot
product of the vectors divided by the product of their lengths. In the Type 12 simulation, the cosine
similarity for each software is the cosine of the angle (denoted as 8) between the vector of true
isoform proportion (denoted as /T) and the vector of estimated isoform proportion by the method
(denoted as §). Similarly, in the Type F2. simulation, the cosine similarity for each method is the
cosine of the angle between the vector of true fusion proportion and the vector of estimated
fusion proportion by the method. The formula of cosine similarity is defined as

-

_A4'B
|14]]

ol

cos(@) =

)

ol

where || - || is [,-norm operator.

Results

IFDlong development
We developed software IFDlong, an isoform and fusion detector tailored for long-RNA-seq data.
The software consists of six major steps, as shown in Fig. 1C.

(Step 1) Long read alignment and filtering. IFDlong first takes in long-RNA-seq data and aligns
long reads to a reference genome (e.g. GRCh38 for human and GRCm38 for mouse) using the
noise tolerant long-read aligner Minimap22°. Unmapped long reads as well as reads with multiple
alignments are filtered out.
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(Step 2) Gene, isoform and amino acid (AA) annotation. Long reads are intersected with
gene/isoform annotation profile (described in Materials and Method for preparation) by
BEDTools3?. Reads with consecutive overlapping with known exons will be further annotated to
known isoforms. While reads that cannot be fully covered by known exons will be defined as novel
isoform. These reads will be further subject to gene-level annotation to be assigned into known
genes or novel genes. Ultimately, all the long reads will be annotated three categories: known
genes with known isoforms, known genes with novel isoforms, or novel genes. Note that, a long
read will to be either uniquely assigned to one isoform or uncertainly aligned into multiple
isoforms (Fig. 1A). As a special case, a long read is potentially aligned into more than one gene,
which will serve as a supporting read for fusion transcript. Based on the transcript level
annotation, IFDlong will predict the corresponding amino acid sequence using the AA annotation
profile as reference (described in Materials and Method for preparation).

(Step 3) Fusion transcript filtering. For the detection of fusion transcripts, false positives will be
introduced due to nature of long-read sequencing (such as high error rate or artificial effect) and
the complexity of the transcriptome (such as gene similarity and complex regulation mechanisms).
To control the false positives, IFDlong applied the following filtering criteria. (1) Anchor length is
defined as the number of base pairs that a supporting read is aligned to each fusion gene?. Short
anchor length may result from misalignment, sequencing error or genome similarity. A long read
is defined as a fusion supporting read by IFDlong only if it has a minimum of 10bp (by default) of
anchor length to each fusion gene. (2) Fusion transcripts involving pseudo-genes are large likely
to be false positives. (3) Fusion candidates with genes sourcing from the same family will be
filtered out, because these are large likely result from multiple alignment due to the
transcriptome similarity. Finally, a read-based report file will be generated to summarize the gene,
isoform, amino acid, and fusion annotation. We would suggest the users to further filter the
fusion transcripts will readthrough gene pairs or genes with short distance.

(Step 4) Estimation of Isoform and fusion transcript expression. Based on the gene/isoform
annotation report, IFDlong will estimate the isoform and fusion transcript expression. Per gene
or fusion gene group, IFDlong estimates the relative abundance of isoforms and fusion transcripts
by an Expectation-Maximization (EM) algorithm for those uncertain isoform assignments (for
example, result from truncated long reads in Fig 1A, or fusion genes with multiple isoforms in Fig
1B). In the expectation step (E-step), IFDlong takes in read annotation information to calculate
the likelihood of isoform/ fusion expression. And in the maximization step (M-step), the relative
abundance will be calculated to optimize the likelihood function. The E-step and M-step will be
performed iteratively until converge. The details were described in the Methods and Materials.
Finally, IFDlong will output reports for isoform and fusion quantity estimates.

Isoform annotation and quantification in simulation data

Multiple simulation data sets were generated to evaluate the pipeline performance in terms of
isoform annotation and quantification. To mimic the real sequencing data, our IFDlong pipeline
was first applied into the ONT long-RNA-seq data on Universal Human Reference (UHR) sample??
and quantified the expression intensities of 28157 isoforms (Fig. S1A). Based on this distribution
of isoform expression, the Type |1 simulation datasets were generated by tool PBSIM23! with
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different accuracy settings (accurate, PacBio and ONT), gradient number of long reads (around
0.5 million, 1 million, 2 millions, and 4 millions reads, see Fig. S1B ), and gradient mean read
length (200bps, 500bps, 800bps, 1000bps, 1200bps, 1500bps, 1800bps, and 2000bps, see Fig. S2).
Simulation details were described in Materials and Methods.

As a representative of the Type |1 simulation, Fig. 2A shows the performance comparison in the
simulation data with accurate sequencing, 0.5 million reads and 1500bps mean read length. The
proposed IFDlong pipeline and three cutting-edge isoform quantification tools (LIQA'?, TALON4,
and Mandalorion'3) were applied into the simulation data and compared with the true isoform
distribution. The distribution histograms of isoform intensities are shown in the diagonal blocks
of Fig. 1A, and all their pairwise distribution scatter plots and Spearman’s correlations are
presented in the bottom and upper blocks, respectively. Among all the tools, the IFDlong achieves
the highest correlation with the truth (0.83), while the other tools in general under-estimate the
isoform expression (scatter plot under the diagonal when compared with the truth) or unable to
capture a subset of the known isoforms (multiple zero-expressed isoforms in the scatter plot).
The same conclusion holds for the simulation datasets with gradient parameter settings. Fig. 2B
and S3A illustrate the Spearman’s correlation and root mean squared error (RMSE) in the three
sequencing accuracy settings. The IFDlong reaches the highest performance followed by LIQA. In
general, all the tools are robust to different platforms. The IFDlong shows slightly higher
performance in the high-accurate setting compared with the ONT and PacBio settings. When
checking the pipeline performance in terms of sequencing depth, Fig. 2C and S3B indicate that
all the tools are robust to different sequencing coverage and are able to quantify isoform
expression at relatively lower depth (such as 0.5M). The IFDlong presents slightly better
performance along the increasing number of reads. In addition to sequencing accuracy and depth,
tool performances were evaluated in gradient numbers of read length. As shown in Fig. 1D and
S3C, all the tools yield dramatically increasing accuracy as the sequencing reads extending longer,
which strongly prove the advantage of long-read techniques compared with short-read
sequencing. Specifically, the IFDlong has already achieved high correlation (0.74) with the truth
in the simulation data with 200bps mean length, and its performance further increases to 0.85 in
2000bps length.

Besides the accuracy, computational costs were benchmarked among multiple tools in the
meanwhile. In general, all the tools consume longer running time for larger sequencing coverage
and longer read length with some exceptions (Fig. S4A and S4B). While the largest memory used
is not a monotone function of the read length (Fig. S4), but all within acceptable cost. The IFDlong
algorithm requires longer but manageable running time and similar memory cost compared with
most of the other tools.

Distinguishing multiple alternative splicing events sourcing from the same gene in simulation
data

Other than gene-level quantification, one of the major advantages of long-read technique is to
identify multiple alternative splicing events and quantify their expressions. As illustrated in Fig.
1A, a long read will be either uniquely aligned to one isoform or uncertainly assigned to multiple
isoforms. To address this issue, the IFDlong pipeline developed the EM algorithm to estimate
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isoform relative abundance (see the Methods and Materials for algorithm details). In the Type 12
simulation, we generated long-reads on 16 isoforms sourcing from gene CTCFL as an example.
Some isoforms were merged into one group given they share the same coding sequence
(NM_001269040 includes NM_001269040, NM_001269041, NM_001269042, and NM_080618;
NM_001269051 includes NM_001269051 and NM_001269052). Ultimately, in total 12 isoform
groups were quantified for the performance evaluation. The isoform tools (IFDlong, LIQA, TALON
and Mandalorion) were applied into this simulation data to quantify the abundance of all the
alternative splicing events. Importantly, IFDlong and TALON are the only tools that can perform
read-level isoform annotation, while the other pipelines only report the overall isoform
abundancy/ intensity. Fig. 2E shows the contingency table (in percentage) between the true and
the IFDlong annotated isoform assignments for the simulation data with 1500 bps median read
length in high-accurate setting, where larger percentages in the diagonal block of the heatmap
indicate higher consistency. In terms of abundance estimates, we compared the relative
abundance (sum up to be 100%) among the truth and the estimates by the four tools in Fig. 2F.
The IFDlong and LIQA show out the highest consistency with the truth (cosine similarity to be
0.94 and 0.90, respectively), followed by the Mandalorion and TALON. Similar as the Type 11
simulation setting, we simulated gradient read lengths in this Type 12 simulation setting. Fig. S5
illustrates the contingency heatmap between the truth and the IFDlong pipeline with different
read lengths. And the results show out increasing similarity when the read length extends longer.

Novel isoform detection in simulation data

In addition to quantifying known isoforms, IFDlong can call novel isoforms from the long-RNA-seq
data. As the toy example shown in Fig. 3A, four types of novel isoforms were defined: skipping
exon, additional exon, alternative 5’ splice site, and alternative 3’ splice site. Multiple factors will
cause the alterations of the reads compared with the reference sequences, such as insertion,
deletion or mismatches caused by SNP, mutation and sequencing errors, or misalignment caused
by multiple alignment and aligner performance. To avoid these false positives when calling novel
isoforms, we proposed a buffer parameter for tolerance region next to the edge of the known
exon. The buffer length is 9bps by default and can be adjusted by user setting. As shown in Fig.
3B, if the edge of the detected exon locates within the buffer region of the reference exon, the
software will regard it as normal isoform, otherwise novel isoform with either truncation or
extension. To simulate these novel isoform events, in the Type I3 datasets, we generated six
libraries for each category of novel isoform. Each library contains half long-reads that are derived
from normal isoforms, and another half reads supporting the novel isoforms of each category
(details were described in Methods and Materials). Given only IFDlong and TALON can perform
read-level isoform annotation, Fig. 3C compares the sensitivity and specificity between IFDlong
and TALON in terms of detecting the long reads supporting the novel isoforms. Two buffer
tolerance lengths were applied to IFDlong: Obp (exact edge-matching between the reference and
detected exon) and 9bps, while the buffer length for TALON is not allowed to be customized.

We are expecting that a reasonable buffer setting (suggested setting: 3-6bp) will dramatically
control the false positives without missing a lot of true positives.
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As shown in Fig. 3C, compared with zero buffer setting, IFDlong with 9 bps buffer region can
significantly increase the specificity with reasonable sacrifice of sensitivity in high-accurate
sequencing data. In this Type I3 simulation datasets, we generated datasets with mean read
length to be 1000bps and 2000bps. As illustrated in Fig. 3C, IFDlong achieves higher performance
in the longer read length datasets. For example, when detecting novel type of additional exon,
IFDlong with 9bps buffer region can reach 99.5% sensitivity and 94.6% specificity, while the
1000bp can already reach satisfiable performance (e.g., with 9bps buffer, 58.3% sensitivity and
96.8% specificity for the novel type of additional exon). When compared with TALON, IFDlong
with 9bps buffer region achieved higher sensitivity and specificity in all the 2000bps mean length
datasets, and showed higher specificity and equivalent sensitivity in the 1000bps mean length
datasets. In addition to high-accurate sequencing setting, simulation data with ONT and PacBio
accuracy were generated, where similar conclusion holds in these two platforms (Fig. S6).
Moreover, compared with the high-accurate sequencing reads in Fig. 3C, the 9bps buffer length
benefits IFDlong more with significant increasing specificity and negligible sensitivity loss than
Obp buffer length when the sequencing error rate is high (Fig. $6). Overall, compared with TALON,
our IFDlong pipeline is able to achieve higher sensitivity and specificity in most of the simulation
scenarios (Fig. 3C, S6 and S7).

Application into real human datasets for isoform detection

Simulation data has its limitation to present the real sequencing. In order to evaluate the tool
performance in a comprehensive manner, we applied the proposed IFDlong pipeline as well as
the three existing isoform quantification tools into real sequencing data. For human data
application, RNA extractions from both Universal Human Reference (UHR) and MCF7 human
breast cancer cell line were sequenced by both ONT and PacBio platforms. Data were downloaded
from public resources and fully described in Materials and Method. Fig. 4A and S8 illustrates the
Spearmen’s correlation of the true isoform distribution compared with the estimates by each one
of the four tools. For UHR datasets, 964 isoforms quantified by TagMan Real-Time PCR Assays is
serving as the truth32. IFDlong achieved the highest correlation with the RT-PCR results (0.65 and
0.69 in ONT and PacBio dataset), indicating the high performance of our proposed tool. Among
the 964 isoforms, the IFDlong has successfully captured 677 (70%) and 812 (84%) of them in ONT
and PacBio dataset, respectively. Beyound these PCR quantified isoform set, in total 16578 and
28078 isoforms were detected by IFDlong pipeline in both datasets (Table S1), while the
additional isoforms cannot be evaluated given the limitation of the RT-PCR measurement set.
Similar analysis was performed on MCF7 datasets, where transcript expressions quantified by
RNA-seq were used as underlying truth. As shown in Fig. 4A and S8, our IFDlong pipeline still
performs the best compared with the other tools (Spearman’s correlation of 0.66 and 0.63 in both
selected ONT and PacBio datasets). The full list of detected isoforms by IFDlong were summarized
in Table S2.

As an illustration, Fig. 4B takes the house-keeping gene glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) as an example to show how the long-reads can quantify the transcript
expression at isoform resolution. Gapdh is a highly expressed gene in human samples. Among the
multiple alternative splicing events, NM_002046 plays a dominant role in the UHR datasets as
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qguantified by IFDlong pipeline (Table S1). In both ONT and PacBio datasets, the long reads can
successfully distinguish the differences in exon 1, 4, 6, and 7 among multiple isoforms.

Application into mouse datasets for isoform detection

In addition to human data, our proposed pipeline can be applied into other species as long as the
reference genome and annotation files are provided as the input. In this project, we’ve collected
long-read data on mouse cell cline C2C12 (with four repeats) and heart tissues (with two repeats)
from ENCODE project®® to illustrate the generalizability of our proposed tool into broad
applications. For both datasets, TALON pipeline was employed by the ENCODE project to quantify
the isoform expression. In addition, we applied IFDlong, LIQA and Mandalorion into these two
mouse datasets for performance evaluation and application. Isoforms quantified by IFDlong were
summarized in Table $3 and S4. For the mouse data, no golden standard truth is available, such
as RT-PCR quantified isoforms or short-read RNA-seq measurements as a reference. Given this
limitation, we can only check the performance similarity across the four tools. As shown in Fig.
S9, IFDlong presents high agreement with LIQA and with TALON in all the datasets. In addition,
the mouse datasets were applied to benchmark the consistency of isoform quantification in
multiple repeats. Per software, mean isoform abundance was first calculated across multiple
repeats, and then the average RMSE were derived based on this mean abundance. As shown in
Fig. 4C, our IFDlong pipeline and TALON (result provided by ENCODE project3?) achieves the
largest -logl0(average RMSE) value in both C2C12 and heart datasets, indicating the high
robustness properties of the two tools.

Besides robustness, biological insights summarized from the isoform quantification can serve as
indirect evaluation of the IFDlong pipeline. The heart tissues are collected from mouse at 14 days,
which is the transition time of fetal isoforms to adult ones. The isoform quantification by our
IFDlong pipeline (Table S4) has strongly supported this conclusion. For example, titin (TTN) is a
massive sarcomeric protein serving as a molecular spring within the sarcomere, determining the
passive stiffness of cardiomyocytes. During the perinatal period, there is a transition in titin
isoforms from the compliant fetal titin N2BA (NM_011652) to the stiffer N2B (NM_028004) adult
isoform in the heart, adapting to postnatal cardiac load demands32. Altered splicing of TTN is
implicated in heart failure, and lowering the N2BA:N2B ratio has been proposed as a therapeutic
strategy for heart failure3°*!, The expression levels of N2BA and N2B that have been quantified
by IFDlong presents this dynamic transition status (Fig. 4D). Besides TTN, the switching of several
myofibril proteins during postnatal period are observed. For example, myosins are actin-based
motor molecules with ATPase activity essential for muscle contraction. During perinatal period,
the fetal isoform of myosin heavy chain 7 (Myh7, NM_080728) is gradually switching to adult
isoform Myh6 (NM_001164171 and NM_010856)*2. Similar isoform transition event was
observed on troponin | (TNNI), which is the inhibitory subunit of troponin and the thin filament
regulatory complex. During the postnatal period, the slow skeletal TNNI (TNNI1) transitions to the
cardiac-type troponin (TNNI3)*3. As shown in Fig. 4D, the IFDlong quantified isoforms have
captured this transition process and more adult isoforms were observed than their corresponding
fetal isoforms.
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In addition, the mouse data also shows the distribution of multiple isoforms sourcing from the
same gene. For instance, calcium/calmodulin dependent protein kinase Il delta (CaMKII8) plays a
central role in a variety of cardiac diseases** [cite], which presents several alternative splicing
forms as shown in Fig. 4E. CaMKII6B (NM_023813) is a dominant isoform containing exon 14,
which plays a critical role in gene transcription regulation and may play a protective role in cardiac
diseases*. CaMKIIS6C (NM_001025438) is another dominant isoform lacking exons 14-16, which
is the major contributor of the pathological process of cardiac diseases*®. CaMKIISA
(NM_001025439) comprises exon 13 and 15-17 and regulates L-type Ca2+ channel and
contributes to the calcium mishandling in heart failure*’. Besides CaMKII§, as shown in Fig. S10.
the IFDlong analysis has revealed the isoform distribution of many other cardiac disease related
genes, such as Calcium Voltage-Gated Channel Subunit Alphal C (Cacnalc), Troponin T2 (Tnnt2),
Calcium/Calmodulin Dependent Protein Kinase Il Gamma (Camk2g) and Myocyte Enhancer Factor
2C (Mef2c). All these have proved the additional resolutions that have been revealed by isoform-
level analysis when compared with conventional gene-level quantification.

Detecting differentially expressed isoforms in single-cell long-read RNA-seq data

The IFDlong pipeline is not only compatible with bulk long-RNA-seq, but also can be applied into
single-cell long-RNA-seq data to investigate the isoform expression at single-cell resolution. A
paired tumor-normal liver sample from a hepatocellular carcinoma (HCC) patient sequenced by
LoopSeq was used in this project (details described in Materials and Methods)34. By IFDlong
pipeline, in total 32,124 isoforms across 162 cells from the benign libraries and 285 cells from the
tumor libraries were finally analyzed. Instead of the traditional gene-based analysis, we
performed single-cell clustering and differential analysis based on the isoform profile. As shown
in Fig. 5A, cells from tumor and normal libraries are well separable from each other. Due to the
heterogeneity of the tumor and benign tissues, few cells sourced from the tumor library present
benign expression patterns. Next, differential expression analysis was performed comparing
tumor and normal cells to define differentially expressed isoforms (DEI) (Table S5). Fold changes
of isoform were utilized for downstream Gene set enrichment analysis on KEGG database (Fig. 5B
and Table S6) and GO database (Fig. S11A and Table S6). Top DEls were subject to pathway
enrichment test by Ingenuity Pathway Analysis (IPA on up-regulated DEI, Fig. S11B and Table S6).
Top pathways primarily associated with the tumor immune microenvironment and immune
evasion processes. These pathways play a crucial role in HCC tumorigenesis and in the response
to immune checkpoint inhibitor (ICI) therapies. Particularly, the top pathways encompass various
aspects of immune processes, including heterogeneity within the tumor microenvironment,
immune cell infiltration, immune evasion mechanisms employed by tumor cells, and potential
targets for immunotherapy (Fig. 5B).

For instance, considering the human leukocyte antigen (HLA)*>° and B2M>Y 32 genes, which
encode proteins crucial for antigen presentation process critical for activating T cells and initiating
an immune response against tumor cells. Dysregulation or alterations in the expression of these
HLA genes can impact the immune system's ability to recognize and eliminate cancer cells,
directly influencing the success of ICls*>1, In addition, validated HCC immune players, CD74>3 >4
(Fig. 5C), CCL5°> >® (Fig. S12A), and IL7R>" > (Fig. $12B), known for their involvement in HCC ICI
response, have been identified as top isoforms in pathway analysis. Their isoforms exhibit a
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significant increase in tumor cells compared to non-tumor regions, supporting the validated role
of these isoforms in HCC pathogenesis, which underscores the necessity for understanding
mechanisms of ICI resistance. Notably, CD74 contains three isoforms (Fig. 5C, NM_004355,
NM_001025159, and NM_001025158). Based on IFDlong analysis, isoform NM_004355 and
NM_001025159 present similar expression patterns, while NM_001025158 shows overall low
expression. CD74 plays multifaceted roles in HCC pathogenesis by directly influencing antigen
presentation through the regulation of major histocompatibility complex (MHC) class Il molecules,
influencing immune modulation and tumor cell behavior®® >*, Furthermore, several isoforms of
CCL5 (Fig. S12A, dominant by isoform NM_002985) and IL7R (Fig. $12B, with both NR_120485
and NM_002185 highly expressed) have been reported, resulting from alternative splicing or
post-translational modifications®>®, may exert distinct biological functions in HCC, beyond their
major roles as chemo-attractants and cognate receptors for various immune cell types, including
T cells, monocytes, macrophages, and dendritic cells. Isoform diversity contributes to the
establishment of an immunosuppressive microenvironment within the tumor, thereby facilitating
tumor progression and immune evasion.

Fusion isoform detection and quantification in simulation data

IFDlong is designed to detect and quantify fusion transcript at isoform resolution. For
performance evaluation, the Type F1 dataset was generated by pooling reads simulated from
1000 normal isoforms and 1000 fusion transcripts. The proposed IFDlong pipeline and two
existing fusion quantification tools (Genion?® and JAFFAL?’) were applied into the simulation data
and compared with the true fusion distribution. As a representative, Fig. 6A shows performance
comparison in the data with approximately 0.5 million high-accurate sequencing reads.
Considering that the Genion and JAFFAL can only detect fusion transcript at gene resolution, Fig.
6A illustrates the fusion gene expression in the diagonal blocks, and all their pairwise expression
scatter plots and Spearman’s correlations in the bottom and upper blocks. Among all the tools,
the IFDlong achieves the highest correlation with the truth (0.83), followed by JAFFAL (0.79) and
Genion (0.75). The same conclusion holds for the simulation datasets with ONT and PacBio
accuracy sequencing. As shown in Fig. 6B and S13, IFDlong always reaches the best performance
for different accuracy settings. All the tools are generally robust to high sequencing errors, where
the Spearman’s correlations for ONT and PacBio sequencing are equivalent to the ones for high-
accurate sequencing.

Exploring fusion transcript at isoform resolution is one of the major advantages of IFDlong.
Compared with Genion and JAFFAL, IFDLong is the only tool that can annotate and quantify fusion
isoforms (Fig. 1B). The scatter plots comparing the true fusion isoform intensities and the IFDlong
estimated expression were shown in Fig. $14, where IFDlong can reach Spearman’s correlation of
0.47, 0.48 and 0.50 in the high-accurate, PacBio and ONT dataset, respectively. Given the
increasing complexities of fusion quantification at isoform resolution compared with gene-level
analysis, some fusion isoforms were under-estimate by IFDlong (dots locate underneath the
diagonal in Fig. $14). One of the key factors for fusion detection is the setting of anchor length,
which indicates the minimum base pairs of read alighment to each fusion gene?3. Shorter anchor
length resulted in high recall rate, but with the sacrifice of precision, because larger number of
false positives with short aligned supporting reads were introduced. In contrast, longer anchor
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length can reach highest precision with the loss of recall given true fusions with shorter alignment
will be mis-detected (large false negative). To test the tool sensitivity to anchor length, Fig. 6C
illustrates the precision and recall (PR) curve of fusion transcript detection with anchor length
ranging from Obp to 100bps. Within this range, IFDlong can reach both high precision and recall
rates (precision > 0.99 and recall > 0.83). Fig. 6D highlights the highest F1-score at anchor length
to be 78bps. In addition to this high-accurate sequencing data (Fig. 6D), RR curves were drawn in
the Type F1 simulation data with PacBio and ONT sequencing accuracy (Fig. $12). Decreasing
sequencing accuracy resulted in comparatively lower precision recall rates, and required higher
anchor length to reach the best Fl-score. In practice, to discover more fusion candidates, a
relatively small anchor length is suggested. IFDlong sets 10bps by default, but users can adjust
this parameter to better balance the precision and recall and adapt to the real data.

Distinguishing multiple fusion-mates paired with the same gene in simulation data

A popular gene may potentially pair with multiple mates in real practice. The Type F2 datasets
were simulated to estimate the software performance in distinguishing different fusion-mates.
Specifically, based on the TCGA fusion database, top five popular genes (FBXL20, CDS1, TMPRSS2,
FRS2 and SFTPB) with their corresponding mate gene panels (Table S7) were selected as template
to generate the simulation data. IFDlong, Genion and JAFFAL were then applied into this dataset
to quantify the expression level of all fusion pairs. The relative abundances of all the fusion mates
were compared across the truth and the software estimations in Fig. 6D, and their corresponding
cosine similarities were summarized in Fig. 6E. For example, TMPRSS2 is a popular fusion gene in
prostate cancer. Other than the most prevalent TMPRSS2-ERG fusion®?, in total 19 genes were
reported to be fused with TMPRSS2 in TCGA database (Table S7). Compared with the truth, both
IFDlong and JAFFAL achieved high agreement (cosine similarity = 0.96) when estimating the
relevant abundance of these 19 fusion transcripts in the simulation data with high-accurate
sequencing and mean read length to be 1500bp (Fig. 6D and 6E). In all the five simulations,
IFDlong presented the highest cosine similarity with the truth, while JAFFAL and Genion resulted
in unrobust performance. All the three tools showed high consistency with the truth in FBXL20
simulation, but JAFFAL and Genion failed in CDS1 simulation. Similar results were observed in the
simulation data with different accuracy settings (accurate, PacBio and ONT) and mean read
lengths (200bp, 1000bp and 1500bp) (Fig. $S16-S18). IFDlong achieved the highest cosine
similarity (higher than 0.94) for all the simulation scenarios, followed by JAFFAL which performed
well in all the settings other than CDS1.

Two-segment and three-segment fusion detection in real data application

Besides in silico simulation datasets, the fusion callers were applied into real sequencing data for
performance evaluation and novel fusion transcripts detection. The IFDlong fusion detection
pipeline, as well as two existing tools (Genion and JAFFAL) were evaluated in four real data sets:
MCF7 breast cancer (bulk long-RNA-seq by PacBio and ONT), H838 Lung adenocarcinoma cell line
(single-cell long-RNA-seq by ONT), samples from colon cancer patients (bulk long-RNA-seq by
LoopSeq), and liver tissue samples from hepatocellular carcinoma (HCC) patients (single-cell long-
RNA-seq by LoopSeq). Among them, colon cancer and HCC cohorts are in-house samples, where
novel fusions were detected and validated in our previous research® 34, As shown in Table 1, The
IFDlong pipeline successfully detected all these two-segment fusions, while Genion and JAFFAL
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can only identify 10/11 and 5/11 fusions. All the fusion callers were applied into MCF7 and H383
datasets and the two-segment fusions identified by IFDlong were listed in Table S8.

In addition to two-segment fusions that are frequently observed, three-segment fusion were
discovered in the previous research®3, while majority of the predicted three-segment fusions may
result from artificial chimera events or mis-alignment. To test the ability of three-segment fusion
discovery, Table 1 lists 12 fusion transcripts detected from MCF7 and H838 by JAFFAL?’. The
IFDlong pipeline can successfully detect all of them, while Genion failed to report three-segment
fusions.

Discussion

In this paper, we introduced IFDlong, a novel bioinformatics tool tailored for the analysis of long-
RNA-seq data. IFDlong offers several distinct advantages over existing tools, making it a
comprehensive solution for accurate annotation and quantification of isoforms and fusions. First,
IFDlong offers a suite of functions that encompass various aspects of long-RNA-seq analysis (Fig.
1C), including long-read annotation at both gene and isoform resolution (Fig. 2), prediction of
amino acid sequences, known isoform quantification (Fig. 2), novel isoform discovery (Fig. 3), and
detection of fusion transcripts (Fig. 6).

Second, IFDlong performs statistical estimation to accurately infer the isoform and fusion
abundance. Specifically, the EM algorithm was developed to address the long reads with
ambiguous annotations (reads with uncertain isoform assignments, Fig. 1A) and fusion transcripts
consist of multiple alternative splicing variants (Fig. 1B). IFDlong shows higher accuracy in terms
of isoform and fusion quantification when compared with the existing tools (Fig. 2 and 6).

Third, IFDlong employs multiple selection criteria to control false positives in the detection of
novel isoforms and fusion transcripts. IFDlong enhances the accuracy of fusion detection by
filtering out fusion candidates involving pseudogenes, genes from the same family, and
readthrough events. Moreover, the user-adjustable parameters, such as buffer length for novel
isoform detection (Fig. 3) and anchor length for fusion identification (Fig. 6), provide flexibilities
in customizing the analysis pipeline to adapt to specific experimental conditions.

Fourth, IFDlong presents advantages in its versatility and compatibility with diverse experimental
setups and species. Specifically, IFDlong is applicable for both human and mouse data (Fig. 4), and
can be easily generalized to other species given the corresponding reference and annotation
profiles. Moreover, IFDlong is compatible with different experimental platforms (PacBio, ONT and
linked-short-read platforms) and multiple library preparation strategies (bulk and single-cell RNA-
seq, as shown in Fig. 5; direct RNA and cDNA libraries, as shown in Fig. S8). In addition, IFDlong
can take in the alignment file by different long-read aligners, such as minimap22° by default or
STAR-long®. All these properties make IFDlong a generalizable tool that can be applied for broad
applications and adjusted to best suits individual dataset.
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In this project, comprehensive comparisons against existing tools were performed to
demonstrate the superior performance of IFDlong through extensive simulations and real-data
applications. Five types of simulation datasets were generated to prove the high performance of
IFDlong in terms of isoform quantification (Type 11 and 12), novel isoform detection (Type 13), and
fusion quantification (Type F1 and F2). Multiple real datasets were employed to test the
generalizability of the IFDlong pipeline. The robustness and reliability of IFDlong make it a
prioritized tool for researchers seeking accurate and comprehensive analysis of long-RNA-seq
data.

Our analysis pipeline also highlights the significant potential of the single-cell long-RNA-seq data
analysis. The HCC study enables the delineation of multiple isoform components at the single-cell
resolution. This approach facilitates the identification of rare cell populations, evaluation of cell-
to-cell variability, and the reconstruction of cellular trajectories, thereby offering a
comprehensive view of the immune landscape in HCC. These approaches can be generalizable to
comprehend the molecular mechanism underlying diverse disease and biological processes.
These insights guide the development of more targeted and effective therapeutic strategies
tailored to individual patients.

Admittedly, this study contains limitations to be addressed. In the comparison with other existing
tools, the simulation data and the IFDlong pipeline were using the same hg38 annotation profile
that was downloaded from UCSC Genome Browser. If the existing tools can be built from the user-
defined annotation file, we will apply the same profile. If not, the embedded annotation file may
not be the same as the one that is used by IFDlong, which will potentially cause mismatching due
the different number of genes or alternative gene names in different databases. While for the
comparison using real datasets, the gPCR or short-read RNA-seq data served as the truth,
avoiding the annotation bias issue. For the performance comparisons, all the tools applied their
default parameter settings, including our IFDlong pipeline. We admit that tuning parameters may
influence the software performance, but this is out of the scope of this project.

Given all the advantages of the IFDlong, further improvements can be made as the future work.
First, we will further increase the computing efficiency of the proposed software to make the
running time and memory cost to be manageable for larger dataset. In addition, the current
pipeline is based on the alignment profile by a single aligner (Minimap2 by default). To take the
advantages of multiple aligners (such as STAR-long®, GMAP®® or other long-read aligners), the
pipeline can be further improved by integrating multiple alignment files by more than one aligners.

In conclusion, IFDlong presents significant advancements in long-RNA-seq analysis for the
annotation and quantification of isoforms and fusion transcripts. Its unique features, including
the integration of the EM algorithm, stringent false-positive control, compatibility, and superior
performance, position IFDlong as a versatile tool for long-read transcriptome research. This novel
bioinformatics software will contribute to the community by its broad application into biomedical
research.


https://doi.org/10.1101/2024.05.11.593690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.11.593690; this version posted May 14, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Funding

This research is supported in part by the Pittsburgh Liver Research Centre through NIH/NIDDK
Digestive Disease Research Core Center grant P30DK120531 (Pilot and Feasibility Grants to S.L.,
Genomics and Systems Biology Core), the National Institutes of Health through Grant Number
UL1TR0O01857 (Pilot Grant to S.L.), the Innovation in Cancer Informatics Discovery Grant (to S.L.
and S.K.), the NIH funding R0O1CA258449 (to S.K.), and the University of Pittsburgh Center for

Research Computing through the NIH award S100D028483.

Table

Table 1: Two-way and three-way fusion detection in real data application.

Fusion Sample Fusion detection
type Cohort Fusion transcript ID IFDlong | Genion | JAFFAL
C1M Y Y N
STAMBPL1 - FAS C2M Y Y N
Colon Cat Y Y N
Cancer SMYD3 - ZNF124 C3M Y Y N
Two- | (bulk) VAPB - GNAS C3M Y Y Y
segment CaT Y Y Y
fusion ECHDC1 - PTPRK C3M Y Y Y
EML4 - ACTR2 H1T Y Y Y
HCC CCDC127 - PDCD6 H1T Y N Y
(sc) H1T Y Y N
FGG - PLG H1N Y Y N
TXLNG - SYAP1 - RRM2 PB Y N Y*
BCAS4 - BCAS3 - REG4 PB Y N Y*
COPS7B - AVL9 - ZFYVE1 PB Y N Y*
GBF1 - MACROD2 - C140rf132 | ONT Y N Y*
MCF7 YY1-PPP1R12A-EVL ONT Y N Y*
Three- | (bulk)
segment VMP1 - BTBD1 - YPEL5 ONT Y N Y*
fusion RAD51B - CCDC170 - EPB41L5 | ONT Y N Y*
IKZF2 - NCOR1 - SPATA33 ONT Y N Y*
CFL1 - SLC4A7 - URI1 ONT Y N Y*
Ha38 BMPR2 - TYW5 - ALS2CR11 ONT Y N Y*
(sc) ALS2CR11 - BMPR2 - TYW5 ONT Y N Y*
ACBD6 - RABGAP1L - XPR1 ONT Y N Y*

Y*: JAFFAL reported three-segment fusions.
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Figure Legend

Figure 1: lllustration of alternative splicing, fusion isoform and IFDlong pipeline. (A) Long-read
annotation and isoform abundance quantification. The red and purple reads represent the
truncated and completed long-reads, which can serve as supporting reads by alignment to
different isoforms. (B) Illustration of fusion isoforms. Head gene A and tail gene B will potentially
form into different fusion isoforms. (C) IFDlong pipeline. The proposed pipeline will take in the
raw long-read sequences and annotation files, and ultimately output the gene/isoform
annotation reports, isoform quantification reports and fusion quantification reports for
downstream analysis.

Figure 2: Isoform annotation and quantification in simulation analyses. (A) Pairwise comparison
of the isoform quantification tools in the Type I1 simulation data with accurate-sequencing, 0.5M
reads and 1500 bp median length. The bottom left cells present the pairwise scatter plot of
isoform expression. The upper right cells indicate the Spearman’s correlation. (B) Spearman’s
correlation of isoform expression between the truth and each tool under different sequencing
accuracy in the Type I1 simulation with 0.5M reads and 1500 bp median length. (C) Spearman’s
correlation of isoform expression between the truth and each tool under different sequencing
depth in the Type I1 simulation with accurate sequencing and 1500 bp median length. (D)
Spearman’s correlation of isoform expression between the truth and each tool under gradient
median read lengths in the Type 11 simulation with 0.5M reads and accurate sequencing. (E)The
percentage contingency table between the true isoform assignments and the annotation by
IFDlong in the Type I2 simulation data. (F) Comparison of isoform relative abundance among the
true simulations and the expression estimation by different tools in the Type-12 simulation.

Figure 3: lllustration and detection of novel isoform. (A) Major types of novel isoforms. (B) Buffer
tolerance to define novel isoform. Compared with the reference exon (blue), if the difference is
within the buffer tolerance region, the isoform is still defined as normal one (yellow and green
isoforms); otherwise, it will be defined as novel isoform with either truncation (orange) or
extension (red). (C) Sensitivity (left) and Specificity (right) of IFDlong (top) and TALON (bottom)
when detecting novel isoforms in the Type 13 simulation. The bars are colored by different buffer
length setter (Obp or 9bp) and median length (1000 bp or 2000 bp) settings.

Figure 4: Application of isoform detection in real human and mouse studies. (A) Spearman’s
correlation of isoform quantification in human studies: UHR sequenced by ONT and PacBio, and
MCF7 breast cancer cell line sequenced by ONT and PacBio. (B) Illustration of multiple isoforms
of gene Gapdh supported by long reads in UHR dataset. (C) Consistency measurement (-
log10(average RMSE)) of isoform quantification in mouse studies: C2C12 cell line with four
repeats and mouse heart tissues with two repeats. (D) Relative abundance of adult and fetal
isoforms quantified by IFDlong pipeline on mouse heart tissues. (E) Relative abundance of
multiple alternative splicing events of Camk2d quantified by IFDlong pipeline on mouse heart
tissues.
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Figure 5: Application of IFDlong pipeline into single-cell long-read RNA-seq data on human HCC.
(A) t-SNE visualization on the single-cell data based on isoform expression profile. (B) Top KEGG
pathways enriched by the differentially expressed isoforms (DEI) comparing tumor and normal
cells. (C) Multiple alternative splicing events of gene CD74 present differential expression patterns
between normal and tumor cells.

Figure 6: Detection and quantification of fusion transcripts in simulation studies. (A) Pairwise
comparison of the fusion gene quantification tools in the Tpe-F1 simulation data with accurate
sequencing. The bottom left cells present the pairwise scatter plot of fusion expression. The upper
right cells indicate the Spearman’s correlation. (B) Spearman’s correlation of fusion expression
between the truth and each tool under different sequencing accuracy in the Type F1 simulation
data. (C) Cosine similarity of the relative abundance of multiple paired genes in the Type F2
simulation data. (D) Precision and Recall curve for fusion transcript detection by IFDlong pipeline
using different anchor lengths. (E) Relative abundance of multiple paired genes in the Type F2
simulation data.

Supplementary Figure Legend

Figure S1: Read count distribution for the (A) Universal Human Reference real data and the (B)
The Type 11 simulation data with gradient depth.

Figure S2: Read length distribution of the Type 11 simulation data with gradient median read
length.

Figure S3: Root mean squared error (RMSE) between the true and the estimated isoform
expression in the Type 11 simulation data. (A) RMSE of isoform expression between the truth and
each tool under different sequencing accuracy with 0.5M reads and 1500 bp median length. (B)
RMSE of isoform expression between the truth and each tool under different sequencing depth
with accurate sequencing and 1500 bp median length. (c) RMSE of isoform expression between
the truth and each tool under gradient median read lengths with 0.5M reads and accurate
sequencing.

Figure S4: Computational cost for isoform quantification tools in the Type I1 simulation. (A&B)
Time cost along different number of reads and read lengths. (C) Memory cost across different
read lengths when working on 4M reads.

Figure S5: The percentage contingency table between the true isoform assignments and the
annotation by IFDlong in the Type 12 simulation data with gradient median read lengths.

Figure S6: Sensitivity (left) and Specificity (right) of IFDlong when detecting novel isoforms in
the Type I3 simulation with ONT (top) and PacBio (bottom) accuracy. The bars are colored by
different buffer length setter (Obp or 9bp) and median length (1000 bp or 2000 bp) settings.
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Figure S7: Sensitivity (left) and Specificity (right) of TALON when detecting novel isoforms in the
Type 13 simulation with ONT (top) and PacBio (bottom) accuracy. The bars are colored by
different median length (1000 bp or 2000 bp) settings.

Figure S8: Spearman’s correlation of isoform quantification in human MCF7 breast cancer cell
line by different ONT sequencing settings.

Figure S9: Pairwise comparison of isoform quantification in mouse C2C12 and Heart samples.
The bottom left cells present the pairwise scatter plot of isoform expression. The upper right cells
indicate the Spearman’s correlation.

Figure S10: Isoform distribution of Calcium Voltage-Gated Channel Subunit Alphal C (Cacnalc),
Troponin T2 (Tnnt2), Calcium/Calmodulin Dependent Protein Kinase Il Gamma (Camk2g) and
Myocyte Enhancer Factor 2C (Mef2c) in heart tissue.

Figure S11: Pathway analysis on isoform differential expression analysis in HCC data. (A) Gene
set enrichment analysis (GSEA) on Gene ontology (GO) database. (B) Ingenuity pathway
analysis (IPA).

Figure S12: Feature plot of isoform expression for gene CCL5 and IL7R in HCC data.

Figure S13: Pairwise comparison of fusion quantification in the Type F1 simulation. (A) The Type
F1 simulation with median length of 1500 bp and PacBio accuracy. (B) The Type F1 simulation
with median length of 1500 bp and ONT accuracy. The bottom left cells present the pairwise
scatter plot of isoform expression. The upper right cells indicate the Spearman’s correlation.

Figure S14: Scatter plot of isoform-level fusion quantification comparing the truth the IFDlong
estimation in the Type F1 simulation. (A) The Type F1 simulation with median length of 1500 bp
and accurate setting. (B) The Type F1 simulation with median length of 1500 bp and PacBio
accuracy. (C) The Type F1 simulation with median length of 1500 bp and ONT accuracy.

Figure S15: Precision and Recall curve for fusion transcript detection by IFDlong pipeline using
different anchor lengths. (A) The Type F1 simulation with median length of 1500 bp and PacBio
accuracy. (B) The Type F1 simulation with median length of 1500 bp and ONT accuracy.

Figure S16: Relative abundance of multiple paired genes in the Type F2 simulation data with
different accuracy setting. (A) The Type F2 simulation with 1500 bp median length and PacBio
setting. (B) The Type F2 simulation with 1500 bp median length and ONT setting.

Figure S17: Cosine similarity of the relative abundance of multiple paired genes in the Type F2
simulation data. (A) The Type F2 simulation with median length to be 200bp and accurate setting.
(B) The Type F2 simulation with median length to be 1000bp and accurate setting. (C) The Type
F2 simulation with median length to be 1500bp and PacBio setting. (D) The Type F2 simulation
with median length to be 1500bp and ONT setting.
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Figure S18: Relative abundance of multiple paired genes in the Type F2 simulation data with
gradient median length. (A) The Type F2 simulation with 200 bp median length and accurate
setting. (B) The Type F2 simulation with 1000 bp median length and accurate setting.

Supplementary Table

Table S1: Isoform quantification by IFDlong on UHR dataset.

Table S2: Isoform quantification by IFDlong on MCF7 dataset.

Table S3: Isoform quantification by IFDlong on mouse C2C12 dataset.

Table S4: Isoform quantification by IFDlong on mouse heart dataset.

Table S5: Differentially expressed isoforms in HCC dataset comparing tumor and normal.

Table S6: Pathway analysis on the differentially expressed isoforms in HCC dataset.

Table S7: Popular fusion transcripts in TCGA dataset that were employed in the Type F2
simulation.

Table S8: Two-way fusions detected in MCF7 ONT dataset by IFDlong.
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Long-read annotation and isoform abundance quantification
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