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Abstract 
BACKGROUND: There is growing evidence that pathogenic mutaQons do not fully explain 
hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a 
paQent’s geneQc background was influencing cardiomyopathy this should be detectable as 
signatures in gene expression. We built a cardiomyopathy biobank resource for interrogaQng 
personalized genotype phenotype relaQonships in human cell lines. 
METHODS: We recruited 308 diseased and control paQents for our cardiomyopathy stem cell 
biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into 
induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome 
sequencing and were differenQated into cardiomyocytes for RNA-seq. In addiQon to annotaQng 
pathogenic variants, mutaQon burden in a panel of cardiomyopathy genes was assessed for 
correlaQon with echocardiogram measurements. Line-specific co-expression networks were 
inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by 
acQvaQon with omecamQv mecarbil or inhibiQon with mavacamten, to alter contracQlity. 
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RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with 
HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines idenQfied 78 unique 
pathogenic or likely pathogenic mutaQons in the diseased lines. Notably, only DCM lines lacking 
a known pathogenic or likely pathogenic mutaQon replicated a finding in the literature for greater 
nonsynonymous SNV mutaQon burden in 102 cardiomyopathy genes to correlate with lower lef 
ventricular ejecQon fracQon in DCM. We analyzed RNA-sequencing data from iPSC-derived 
cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two 
transcripQonal subtypes of HCM. The first subtype exhibited concerted acQvaQon of the co-
expression network, with the degree of acQvaQon reflecQve of the disease severity of the donor. 
In contrast, the second HCM subtype and the enQre DCM cohort exhibited parQal acQvaQon of 
the respecQve disease network, with the strength of specific gene by gene relaQonships 
dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the 
HCM and DCM networks and parQally corrected in response to drug treatment. 
CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our 
analysis supports the hypothesis the geneQc background influences pathologic gene expression 
programs and support a role for ADCY5 in cardiomyopathy. 
 
IntroducBon 
Hypertrophic cardiomyopathy (HCM) occurs in 1 in 500 individuals, and paQent phenotypes range 
from asymptomaQc to serious adverse outcomes such as heart failure or sudden cardiac death.[1] 
HCM is marked by an enlarged lef ventricular muscular wall, with lef ventricular ejecQon fracQon 
typically preserved or increased,[1] whereas dilated cardiomyopathy (DCM) is characterized by 
reduced ejecQon fracQon.[2] DCM is esQmated as the cause of heart failure in ~12.5 percent of 
paQents and has been esQmated to affect 1 in 250 individuals,[2] with familial DCM represenQng 
a fracQon of those cases.[3] UnQl recently, the accepted inheritance mechanism for HCM and 
familial DCM was a single or few dominant, rare mutaQons, most commonly in genes encoding 
sarcomere proteins (HCM, especially MYH7 and MYBPC3) [1, 3] or across at least nine key cardiac 
structures and components (DCM, including sarcomere [TTN] and nuclear envelope [LMNA]).[4] 
However, the full list of genes proposed to harbor HCM or DCM pathogenic variants exceeds 100 
and is conQnually being refined based on increased genome sequencing data and molecular 
validaQon studies (Table S4).[5, 6] For sarcomeric genes known to harbor pathogenic mutaQons 
for both HCM and DCM, the opposing effect of the specific mutaQon on tension generaQon during 
cardiomyocyte contracQon is thought to disQnguish between the development of HCM and 
DCM.[7] However, despite their contrasQng phenotypes, there are shared disease processes 
between HCM, DCM, and common forms of heart disease, and a shared need for tools to dissect 
genotype-phenotype relaQonships. We built a biobank of paQent-derived induced pluripotent 
stem cells for studying disease mechanisms of cardiomyopathy, focused on recruitment for the 
two most common cardiomyopathies, HCM and DCM. 
 
Both HCM and DCM develop gradually with age and are marked by pathogenic mutaQons with 
incomplete penetrance and variable expressivity, and subsequent variability in disease 
manifestaQon, with just over half of unaffected individuals harboring a pathogenic variant for 
HCM remaining unaffected for 15 years post-geneQc idenQficaQon, while first degree relaQves of 
a paQent with familial DCM have only a 19% risk of developing DCM by age 80.[3] Furthermore, 
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previous cardiomyopathy subtyping efforts have shown minimal correlaQon to the underlying 
gene carrying the pathogenic mutaQon[8] including broad segregaQon by paQents with known 
sarcomeric pathogenic mutaQons or not (HCM).[9] Finally, with few, rare excepQons, acQonable 
changes to clinical care do not exist to tailor treatment based on the mutated gene[10, 11]. 
PotenQal explanaQons for the disparate phenotypes of individuals with a common mutated gene 
include differences in environment and physiology, nuances of the specific mutaQon within the 
gene, and a role for modifying mutaQons to influence disease onset, severity, and symptomology. 
 
Furthermore, a pathogenic or likely pathogenic mutaQon is idenQfied for only 30-60 percent of 
HCM paQents[3] and ~35 percent of DCM paQents[4] who undergo clinical geneQc tesQng. This 
number has remained recalcitrant to expanded applicaQon of whole genome sequencing, and 
replicated in our study as well (see below). This is likely parQally explained by the observaQon 
that many mutaQons are family-specific[12] and therefore lack evidence in the literature to 
support definiQve pathogenicity classificaQon. Increasingly though, there is evidence for a subset 
of paQents to have a different geneQc architecture. Oligogenic inheritance, where mulQple rare 
variants drive disease, has been proposed for both DCM[4] and HCM[10], as has polygenic 
inheritance, and the role of modifying mutaQons to influence disease manifestaQon in monogenic 
cases. Genome-wide associaQon studies for DCM, HCM and cardiac morphological and funcQonal 
traits have revealed individual loci and polygenic risk scores can parQally capture cardiomyopathy 
inheritance, in both paQents with and without known pathogenic mutaQons and in sporadic cases 
(non-familial DCM).[4, 13, 14] 
 
We hypothesized that if noncoding variants, or variants outside of tradiQonal cardiomyopathy 
genes influence cardiomyopathy, that should be detectable as signatures in the gene expression. 
We sought to use inferred, personalized co-expression networks to test whether transcriptomic 
subtypes exist for HCM and DCM. 
 
METHODS 
The methods are described in the Supplemental Material. This study is in compliance with the 
Stanford Human Research ProtecQon Program guidelines and approved by the Stanford 
InsQtuQonal Review Board (IRB #30064). In addiQon, the procedures are in compliance with the 
InternaQonal Society of Stem Cell Research guidelines and approved by the Stanford IRB / Stem 
Cell Research Oversight panel (SCRO #656). The whole genome sequencing and RNA-sequencing 
data will be made publicly available via dbGaP, with perQnent metadata available in the 
Supplemental Materials. 
 
RESULTS 
We established a cardiomyopathy stem cell biobank 
We generated a biobank resource for studying cardiomyopathy. We recruited paQents exhibiQng 
either hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or lef ventricular 
noncompacQon (LVNC) or serving as controls (Figure 1A and Tables 1 and S1). We successfully 
reprogrammed peripheral blood mononuclear cells (PBMCs) into induced pluripotent stem cells 
(iPSCs) for 300 donors (Figures 1A and S1). This represented 101 HCM donors, 88 DCM donors, 
14 LVNC donors, 95 control donors and 2 donors with other cardiac diseases (long QT syndrome 
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[LQT] and Fabry disease). For most of the samples, echocardiogram measurements of the donor 
were available in the electronic medical record (EMR) for lef ventricular ejecQon fracQon (LVEF, 
195/205 diseased iPSC lines) and interventricular septum thickness, end diastole (IVSd, 196/205 
diseased iPSC lines) (Table S1). 
 

 
We performed whole genome sequencing (WGS) on 299 iPSC lines. We differenQated a subset of 
iPSC lines into cardiomyocytes and profiled them by RNA-seq. Cardiomyocyte transcriptomic data 
was generated for 102 lines at baseline afer quality control filtering (Figure 1B). This represented 
44 HCM, 26 DCM, 31 control, and 1 LQT donors for iPSC-derived cardiomyocyte RNA-seq data. 
We also performed RNA-seq on 103 iPSC lines as a control dataset. A porQon of cardiomyocytes 
 

 

iPS cells

+ drugs

97 control/other

101 HCM

102 DCM & LVNC PBMCs

WGS, RNA-seq

cardiomyocytes

RNA-seq

Contraction

A

B

Patient iPS lines 
(300)

Control HCM DCM LVNC

WGS (299)

iPS RNA-seq
(103)

Cardiomyocyte 
differentiation (107)

DMSO (38)
myk 250 nM (38)
omec 400 nM (38)
omec 1000 nM (29)

DMSO (102)
myk 250 nM (43)
omec 400 nM (38)
omec 1000 nM (10)

Contraction

RNA-seq

Figure 1. We built a cardiomyopathy stem cell biobank for 300 donors. A. We created a biobank of stem cells from 300 donors
exhibiting either HCM, DCM, LVNC, or serving as controls. iPS cells were profiled by whole genome sequencing and a subset
differentiated into cardiomyocytes for additional profiling via RNA-seq, drug treatment, and microscopy-based contractility assaying.
B. Plotted are the datasets which passed quality control filtering. Numbers indicate number of donors for each dataset type. The
actual number of datasets is higher due to replicates. Abbreviations: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy
(DCM), left ventricular noncompaction (LVNC), induced pluripotent stem cells (iPS cells), whole genome sequencing (WGS), RNA
sequencing (RNA-seq), dimethyl sulfoxide (DMSO), mavacamten (myk), omecamtiv mecarbil (omec).

LVNC (n=14)DCM (n=88)HCM (n=101)Control (n=97)
43.8 + 17.5 years50.1 + 14.6 years54.4 + 16.3 years52.4 + 18.2 yearsAge

57.1 %50 %61.4 %54.6 %Male
Race

78.6 %63.6 %71.3 %52.6 %White
7.1 %10.2 %10.9 %27.8 %Asian
7.1 %10.2 %5 %7.2 %African American
7.1 %15.9 %12.9 %12.4 %Other/Unknown
0 %9.1 %8.9 %11.3 %Hispanic

51.7 + 12.5 (n=14)40.0 + 15.4 (n=87)61.6 + 10.7 (n=93)LVEF (%)
0.87 + 0.20 (n=13)0.94 + 0.18 (n=87)1.66 + 0.49 (n=96)IVSd (cm)

Table 1. Demographic and echocardiography metadata. Data are presented as mean + standard deviation (age/LVEF/IVSd) or as
percentage (sex/race/ethnicity). Control includes Healthy Control and Other. Echocardiography data provided where available in
electronic medical records. Abbreviations: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), left ventricular
noncompaction (LVNC), left ventricular ejection fraction (LVEF), interventricular septum thickness end diastole (IVSd).
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were subjected to cardiac drug treatment followed by RNA-seq and contracQlity measurements 
using kineQc image cytometry. This resulted in 11-18 drug-treated lines for each disease condiQon 
and each drug (mavacamten and omecamQv mecarbil) afer QC. 
 
Pathogenic variants were annotated via whole genome sequencing 
We first sought to idenQfy the pathogenic variants for each iPSC line. Given the open quesQons 
around the diversity of the geneQc architecture of HCM and DCM, this allowed us to evaluate 
whether any transcriptomic parerns were evident in both lines with and without known 
pathogenic mutaQons. AnnotaQng iPSC lines by their pathogenic variant also enhanced the uQlity 
of the biobank as a resource for others. 
 
We performed whole genome sequencing on 299 of the iPSC lines (Tables S2 and S3), and called 
single nucleoQde variants (SNVs) and inserQons and deleQons (indels). Given the known 
challenges in idenQfying pathogenic variants in HCM and DCM our approach was to first filter 
variants with several different less-stringent criteria and then pool the variants from these 
different strategies (Figure S2), followed by manual applicaQon of the more stringent American 
Medical College of GeneQcs (ACMG) guidelines for determining pathogenicity.[15] IdenQfying 
pathogenic mutaQons is dependent on evidence in the literature to support pathogenicity as well 
as our current understanding of the inheritance model to inform mutaQon filtering. (We assumed 
one or several rare dominant mutaQons in a set of known or potenQal cardiomyopathy genes 
(referred to as our “panel genes” [Table S4]) could be pathogenic in any individual). Since both of 
these may change with Qme, we provide the specific criteria that we used in Figure S2 and Table 
S5. Our panel of 235 potenQal cardiomyopathy genes was purposely broad, encompassing genes 
from six clinical panels as well as authoritaQve resources (Table S4, and Supplemental Methods). 
Afer applying our iniQal filters for candidate mutaQons (pool 1 variants in Figure S2, filtered for 
frequency <0.001), on average, each iPSC line had only 4-6 rare candidate missense or splicing 
mutaQons across the 235 panel genes, and there was no difference between control, HCM, and 
DCM iPSC lines (Figure 2A), highlighQng the challenge of variant classificaQon. Rare candidate 
truncaQng, frameshif, or startgain mutaQons (i.e. mutaQons potenQally altering protein length) 
were slightly more common in DCM than HCM (0.56 vs 0.33 such mutaQons per iPSC line). 
 
We idenQfied a pathogenic or likely pathogenic mutaQon in 36 percent of HCM lines (36 of 101), 
most commonly in MYH7 or MYBC3 (13 and 22 iPSC lines, respecQvely), and in 55 percent of DCM 
lines (48 of 88), most commonly in TTN (24 iPSC lines; Figure 2B and Table S5). Complementary 
RNA-seq data from iPSC-derived cardiomyocytes was helpful for evaluaQng potenQally truncaQng 
variants, but ulQmately did not change our annotaQon of a mutaQon from a variant of uncertain 
significance to pathogenic or likely pathogenic (Figure S3A). 145 of the cardiomyopathy donors 
had clinical geneQc tesQng results in their EMR. We re-evaluated pathogenicity for any variant 
listed in the EMR. The rate of idenQfying a pathogenic or likely pathogenic mutaQon by whole 
genome sequencing was only slightly higher than by clinical tesQng (45.5 percent of lines versus 
41.4 percent) (Figure S3B and Table S5). In total, the biobank contains diseased iPSC lines for 21 
different mutated genes. 
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Figure 2. WGS confirms cumulative role of cardiomyopathy variants. A. We performed WGS on 299 of the 300 iPS lines and called
SNPs and indels. From a starting pool of ~4.28 million SNPs and indels per donor iPS cell line (mean for biobank, Table S2) we found a
mean of only 4-5 missense and splicing mutations per HCM or DCM line and 0.3-0.6 truncating, frameshift, and startgain mutations
per HCM or DCM line when we focus on potentially pathogenic variants by filtering for rare variants in 235 cardiomyopathy genes
(pool 1 variants in Figure S2, filtered for frequency <0.001). We found control samples show no difference in the number of rare
candidate variants in cardiomyopathy genes compared to diseased samples. Rare candidate truncating, frameshift, or startgain
mutations (i.e. mutations potentially altering protein length) in cardiomyopathy genes were more common in DCM than HCM. (t-test:
DCM vs HCM p-value = 0.0199477. Control vs HCM p-value = 0.9479979. DCM vs Control p-value = 0.2322563). Rare missense and
splicing mutations show no difference by disease status. (t-test: Control vs HCM p-value = 0.5390647. Control vs DCM p-value =
0.4026431. HCM vs DCM p-value = 0.05390647). Plotted are the mean number of filtered mutations per line in each disease cohort.
Error bars indicated standard deviation. B.We identified a pathogenic or likely pathogenic (P/LP) mutation for 86 out 203 diseased iPS
lines. Plotted is the percentage of lines with an identified P/LP mutation by gene for each disease category. The HCM line with two
mutations has ALPK3 and MYBPC3 mutations. The control line with a GLA mutation was classified as Other due to the donor’s known
condition of Fabry disease (an HCM lookalike syndrome). The other two mutations found in control lines are probably not pathogenic
in these donors, however we list their finding here as evidence of the background rate of finding pathogenic mutations when applying
our filtering and classification workflow to non-cardiomyopathy donors. C. We compared echocardiogram and demographic data of
the DCM donors with a P/LP mutation identified in the iPS line and those without (referred to as nopatho). Neither LVEF, nor age, nor
sex differ between P/LP and nopatho in DCM. (LVEF t-test: p-value = 0.09055781 [p-value 0.08214506 when limit to DCM donors with
clinical diagnosis, data not shown]. Age t-test: p-value =0.64370666 [p-value 0.569830699 when limit to DCM donors with clinical
diagnosis, data not shown]. Sex chi-square: P/LP male vs female p-value = 0.8864 [p-value 0.6617 when limit to DCM donors with
clinical diagnosis, data not shown]. nopatho male vs female p-value = 0.8728 [p-value 0.8694 when limit to DCM donors with clinical
diagnosis, data not shown].) D. For HCM, P/LP donors are younger (t-test: p-value = 0.00921755), but show no difference in IVSd
(t=test: p-value = 0.60639198). Nopatho lines are more commonly male than female, while P/LP lines are equally male and female.
(chi-square: nopatho male vs female p-value = 0.0092. P/LP male vs female p-value = 0.7389). E. Pucklewartz et al. defined 102
cardiomyopathy genes whose nonsynonymous SNV mutation burden correlated with LVEF in DCM but not with any HCM
echocardiogram metrics tested. We found increased cumulative burden of nonsynonymous variants with a minor allele frequency
(MAF) <0.5 in the 102 Puckelwartz genes correlated with worse LVEF only in the nopatho samples (right, linear regression: p-value =
0.03141 [p-value = 0.04568 when limit to DCM donors with clinical diagnosis, data not shown; p-value = 0.05929 when remove MAF
filter, data not shown.]) but not P/LP samples (left, linear regression: p-value = 0.8093 [p-value = 0.7954 when limit to DCM donors
with clinical diagnosis, data not shown. p-value = 0.7514 when remove MAF filter, data not shown]). F. However the mean number of
nonsynonymous variants in the Puckelwartz et al. genes is not different between the nopatho and P/LP cohorts nor between either
DCM cohort and control. (t-test: nopatho vs control p-value = 0.984052497. P/LP vs control p-value = 0.469184129. P/LP vs nopatho p-
value = 0.600062881.) Bars represent standard deviation. G. We found 54 of the Puckelwartz et al genes had lower mean number of
SNVs in the promoter region, in HCM than control. Greater SNVs in this subset of promoters correlated with less enlarged IVSd
measurements in the P/LP HCM samples but not the nopatho HCM samples. (Linear regression: P/LP p-value = 0.003773. Nopatho p-
value = 0.5669). H. As selected for, control samples had greater SNVs in these 54 promoters. There was no difference in the mean SNV
count between P/LP and nopatho HCM samples. (t-test: nopatho vs control p-value = 0.00000497. P/LP vs control p-value =
0.00000491. P/LP vs nopatho p-value = 0.439656222.) Bars represent standard deviation.
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Reduced LVEF is a hallmark of symptomaQc DCM and an indicator of poor cardiac funcQon. We 
saw no difference in the LVEF, age, or sex of DCM donors for which we found a pathogenic or likely 
pathogenic mutaQon compared to those without a known pathogenic mutaQon (Figure 2C). 
Similarly, we saw no difference in IVSd, one measure of cardiac size, between HCM donors with 
or without pathogenic and likely pathogenic mutaQons (Figure 2D). However, we found donors 
lacking pathogenic mutaQons were older and more commonly male than female, while HCM 
donors with a known pathogenic mutaQon were equally male and female (Figure 2D). 
 
CorrelaBon between mutaBon burden in cardiomyopathy genes and echocardiogram metrics 
was disBnct between lines with and without known pathogenic mutaBons  
Pucklewartz et al.[16] had previously evaluated mutaQon burden in 102 cardiomyopathy genes 
(101 of which are in our “panel genes” list) focusing on nonsynonymous SNVs of any allele 
frequency and found greater nonsynonymous SNVs correlated with decreased LVEF in DCM but 
not HCM paQents. The authors proposed a role for oligogenic inheritance to contribute to DCM 
phenotype. By contrast, we found neither our HCM nor DCM cohort displayed this relaQonship 
(Figure S4A). However, Pucklewartz et al. specifically enriched for donors without known 
pathogenic or likely pathogenic mutaQons in building their cohort. When we disQnguished 
between iPSC lines with a pathogenic or likely pathogenic mutaQon and lines without, and limited 
the analysis to variants with an alternate allele frequency <0.5, we found the linear relaQonship 
between mutaQon burden and LVEF is specific to our DCM cohort lacking pathogenic mutaQons 
(Figure 2E). Importantly, there was a large range in the mutaQon burden of nonsynonymous SNVs 
in the 102 cardiomyopathy genes from 10 to 43 variants across the samples (DCM and control), 
with no difference between control, DCM with a pathogenic or likely pathogenic mutaQon, and 
DCM without a pathogenic or likely pathogenic mutaQon (Figure 2F). The significance was 
specifically related to the correlaQon between the mutaQon burden and LVEF. This supported the 
hypothesis in the literature for two different mechanisms of DCM inheritance; the DCM samples 
with pathogenic mutaQons exhibiQng monogenic inheritance and the DCM samples without 
known pathogenic mutaQons potenQally exhibiQng oligogenic inheritance. Importantly, when we 
restricted the analysis to a subset of 20 core DCM genes with stronger evidence for pathogenicity 
(see Supplemental Methods), we no longer saw a correlaQon between mutaQon burden and LVEF, 
further supporQng the hypothesis of the Puckelwartz et al. authors for oligogenic inheritance 
(linear regression: nopatho p-value = 0.06238. P/LP p-value = 0.8751; data not shown). Here we 
applied the Puckelwartz et al. analysis from 2021 to our cohort, but addiQonal DCM GWAS 
datasets and machine learning approaches should enable improved selecQon of loci for which 
mutaQon burden could contribute to DCM. Importantly, this analysis does not suggest these 
parQcular mutaQons (coding mutaQons in 102 cardiomyopathy genes) act as modifier mutaQons, 
in that they do not correlate with LVEF in the donors with a known pathogenic mutaQon. 
 
Because the Puckelwartz et al. study examined mulQple echocardiogram measurements for 
correlaQon to mutaQon burden in HCM and did not find any, we did not pursue this line of 
invesQgaQon, except to confirm the lack of correlaQon to LVEF as a complement to our DCM 
analysis. Instead, we performed only one complimentary analysis, which was to compare the IVSd 
data we had for HCM to mutaQon burden in the promoters of the Puckelwartz et al. genes. Our 
hypothesis was that the same genes which may contribute to oligogenic inheritance in DCM could 
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act as modifiers of disease severity in HCM, in which case, non-coding mutaQons may be sufficient 
to influence phenotype. While the majority of pathogenic cardiomyopathy mutaQons influencing 
protein sequence are harmful, we could not assume whether individual non-coding mutaQons 
would be harmful or protecQve, nor were we powered to determine this staQsQcally. Rather, we 
disQnguished promoters by those with greater mutaQon burden (SNVs of any allele frequency) in 
control samples and those with greater mutaQon burden in HCM samples. Of the 102 promoters, 
54 had greater average mutaQons in control versus HCM lines. Total mutaQon burden in these 54 
promoters was significantly associated with lower IVSd in HCM lines with pathogenic mutaQons 
(Figure 2G). The trend remained significant when only analyzing data from white donors (p-value 
= 0.01004, data not shown). We did not see this relaQonship in the HCM samples without a 
pathogenic mutaQon (Figure 2G). The difference between HCM samples with and without a 
pathogenic variant was not due to a difference in total mutaQon burden between these two 
groups (Figure 2H), but the specific relaQonship between mutaQon burden and IVSd. Our limited 
sample size for selecQng and analyzing variants meant these results were not sufficient for making 
conclusions about the role of these promoters in HCM. Rather, this provided preliminary evidence 
for our HCM cohort to encompass diverse geneQc architecture mechanisms. We thus sought to 
invesQgate transcriptomic signatures as a molecular phenotype of cardiomyopathy that may be 
sensiQve to disQnct geneQc backgrounds. Importantly, we were not arempQng to replicate 
cardiac expression quanQtaQve trait loci (eQTL) studies.[17] Rather, we hypothesized that 
leveraging a diverse human dataset could uncover important cardiomyopathy disease 
mechanisms by specifically interrogaQng shared and personalized transcriptomic features across 
paQents of differing geneQc architectures. 
 
Disease co-expression networks idenBfied important cardiomyopathy genes, with ADCY5 as the 
largest node for both HCM and DCM 
iPSC lines were differenQated into cardiomyocytes and profiled via RNA-seq (Table S6) resulQng 
in RNA-seq data from iPSC-derived cardiomyocytes for 102 subjects afer QC. We performed 
tradiQonal differenQal gene expression analysis using DESeq2 and idenQfied 236 and 62 genes up 
an down-regulated respecQvely in HCM and 8 and 21 genes up and downregulated in DCM with 
gene ontology analysis resulQng in few disease pathways (Supplemental Methods, data not 
shown), likely due to the diverse geneQc eQology of the cohort and our limited ability to perform 
mulQple cardiomyocyte differenQaQons for each of the over 100 iPSC lines. We also expected that 
for some samples the presence of a pathogenic mutaQon would not guarantee that the iPSC-
derived cardiomyocytes would be mature enough, nor the model stressed enough, to bring out a 
phenotype for that specific mutaQon, and we thus lacked a true posiQve set of samples for 
building a definiQon of diseased expression. Nor did we want to build a unique model of 
cardiomyopathy expression for each sample to accommodate the heterogeneity of symptoms 
from different pathogenic mutaQons. Instead, we sought to idenQfy common transcripQonal 
signatures of cardiomyopathy and evaluate each sample by the manifestaQon of the shared 
signatures. We focused on gene co-expression relaQonships based on the supposiQon that the 
influence of geneQc architecture and noncoding variants may be berer captured. 
 
We calculated paQent-specific gene co-expression networks using lionessR, an algorithm for 
linear interpolaQon to obtain network esQmates for single samples.[18, 19] First, for HCM and  
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DCM separately, we built a co-expression network with the 200 most differenQal gene-gene co-
expression relaQonships calculated between the control and diseased cohort (Figure 3A).  A red 
edge in the HCM network indicated two genes were highly co-expressed (large r2, pearson) with 
a posiQve correlaQon (posiQve r, both genes up or down expressed similarly across samples) in 
the HCM cohort compared to the control cohort. By contrast green edges indicated strong, 
posiQve co-expression in the control cohort. Separately, we built a DCM network comparing DCM 
co-expression with control samples. We then used lioness to remove one sample from the cohort, 
and recalculate the co-expression correlaQons. The change in the level of co-expression upon 
sample removal was used to infer the individual contribuQon of that sample to the network. We 

Figure 3. Personalized co-expression networks capture otherwise undetectable genes contributing to the disease signature and
reveals line-specific differences in network activation. A. We calculated an HCM and DCM co-expression network using lionessR, an
algorithm for Linear Interpolation to Obtain Network Estimates for Single Samples. (Genes/nodes are represented as circles. Edges
are represented as lines. Green indicates stronger edges or greater expression [nodes] in control, while red indicates stronger
edges/greater expression in disease.) B.We the inferred personalized co-expression networks for individual lines. For select genes we
highlight their contribution to the network (sum of their edge strengths as a percentage of the total edge strengths of the network),
plotted for each sample. Samples are colored by their ADCY5 ranking. X indicates genes which only show up in this lines-specific co-
expression analysis but are not flagged as significant in traditional DESeq2 analyses for differential expression between control and
disease. Panel genes refers to cardiomyopathy gene list used to annotate pathogenic variants.
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thus generated inferred networks for each sample individually. We then asked how the sum of all 
edges surrounding a gene (node strength) varied across paQents (Figure 3B). 
 
Of our “panel genes” that we screened for pathogenic variants, 16 were in the HCM network (plus 
CDH2, which had been shown to be mutated in arrhythmogenic right ventricular 
cardiomyopathy[20], but not HCM or DCM) and 12 were in the DCM network. Despite not 
showing up in our tradiQonal differenQal gene expression analysis as exhibiQng a conserved 
difference in gene expression across the disease cohort, we saw they exhibit disease-specific co-
expression. Other genes of interest in the HCM network included SLC27A6 which encodes fary 
acid transport protein 6 (FATP6), the primary FATP in the heart.[21] FATPs enable cellular uptake 
of fary acid, with fary acid oxidaQon being the dominant source of ATP in healthy adult hearts, 
while classic pathologic transcripQon remodeling via the “fetal gene program” entails a switch to 
other substrates.[21] SLC27A6 was previously idenQfied in an exome-wide associaQon study for 
associaQon with lef ventricular internal diastolic dimension in the Hypertension GeneQc 
Epidemiology Network of paired siblings with and without hypertension.[21] MTUS1 was in both 
the HCM and DCM network. Mtus1A, a MTUS1 splice variant, was shown to be upregulated in a 
murine model of pressure overload with corresponding increase in cardiac hypertrophy, while 
overexpression arenuated hypertrophy in response to pressure overload and catecholaminergic 
sQmulaQon.[22] JUN, also found in both the HCM and DCM networks encodes a transcription 
factor with a known role in regulating sarcomere gene expression and attenuating cardiac 
hypertrophy.[23] 
 
In DCM, we found addiQonal examples of genes previously implicated in cardiomyopathy. VCP is 
a molecular chaperone with roles in mitochondrial maintenance and protein homeostasis whose 
overexpression or disrupted funcQon in mice can moderate ischemia reperfusion injury and heart 
failure respecQvely.[24] HIST1H4E, (encoding Histone H4) was previously idenQfied for differenQal 
expression in cardiomyopathy and cardiomyopathy risk factors in microarray datasets.[25] We 
also idenQfied genes previously understudied in cardiomyopathy, such as SEPW1. Selenium 
deficient disrupQon of selenoprotein funcQon has been implicated in heart failure,[26] but lirle 
is known of a specific role for SEPW1 in DCM. In total, we saw the personalized co-expression 
analysis allowed for interrogaQon of individual genes in a sample-specific manner, as well as 
capturing otherwise undetectable genes contribuQng to the disease transcriptome. 
 
Network acQvaQon is a measure of the total strength of all edges in the network. High network 
acQvaQon in a diseased sample meant the sample exhibited strong disease-specific gene co-
expression. Likewise, an acQvated hubnode represented a gene with strong co-expression 
relaQonships in a sample. In both HCM and DCM, the ADCY5 gene was the largest node 
(connected to the most other genes) and had the largest contribuQon to the total strength of the 
network (Figure 3A). The prominence of ADCY5 in both the HCM and DCM networks indicated 
ADCY5, despite not being a gene mutated in cardiomyopathy, was co-expressed with mulQple 
cardiomyopathy genes and central to the disease networks. Mouse models have demonstrated 
the role for ADCY5 perturbaQon to influence other forms of heart disease,[27] with our network 
data suggesQng ADCY5 may also be important to cardiomyopathy. Importantly, the relaQve 
contribuQon of the ADCY5 hubnode to the level of network acQvaQon was highly variable 
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between lines (Figure 3B), prompQng us to next examine how differences in network acQvaQon 
related to disease severity. 
 
Personalized networks illuminated disBnct relaBonships between network acBvaBon and 
disease severity 
Having confirmed the uQlity of co-expression analysis for idenQfying cardiomyopathy genes of 
interest, we next tested whether the network itself offered disease insights. We defined a 
hubnode as a gene with at least three edges and asked whether edges around a shared hub node 
were further co-modulated, signifying the hub node itself was a unit of network acQvaQon (Figure 
4A). Put simply, if we found in one of our HCM samples that the inferred co-expression 
relaQonship between ADCY5 and another gene (for example MYBPC3) was strong, could we 
expect ADCY5’s co-expression relaQonship with the other 48 genes it is connected with to also be 
stronger in that HCM sample as compared to the other HCM samples. This was calculated 
separately on the two networks (HCM and DCM). Importantly, we calculated this for the control 
samples separate from the diseased samples, such that we could compare how network 
acQvaQon presented differently for each sample despite having the same disease. 
 
In the HCM network we saw ADCY5 was a unit of network regulaQon, in that for both the control 
and HCM lines there was greater co-modulaQon of ADCY5 edges than background co-modulaQon 
of two unconnected edges in the network. Despite many of the individual edges around ADCY5 
being stronger in HCM (red edges in Figure 3A top panel), the co-modulaQon of the ADCY5 edges 
was lower in HCM (HCM node lower than control node in Figure 4A), suggesQng ADCY5 was more 
acQvated in HCM, but with individual edges being sporadically acQvated depending on the 
sample. In the DCM network, the opposite was true. Like with HCM, ADCY5 had mostly stronger 
edges in DCM compared to control, however, the co-modulaQon was also stronger in DCM than 
control, suggesQng the enQre ADCY5 hub was upregulated in tandem in DCM samples, to varying 
degrees. Many addiQonal nodes also behaved as significant units of network acQvaQon. Notably, 
DCM had five nodes with greater co-modulaQon in diseased samples. MTUS1 showed the largest 
difference, with co-modulaQon of the edges around MTUS1 showing no correlaQon in the healthy 
cohort. Conversely, HCM had only one such node (SLC27A6), suggesQng the level of network 
acQvaQon in HCM samples was not a singular feature, rather the genes being most acQvated in 
the network were sample dependent. 
 
For our next analysis of the HCM network, we examined the inferred co-expression values for 
each HCM sample. We also included the composite values for the HCM cohort as a whole and 
control cohort as a whole. Principal component analysis was applied and principal component 
one (PC1) compared to IVSd (Figure 4B). As expected, the PC1 value for the control cohort was 
the most distant from all the other samples (PC1 = -12.26). Surprisingly, we saw a significant 
relaQonship between PC1 and IVSd in the individual HCM samples. For PC1 values closer to 
control (PC1 -9.02 to -4.4), we saw a linear relaQonship, where greater distance from control, 
corresponds to enlarging hearts, with a steep linear trendline. We called these “steep” samples. 
The linear relaQonship then reset (PC1 -4.3 to 11) with a moderate linear trendline where greater 
distance again corresponded to enlargement of the heart. We called these “moderate” samples. 
The five most distant samples (PC1 >15) showed no relaQonship to IVSd. This observaQon 
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provided confidence that the gene expression relaQonships captured in our network analysis of 
iPSC-derived cardiomyocytes reflected aspects of the biology of the donor heart and furthermore 
was measuring criQcal components of pathologic gene expression remodeling indicaQve of 
disease severity. However, while PC1 was useful as a singular indicator value to represent the full 
disease co-expression network, it was harder to interpret biologically. We next evaluated if 
individual genes could also be indicators of the network acQvity. 
 

 
For hub genes with eight or more edges, we tested how well they served as a proxy for the PC1 
value (Figure 4C). We found the moderate and distant groups showed a high correlaQon between 
ADCY5 node strength and PC1, which was expected as it was the gene with the most co-
expression pairs (25%, 49 out of 200 edges) and therefore likely drove the largest variability of 
network strength. Correspondingly, ADCY5 node strength, like PC1, exhibited significant 
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Figure 4. Variable ADCY5 hub node activation corresponds to clinical disease severity in HCM, with two HCM subgroups exhibiting
distinct patterns of network activation. A. Co-modulation of edges around a node was evaluated by comparing the difference in
correlation between strength of two randomly selected edges around the node with two randomly selected edges that do not share a
node. Correlation was evaluated separately on the diseased and control cohorts. Plotted are the mean and 95% confidence intervals
after sampling 10,000 times. B. Principal component analysis of the HCM network was computed on the control-cohort, HCM-cohort,
and individual HCM lines. Principal component 1 (PC1) is plotted against IVSd (intraventricular septal thickness end diastole) for the
42 HCM samples with echocardiogram data. For PC1 values -9.02 to -4.4 (gray dots, “steep” samples) and for PC1 -4.3 to 11 (black
dots, “moderate” samples), PC1 correlates with IVSd (linear regression: steep p-value = 0.01167, moderate p-value = 0.0001398). The
5 most distant samples (PC1 >15.2, blue dots) show no relationship to IVSd (p-value = 0.3729). C. For hubs with 8 or more edges, we
tested how well they served as a proxy for the overall PC1 score. Plotted are the correlation (R2) of the sum of all edge strengths
around a hub with the PC1 score for the sample in the HCM cohort (y-axis). Color, indicates the R2 correlation of the sum of edge
strengths to IVSd. D. There was no significant relationship between PC1 of the network and LVEF in DCM. E. Plotted are correlation
between node strength and PC1 for nodes with 4 or more edges in DCM.



correlaQon to IVSd in moderate samples. However, steep samples exhibited a weak correlaQon 
between ADCY5 with either PC1 or IVSd. Notably, no other node showed greater correlaQon to 
PC1 in steep samples than ADCY5 (even when checking all 34 nodes with a minimum of 3 edges 
[versus nodes with a minimum of eight edges], data not shown). 
 
From the data in Figures 4B and 4C, we drew the following conclusions. Firstly, we idenQfied two 
disQnct HCM groups based on transcripQonal behavior. (We focused on the moderate and steep 
groups as the distant group was only comprised of five samples.) Secondly, both groups 
encompassed a spectrum of disease severity (range of IVSd values). Thirdly, they shared a 
common disease co-expression network, such that for both groups network acQvaQon levels 
corresponded to disease severity of the donor (though notably smaller PC1 values were sufficient 
to indicate high IVSd values for steep samples). Fourth, the groups were disQnguished by the 
manner with which they acQvated the disease network (even when comparing samples with 
similarly severe IVSd measurements). Specifically, in moderate samples, ADCY5 acQvaQon was 
occurring as a unit, such that a moderate HCM sample that exhibited a stronger co-expression 
relaQonship between ADCY5 and one of its paired genes was likely to also have stronger co-
expression relaQonships for all of the gene-gene pairs in the network and to have a 
correspondingly larger heart (IVSd). By contrast, a steep HCM sample with a large heart (IVSd) 
was expected to also have a high level of network acQvaQon relaQve to other steep samples, but 
this would be driven by only specific gene-gene pairs exhibiQng strong co-expression, with the 
specific genes depending on the sample. The observaQon that network acQvaQon correlated to 
disease severity for both HCM-moderate and HCM-steep groups highlighted the importance of 
the network genes to HCM. The observaQon that the manner of network acQvaQon differed 
between the groups, even for samples with similar echocardiogram measurements, suggested 
the difference between steep and moderate samples was not due to differences in disease 
severity driven by a single pathogenic mutaQon but could be due to geneQc background. 
 
A similar analysis of the DCM network revealed no significant relaQonship between PC1 and LVEF 
(Figure 4D). Like what we found for the HCM steep samples, in the DCM samples no single node 
served as a good proxy for the whole network (Figure 4E). 
 
We looked for experimental features which could explain the segregaQon of HCM samples into 
steep and moderate categories. Returning to the principal component analysis of the network, 
we found PC3 values parQally segregated the steep and moderate HCM samples (Figure S5A). 
While ADCY5 edges were the largest contributor to PC1, ANLN edges represented the edges with 
the individual greatest relaQve contribuQon to PC3 (Figure S5B). We found that HCM lines with 
pathogenic mutaQons were more common in the steep group, especially for female lines (Figure 
S5C), and that ANLN node strength was weaker in steep samples as well as female samples with 
pathogenic mutaQons (Figure S5D). ANLN had been shown to turn on in mitoQc 
cardiomyocytes,[28] a process not typical of the adult heart, and thus further tesQng is needed 
to determine if ANLN is a feature in the donor hearts, or only in the iPSC-cardiomyocyte model.  
 
The RNA network findings and promoter mutaBon analyses provided mutual validaBon, 
supporBng characterizaBon of HCM subtypes 



Given that moderate samples showed cohesive acQvaQon of the HCM network, we wondered if 
this signified a parQally shared geneQc background mechanism. We re-examined our analysis of 
the Puckelwartz et al. genes. We had preliminarily found that the mutaQon burden in the 
promoters of 54 of the Puckelwartz et al. genes was correlated with smaller IVSd in samples with 
a known pathogenic or likely pathogenic mutaQon, but not in samples without a known mutaQon. 
In fact, we now saw that for moderate samples, both samples with and without pathogenic 
mutaQons exhibited this correlaQon (Figure S5E), while steep samples analyzed on their own did 
not exhibit this correlaQon, even amongst those with a pathogenic mutaQon (Figure S5F). Given 
that our promoter analysis of the Puckelwartz et al genes was underpowered to draw meaningful 
conclusions and could represent spurious correlaQons, we applied a published polygenic risk 
score for HCM.[29]  We saw no difference in the average risk of HCM-steep samples versus control 
samples. However HCM-moderate samples had significantly higher scores than both control 
samples and HCM-steep samples (Figure S6G). Further, we found that moderate samples, but not 
steep samples, exhibited the expected phenomenon whereby the donors with a pathogenic 
mutaQon were younger than those without (Figure S6H). Taken together, these data supported 
our hypothesis that moderate HCM samples represented a subgroup of HCM where shared 
geneQc background mechanisms may be influencing both disease severity and the transcripQonal 
phenotype. 
 
ADCY5 dysregulaBon was a shared feature of both HCM and DCM and parBally corrected with 
drug treatment 
Further invesQgaQon of the importance of ADCY5 to the HCM network, revealed ADCY5 node 
strength explained the vast majority of the network acQvaQon in moderate samples and to a 
lesser extent in distant samples (Figures 5A and 5B), with stronger ADCY5 co-expression 
relaQonships in samples with greater network acQvaQon. Whereas, ADCY5 was only minimally 
acQvated in steep samples with minimal variability between samples as well (Figures 5A and 5B). 
Importantly, ADCY5 expression showed no difference between the HCM subgroups nor between 
HCM and control (Figure 5C). This highlighted the value of the network analysis to uncover 
important pathologic transcripQonal remodeling features, but also meant unfortunately 
invesQgaQng future samples could not be done by simply measuring ADCY5 expression in the 
absence of co-expression analysis. Despite HCM and DCM hearts exhibiQng contrasQng 
phenotypes, we found ADCY5 was also important in DCM. Increased ADCY5 node strength 
compared to control was a shared feature DCM samples, and this was true for both samples 
coming from donors with normal LVEF (50% or greater) and those with reduced or moderately 
reduced LVEF (less than 50%) (Figure 5C). Taken together with our previous observaQon that 
ADCY5 node acQvaQon did not correlate with total network acQvaQon in DCM (Figure 4E), this 
showed that the ADCY5 hub node was being universally acQvated in the DCM samples. ADCY5 
had co-expression relaQonships with 49 genes in the HCM network and 17 genes in the DCM 
network. 10 genes were common to both HCM and DCM. Gene ontology analysis of these genes 
revealed enrichment for the sarcomere (Figure 5D). For HCM specifically, gene ontology analysis 
also returned 65 significantly enriched transcripQon factor moQfs, the most significant being for 
MEF2A. MEF2A is a transcripQon factor with a central role in driving cardiac hypertrophy.[30] We 
found that in moderate samples but not in steep samples, MEF2A expression and ADCY5 
expression is highly correlated (Figure 5E). 



 

 
Finally, mavacamten (known commercially as Camzyos), is a small molecule inhibitor of MHY7 for 
treaQng paQents with obstrucQve HCM that.[31] We treated cardiomyocytes with both 
mavacamten as well as an MYH7 inhibitor, omecamQv mecabril[32] for 48 hours and then 
performed RNA-seq. KineQc image cytometry was used to visually measure cellular deformaQon 
over Qme and confirm the treatment strategy successfully altered contracQlity. As expected, 
mavacamten reduced contracQlity, while omecamQv mecarbil increased contracQlity (Figures S6A 
and S6B). Gene ontology analysis of RNA-seq afer drug treatment revealed many shared drug 
targets between mavacamten and omecamQv mecarbil, such as an opposing effect on expression 
of Z disc components (Figure 5F). For each edge around ADCY5, we compared the mean edge 
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Figure 5. Treatment with MYK-461 or omectamtiv mecarbil partially corrects ADCY5. A. Plotted is the principal component data
from Figure 4B. PC1 for each HCM sample is shown (gray, black, blue, by HCM subgroup). PC1 is a sum of values for each edge. Also
plotted is the sum of the scores for all ADCY5 edges specifically. HCM-moderate samples show ADCY5 scores increasing with PC1,
while ADCY5 scores are similar across HCM-steep samples. B. ADCY5 expression is similar between control, moderate and steep
samples, but ADCY5 node strength (C) is increased in HCM and DCM. D. Gene ontology analysis of genes sharing edges with ADCY5. E.
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strength in the diseased cohort to the control cohort before and afer drug treatment and found 
drug treatment parQally corrected the ADCY5 node for both HCM and DCM (Figure 5G). 
 
DISCUSSION 
We idenQfied ADCY5 as a central hub node in both the HCM and DCM diseased networks. 
Adenylyl cyclases catalyze ATP to cAMP conversion, with ADCY5 and ADCY6 being the major 
isoforms in the heart.[27] ADCY5 is sensiQve to and able to influence contracQle regulaQon. Beta-
adrenergic sQmulaQon and PKC acQvate ADCY5 which in turn catalyzes cAMP formaQon, driving 
PKA signaling. PKA phosphorylaQon and local calcium levels inhibit ADCY5.[33] Previous studies 
support a role for ADCY5 in heart disease. Adenylyl cyclases drive the increased inotropy and 
lusitropy induced by beta-adrenergic agonist sQmulaQon of the heart by producing cAMP which 
acQvates downstream pathways of protein kinase A.[34] In mice, ADCY5 overexpression increases 
oxidaQve stress and worsens cardiomyopathy outcome under chronic stress condiQons, while 
ADCY5 knockout is protecQve in chronic stress condiQons and a high fat diet model of diabeQc 
cardiomyopathy.[27] Furthermore ADCY5 knockout mice have increased lifespan, and blunted 
aging-associated lef ventricular hypertrophy and cardiomyopathy.[27] In mice and rabbits, 
pharmaceuQcal inhibiQon of ADCY5 shortly afer coronary artery reperfusion reduced myocardial 
infarct size.[35] Alternately, Gαq overexpression-induced cardiomyopathy mice have decreased 
ADCY5, and further ADCY5 knockout is not protecQve.[27] In silico analysis of HCM and DCM 
idenQfied ADCY5 as a potenQal drug target for modulaQng other disease processes.[36] We found 
ADCY5 acQvaQon was a universal feature of DCM lines, while serving as a biomarker of network 
acQvaQon and donor disease severity for a subgroup of HCM. Importantly, only 10 edges were 
shared between the ADCY5 node in HCM (49 edges) and DCM (17 edges). These included 
contracQle genes MYBPC3, TNNT2, TRIM63, and regulators of excitaQon and excitaQon-
contracQon coupling RFN207 and LRRC10[37, 38], with the nodes as a whole enriched for 
sarcomere consQtuents (Figure 5D). Here we demonstrated increased ADCY5 acQvaQon in 
mulQple geneQc backgrounds from both HCM and DCM, and in the context of disparate 
pathogenic mutaQons in a human cell-line model. We further show ADCY5 node acQvaQon is 
sensiQve to contracQlity modulaQon through drug treatment and posit it may be sensiQve to 
pathogenic mutaQons in contracQle proteins. In turn, we propose ADCY5 represents a shared 
molecular phenotype that can influence molecular remodeling downstream of contracQle 
dysfuncQon, and that targeQng ADCY5 may be able to influence contracQle dysfuncQon stemming 
from mulQple eQologies. 
 
AddiQonally, we confirmed and expanded on the Puckelwartz et al observaQon of cumulaQve 
mutaQon burden in cardiomyopathy genes to correlate with DCM severity finding in our cohort 
the relaQonship is specific to samples without known pathogenic mutaQons. This supports the 
hypothesis for disQnct DCM inheritance mechanisms and highlights the need for further studies 
which can properly delineate the risk loci responsible, as it is understood many of the 
cardiomyopathy gene variants used in this analysis likely do not contribute. 
 
Finally, we characterized individual samples by RNA signatures. For DCM we found individual hub 
genes represented units of diseased network acQvaQon (Figure 4A). However, the relaQve degree 
of acQvaQon of separate hub genes varied by sample (Figure 4E). Thus the network consQtuents 



are important indicators of disease biology and may represent conserved candidates for 
therapeuQc intervenQon (including ADCY5, Figure 5C), but addiQonal RNA signatures are needed 
to explain disease severity. In HCM, we defined a single diseased transcripQonal network with 
applicability to disQnct HCM subgroups, in that for all subgroups, network acQvaQon 
corresponded to more severe echocardiogram measurements of the donor. We interpret the 
differences in the moderate and steep RNA subtypes as indicaQve of disQnct geneQc backgrounds. 
These data represent preliminary evidence for geneQc background to influence molecular 
phenotype in cardiomyopathy. 
 
ARTICLE INFORMATION 
Acknowledgments 
We wish to thank the paQents who contributed to our cardiomyopathy biobank, making this 
research possible. 
 
Sources of Funding  
This work was supported in part by the California InsQtute for RegeneraQve Medicine (GC1R-
06673-A: CIP#1) as well as NIH P01 HL141084, R01 HL141371, R01 HL126527, 75N92020D00019 
(JCW). 
 
Supplemental Material 
Supplemental Methods 
Tables S1-S6 
Figures S1-S6 
 
Nonstandard AbbreviaBons and Acronyms 
ADCY5 – adenylyl cyclase type 5 
DCM – dilated cardiomyopathy 
DMSO – dimethyl sulfoxide 
EMR – electronic medical record 
HCM – hypertrophic cardiomyopathy 
indels – inserQon and deleQons 
iPSC – induced pluripotent stem cell 
IVSd – interventricular septum thickness, end diastole 
lioness - linear interpolaQon to obtain network esQmates for single samples 
LVEF – lef ventricular ejecQon fracQon 
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PBMC – peripheral blood mononuclear cell 
PC – principal component 



SNV – single nucleoQde variant 
WGS – whole genome sequencing 
 
Disclosures 
M.P.S. is a co-founder and the scienQfic advisory board member of Personalis, Qbio, January, 
SensOmics, Filtricine, Akna, Protos, Mirvie, NiMo, Onza, Oralome, Marble TherapeuQcs and Iollo. 
He is also on the scienQfic advisory board of Danaher, Genapsys, and Jupiter. 
 
SUPPLEMENTAL METHODS 
Subject recruitment 
Subjects were recruited for parQcipaQon in our cardiomyopathy biobank. PaQents undergoing 
cardiac procedures, as well as non-cardiac paQents with known geneQc mutaQons (as idenQfied 
by their health care provider) were targeted. In the larer case, we had 4 DCM subjects (two of 
which exhibit reduced ejecQon fracQon <45%), 2 HCM subjects (with IVSd >=1.8 cm but wall 
thickness 0.9 and 1.2 cm), and 4 LVNC subjects who lacked a clinical diagnosis. These samples 
were used for WGS but not the cardiomyocyte differenQaQon and subsequent RNA-seq with the 
excepQon of subject 969 (DCM, reduced LVEF of 23.8%), subject 544 (HCM, IVSd 1.8cm), subject 
603 (HCM, IVSd 2.1cm). Their data is included in the WGS figures except where indicated. 
 
Healthy subjects without known geneQc mutaQons and lacking a progressive condiQon were 
recruited from our cardiovascular prevenQon clinic. An addiQonal category of control paQents 
(referred to as “other” in Table S1) represent paQents with non-cardiac condiQons who were 
recruited at the clinic and over the phone, with permission of their providers. Two paQents with 
known cardiac condiQons other than cardiomyopathy (long QT syndrome and Fabry disease) were 
also recruited. Echocardiogram assessment of lef ventricular ejecQon fracQon (LVEF) and 
interventricular septum thickness, end diastole (IVSd) from the most recent measurement in the 
electronic medical record were queried and populated in RedCap when available. 
 
iPSC reprogramming 
Induced pluripotent stem cells were reprogrammed from PBMCs using Sendai virus (CytoTune iPS 
2.0 Sendai Reprogramming Kit) as previously described.[39] Three clones were generated per 
subject, karyotyped (KaryoStat, ThermoFisher ScienQfic), determined to be mycoplasma-free, and 
evaluated by immunohistochemistry for expression of pluripotency markers TRA-1-60 (LifeTech 
MA1023) and SSEA4 (LifeTech MA1021). Cells were maintained under feed-free condiQons in 
mTeSR (STEMCELL Technologies, 5850) or EssenQal 8 media (Fisher, A1517001) and stored in 
liquid nitrogen. 
 
To assess pluripotency of our cohort, we compared our RNA-seq data from 102 iPSC lines to 196 
iPSC lines from the HipSci project (human induced pluripotent stem cell iniQaQve) of the 
Wellcome Sanger InsQtute and EMBL (Expression Atlas ID for dataset: E-MTAB-4748)[40]. The 
HipSci dataset also contained 5 fibroblast samples and 4 PBMC samples for control. Expression 
from the HipSci project was publicly available as an expression matrix with expression tabulated 
as transcripts per million (TPM). To enable equal comparison, we used our raw RNA-seq data to 
tabulate TPM for our cohort (tabulated using DESeq2). (Note that we used salmon-aligned 



[ensemble90] RNA-seq data versus STAR, as this iniQal quality control assessment of the biobank 
was done prior to designing our subsequent RNA analysis workflow.) The joint HipSci-Stanford 
TPM dataset was log2 transformed. Stanford iPSC lines were all derived from blood while HipSci 
lines were derived from either blood or skin Qssue, both of which are from the mesoderm lineage. 
We selected both pluripotency and mesoderm genes for examinaQon based on the iPSCORE 
resource (genes taken from Figure 2A of the iPSCORE paper).[41] The pheatmap package in R was 
used to generate a heatmap (samples and genes clustered using Euclidean distance). We 
confirmed our iPSC cohort exhibited similar expression profiles as the HipSci iPSCs and did not 
cluster with PBMC samples (Figure S1). 
 
Cardiomyocyte differenBaBon and drug treatment 
As previously described,[42] iPSCs were plated on Matrigel and cultured in StemMACS iPS-Brew 
XF (MACS Miltenyi Biotec, 130-104-368) unQl the final passage in EssenQal 8 media (Fisher, 
A1517001). Cardiomyocyte differenQaQon was induced at 60-80% confluency, with culture in 
RPMI media (Gibco/LifeTech 11875-119) plus B27 supplement lacking insulin (Gibco/LifeTech 
A1895601). 6µM of CHIR-99021 (Fisher, NC0976209) was added on day 0 and 6 µM IWR1 (Fisher, 
NC1319406) was added on day 3. Beginning on day 7, media was changed every other day using 
RPMI media supplemented with B27 containing insulin (Gibco/LifeTech 17504-044). Upon 
commencement of beaQng (around day 15), cells underwent purificaQon via a three-day glucose 
starvaQon (RPMI media without glucose [Gibco/LifeTech 11879-020] supplemented with insulin-
containing B27), a one-day recovery in glucose-containing media, and subsequent replaQng 
(dissociated in TrypLE, Fisher, 50-591-353). Cells were then maintained in RPMI media 
supplemented with insulin-containing B27 unQl approximately day 30. Afer differenQaQon, drug 
treatment occurred at 0 hours and 24 hours and samples assayed at 48 hours. Cells were treated 
with 250nM MYK-461 (Cayman Chemical, 19216-5mg), 400nM or 1uM omecamQv mecarbil 
(Selleckchem via Fisher, NC1069600), or DMSO. 
 
Additionally, at approximately day 24, one to three wells of the ongoing differentiation were 
replated (dissociated with TrypLE) into 96-well plates for immunohistochemistry (two wells, 
~40,000 cells/well) or 384-well plates (Thermo, 142761, ~20,000 cells / well) for contractility 
assays and maintained in parallel until the end of differentiation. Cardiomyocytes were analyzed 
by immunohistochemistry to assess purity as previously described,[42] via staining for cardiac 
troponin T (Rabbit cTnT, Abcam, ab45932, 1:100). Cells were imaged on the Cytation5 Image 
Reader (BioTek) running the accompanying software (Gen5 Image+ version 3.03) to screen 
differentiations for a minimum of 90% cTnT positive cells. 
 
Whole genome sequencing 
Library preparation and sequencing was performed by Macrogene (first 10 samples) and 
Novogene on genomic DNA we extracted from iPSC cells (Qiagen DNeasy kit). Paired-end 150bp 
reads were acquired on the Illumina HiSeq X Ten for a minimum of 90 gigabases of data. Reads 
were processed using Sentieon's FASTQ to VCF pipeline (Sentieon version 201808.07).[43] This 
pipeline is a drop-in replacement for a BWA[44] plus GATK best-practices[45] pipeline for 
germline SNVs and indels, but has been highly tuned for optimal computational efficiency. BWA 
alignment to hg38 was followed by deduplication, realignment, base quality score recalibration, 



and variant calling to generate g.vcf files for each sample. Coverage was assessed (GATK version 
3.7) (Tables S2 and S3). Individual sample g.vcf files were joined and variant quality score 
recalibration performed. 
 
CuraBon of candidate pathogenic mutaBons 
To manually curate pathogenic and likely pathogenic variants we first created an overly-broad list 
of potenQal cardiomyopathy genes (referred to as our "panel genes” in the figures) (Table S4). 
The raQonale was to include genes posited to play a role in cardiomyopathy, even where the data 
supporQng a causal role was sparse to create a more comprehensive list of candidate mutaQons 
that we then filtered further. This included genes from six clinical geneQc tesQng panels for HCM 
and DCM, the American College of Medical GeneQcs (ACMG) recommended list of genes to test 
for in HCM or DCM,[46] any gene annotated for HCM, DCM, or LVNC in the Human Genome 
MutaQon Database, and genes evaluated for HCM or DCM pathogenicity in two systemaQc studies 
from the literature.[5, 6] We used ANNOVAR[47] to apply various filters, generaQng different 
pools of mutaQons (Figure S2) for manual interpretaQon. 
 
Others have suggested a maximum minor allele frequency of 1 × 10−4 for cardiomyopathy.[5] For 
pool 1, we set a more inclusive filter for a minor allele frequency less than 0.01, which is the 
threshold for a rare variant, (frequency in ExAc, version November 2015), and required the variant 
be an exonic (excluding synonymous SNVs) or splicing mutaQon or have a CADD phred score 
greater than or equal to 20. Thus, pool 1 represents rare variants with the potenQal to alter 
protein sequence in our “panel genes”. For the sake of thoroughness, we also sought to capture 
mutaQons regardless of their likeliness to alter protein sequence if they were rare enough. These 
were curated separately in pool 0. For pool 0, we filtered for variants with a minor allele frequency 
less than or equal to 0.001 in ExAC or 1000 Genomes (version August 2015). Pool 0 (15.9 million 
mutaQons) and pool 1 (6082 mutaQons) were too large to examine manually. We thus further 
filtered for a ClinVar designaQon of pathogenic or likely pathogenic (for any disease) as curated 
by ANNOVAR (and thus a reflecQon of the latest ClinVar informaQon in the ANNOVAR database). 
We found a large number of rare GATA4 variants in introns (933 mutaQons) or untranslated region 
(270 mutaQons) that had been flagged in ClinVar for congenital heart disease (and not 
cardiomyopathy). Afer removing these for lack of relevance to HCM and DCM, we had 159 
mutaQons in pool 5. We call pool 5 “WGS_P” for pathogenic, to demarcate this filtering strategy 
was dependent on a pathogenic or likely pathogenic ClinVar designaQon. These represent our first 
strategy for filtering for candidate variants. We evaluated each of these manually and with 
CardioClassifer, an online research tool for annotaQng pathogenicity of cardiomyopathy 
mutaQons.[48] However, we then went back and applied addiQonal filtering strategies to 
overcome some of the technical limitaQons of this strategy. Below is a brief descripQon. See Figure 
S2 for the full filtering workflow. 
 
The first complicaQon we addressed was that our variant calling workflow had the potenQal for a 
larger indel to be miscategorized as two neighboring smaller indels or SNVs. We thus created pool 
10 to merge nearby mutaQons and evaluate the resulQng larger mutaQon for pathogenicity. This 
step was performed only for the diseased samples and not the control subjects. We started by 
flagging any mutaQon within 40 bp of another mutaQon in the same subject (365 mutaQons). We 



removed individual indels greater than 50 bp since this could have represented a sequencing 
error. (This was applied before merging neighboring mutaQons). For SNVs, we merged SNVs if they 
occurred within 2 bp of each other (ie could be on the same codon, and thus their expected effect 
on protein sequence would only be properly determined when analyzed together). We also 
merged SNVs within 5 bp of an indel to expand the indel. We then confirmed that the neighboring 
mutaQons had the same zygosity and were on the same allele, thus jusQfying our analysis of them 
in tandem. We call pool 10 “WGS_merge’ to indicate it represents manually merging of nearby 
mutaQons.  
 
The second complicaQon we addressed is that our first filtering strategy was dependent on ClinVar 
flags. This could lead to many false negaQves due to many variants not being listed in ClinVar. We 
thus took any of the pool 1 variants (rare variants with the potenQal to alter protein sequence of 
“panel genes”) that hadn’t had a ClinVar flag and kept them in the analysis if they met the more 
stringent allele frequency of less than 0.001 (pool 13). Note that for Pool 13, unlike the previous 
frequency filters, here we used the maximum frequency in 1000 Genomes and any individual 
ethnic group in ExAc (to screen out mutaQons that while rare in genomic datasets as a whole, are 
more abundant in specific ancestral backgrounds). We needed to further curate pool 13 to a list 
that was feasible for manual evaluaQon. We applied two separate addiQonal filters. First, we kept 
any mutaQon in pool 13 that was in a gene for which the CardioClassifer tool could be applied, 
given that this overcame the technical limitaQon of manual curaQon and would allow us to first 
screen mutaQons via the tool. This created pool 14. (CardioClassifier is an expert-developed tool 
incorporaQng cardiomyopathy specific knowledge to apply ACMG guidelines.) The 
CardioClassifier genes for HCM are MYH7, TNNT2, TPM1, MYBPC3, PRKAG2, TNNI3, MYL3, MYL2, 
ACTC1, CSRP3, PLN, TNNC1, GLA, FHL1, LAMP2, and GAA. The CardioClassifier genes for DCM are 
LMNA, TNNT2, SCN5A, TTN, TCAP, MYH7, VCL, TPM1, TNNC1, RBM20, DSP, and BAG3. For LVNC 
we used the 12 DCM genes. The CardioClassifer genes for long QT syndrome were KCNQ1, KCNH2, 
SCN5A, and KCNE1. For pool 14, we required that the mutaQon fall in a CardioClassifer gene 
associated with the disease of the subject. We call pool 14 “WGS_freq” to indicate these are 
mutaQons that lacked a ClinVar flag but were kept in the analysis due to their low frequency. 
 
Given that truncating variants can have an especially dramatic effect on protein sequence, we 
separately evaluated pool 13 for mutations that may change the length of the protein sequence 
to create pool 15. For pool 15, we included stop-gain, stop-loss, frameshift insertion, or 
frameshift deletion mutations. (Note that for stop-loss and frameshift insertions, they could act 
to increase protein sequence rather than truncate.) We removed indels greater than 50 bp due 
to the possibility they represent sequencing artifact. There were 95 mutations, but removing 
those already identified in pool 14 left 46. We call pool 15 “wgs_trunc” for truncation, to indicate 
they may alter protein length. For variants most likely to be pathogenic truncating variants 
(heterozygous, stop-gain mutations) we performed additional characterization, using the RNA-
seq data from the iPSC-derived cardiomyocytes where available. First we used our combat-
corrected processed data (see Supplemental Methods section for RNA-seq) to compare gene 
expression in the mutation-carrying line to the other cardiomyopathy (HCM or DCM depending 
on the disease of the mutation-carrying line) or control lines. Second, we re-processed the RNA-



seq fastq files to get allelic expression via STAR, setting the waspOutputMode as SAMtag and 
inputting a vcf file for the line containing the mutation of interest. 
 
Pools 14 and 15 generated candidates with less definiQve annotaQon data. Thus as a control to 
provide confidence on the likeliness for false posiQves, we applied the same filters to the control 
subjects to evaluate the rate of detecQng mutaQons with these filters in a cohort that should have 
few true pathogenic or likely pathogenic mutaQons (pool 16). We filtered for CardioClassifier’s 
“cardiomyopathy” gene list: ACTC1, BAG3, CSRP3, DSP, FHL1, GAA, GLA, KCNE1, KCNH2, KCNQ1, 
LAMP2, LMNA, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, RBM20, SCN5A, TCAP, TNNC1, 
TNNI3, TNNT2, TPM1, TTN, VCL. We call pool 16 “WGS_healthyfreq” and pool 17 
“WGS_healthyTrunc” to indicate it is the same filters from WGS_freq and WGS_trunc applied to 
the control subjects. 
 
We also pulled any variant listed in the electronic medical record (EMR). For many of these we 
had already assessed pathogenicity as part of our WGS workflow. However, some variants in the 
EMR had not passed our WGS filters and had not been annotated yet. We collected these into 
pool 8 for evaluaQon. Ofen, pathogenicity classificaQon for the variant was provided in the EMR, 
however we always classified them ourselves as well in case the original annotaQon pre-dated 
new informaQon in the literature. We call pool 8 “Clin_research” to indicate they are variants that 
came from the clinical geneQc tesQng for which we needed to research their potenQal 
pathogenicity. 
 
Our “final pool” represents all the mutaQons from all of these filtering strategies. For any variant 
in our final pool that was only found in WGS data and not listed in the EMR (not clinically validated 
to be present in the subject’s genome), we further examined the mutaQon in the vcf file for quality 
metrics to confirm confidence that the mutaQon was present. The final pool became Table S5. 
Column K indicates which filtering strategy resulted in idenQficaQon of the mutaQon. Note that if 
a mutaQon was idenQfied from our first filtering strategy “WGS_P” it will be listed as such in 
Column K. Even if the variant is truncaQng or rare, it won’t be listed as “WGS_trunc” or 
“WGS_freq” because these addiQonal filtering approaches were not necessary to idenQfy the 
mutaQon. Thus column K represents the minimal filtering we needed to idenQfy the variant. 
 
Comparison of mutaBon burden in cardiomyopathy genes with echocardiogram measurements 
We first analyzed the distribuQon of pool 1 variants (Figure S2) between HCM, DCM, and control 
lines. We found six samples (control lines 820, 822; HCM lines 543, 598; DCM line 596, 969) were 
outliers (z score > 3) for having a large number of pool 1 variants. Thus the subsequent analysis 
of mutaQon types in the control, HCM, and DCM cohort were done on the full cohorts and afer 
removing these six samples to ensure there were no differences in the results. StarQng with the 
pool 1 variants, we removed mutaQons with frequency > 0.001 in 1000 genomes or any ExAc 
ethnicity. (Previous ANNOVAR filter used to generate pool 1 used the mutaQon frequency in ExAc 
as a whole, while here we used the maximum frequency in any ethnicity.) We removed indels > 
50bp as these could be due to a sequencing error. We removed mutaQons shared by more than 
10 paQents. (Only 3 mutaQons fit this descripQon. They were shared by 171, 46, 31 paQents). The 
next most common mutaQons were shared by 7 paQents. This is also the max frequency for a 



mutaQon we annotated as pathogenic or likely pathogenic. Finally, we grouped the mutaQons into 
two categories. The first category was mutaQons that could change protein length (frameshif 
inserQon, frameshif deleQon, stop-gain, stop-loss). The second category was all other exonic or 
splicing mutaQons. For calculaQng mean and standard deviaQon values, the two “other” samples 
with known cardiac condiQons (long QT syndrome and Fabry’s disease) were excluded from the 
control cohort. P-values for figure 2A are calculated using t-test. 
 
Pucklewartz et al.[16] defined a set of 102 cardiomyopathy genes whose cumulaQve burden of 
nonsynonymous SNVs correlates with LVEF in DCM. We replicated this analysis by summing the 
instances of a nonsynonmous SNV in the 102 genes. This was done by going back to the original 
Annovar output files for SNVs (we did not include indels) and using R to idenQfy all 
nonsynonymous SNVs regardless of allele frequency (as opposed to starQng from our pooled of 
filtered rare variants). We set a cutoff of DP (depth of coverage) >=8 and GQ (genotype quality) 
>=20. Zygosity was not incorporated. The total burden was plored against LVEF and linear 
regression computed. We did this for both the HCM and DCM lines. We the repeated the analysis 
for DCM afer se�ng an addiQonal threshold of maximum allele frequency of 0.5 (using the 
maximum frequency in 1000 Genomes and any individual ethnic group in ExAc). This was done 
separately on DCM samples with a known pathogenic or likely pathogenic variant (P/LP) and those 
without (nopatho). Finally, we applied a further filter for the variants, restricQng variants to 20 
core DCM genes with greater evidence for pathogenicity (as defined by appearing in at least one 
of the following: [4] or DCM genes only[5, 15]). The core genes are: ACTC1, ACTN2, BAG3, DES, 
DSP, FLNC, JPH2, LMNA, MYH7, NEXN, PLN, RBM20, SCN5A, TCAP, TNNC1, TNNI3, TNNT2, TPM1, 
TTN, VCL. 
 
To assess mutaQonal burden in HCM samples within the promoter regions of the 102 Puckelwartz 
et al genes, we defined a promoter as 2000 bp upstream and 500 bp downstream of the 
transcripQon start site and collected all SNV variants (not indels) regardless of frequency and 
regardless of mutaQon type. DP (depth of coverage) >=8 and GQ (genotype quality) >=20 filters 
were applied. Unlike the analysis of LVEF versus coding variants in DCM, for promoter analysis we 
did not restrict the variants to nonsynonymous SNVs. For each gene we computed the mean 
number of variants in the control and HCM cohorts separately. 54 genes had higher mean in 
control than promoter. These were: A2ML1, ALPK3, BAG3, CACNA1C, CALR3, CASQ2, CAV3, 
CHRM2, CSRP3, CTNNA3, DES, DOLK, EMD, EYA4, FHL1, FKTN, GATA6, GATAD1, JUP, KRAS, LAMP2, 
LDB3, LMNA, LRRC10, MAP2K1, MYL2, MYOM1, MYOZ2, MYPN, NEBL, NEXN, NKX2.5, NRAS, 
PDLIM3, PRDM16, PRKAG2, PTPN11, RAF1, RASA1, RBM20, RRAS, SCN5A, SHOC2, SLC22A5, 
TAFAZZIN, TCAP, TGFB3, TMEM43, TNNC1, TNNI3, TNNT2, TPM1, TRDN, TXNRD2. We performed 
regression on the total mutaQon count in these promoters compared to IVSd for HCM samples 
with and without known pathogenic mutaQons and accounQng for RNA subgroup (steep or 
moderate). Finally, we applied the published polygenic risk score[29] to the HCM samples. The 
dbSNP IDs were used to convert from hg37 to hg38 coordinates and search the Annovar output 
files for overlapping variants. In instances where a variant was not returned for the loci, we 
assumed the sample had the reference allele. For each variant we determined presence or 
absence of the risk allele (ignoring zygosity) and mulQplied by the published beta values, summing 
across all variants to get the final risk score. The score is composed of 36 SNVs.  



 
RNA-seq library preparaBon, sequencing, quality control, and expression matrix generaBon 
RNA was extracted from iPSCs or cardiomyocytes (RNeasy, Qiagen). Illumina RNA-seq libraries 
(TruSeq Stranded Total RNA LP Gold) were prepared on the Bravo (Agilent; 3 samples prepared 
manually as indicated in Table S6), pooled (Table S6), and sequenced (NovaSeq-6000, paired-end, 
100bp). Where possible drug treatment condiQons for the same differenQaQon were kept 
together in batches, while replicate differenQaQons for the same iPSC lines were split apart, and 
HCM, DCM, and control samples were distributed across batches. Reads were aligned to hg38 
(STAR). Principal component analysis on cardiomyocyte and iPS samples separately returned no 
outlier samples (as defined as Zscore of principal component 1 > 3). Library quality control was 
assessed via fastp, fastQC, STAR, and Picard metrics. Samples were flagged for poor QC by the 
following metrics: GC content afer filtering outside of 20-80% (fastp), duplicaQon rate greater 
than 40% (fastp), uniquely mapped read pairs (fragments) < 20 million (STAR), mean reads 
(average of forward and reverse) <20 million (fastQC), ribosomal RNA bases > 20% (Picard), coding 
plus UTR (untranslated region) < 50% (Picard), uniquely mapping fragments <60% (STAR). Samples 
with more than one flag were removed. Cardiomyocyte and iPSC samples were subsequently 
processed separately. Reads were computed as CPM (edgeR) and corrected for library preparaQon 
batch (combat-seq) and TMM normalized (edgeR) to generate the final expression matrix. For 
samples with biological replicates, TMM counts were averaged. Principal component analysis was 
performed and principal component 1 assessed for spearman correlaQon with the following 
metadata: percent GC content (fastp), mean reads (average of forward and reverse) in millions 
(fastQC), percent ribosomal RNA bases (Picard), uniquely mapped fragments in millions (STAR), 
duplicaQon rate (fastp), percent coding or UTR (picard), library preparaQon batch, and sequencing 
pool. The maximum absolute value for spearman correlaQon between PC1 and the library 
metadata was 0.08 for cardiomyocyte samples, indicaQng good quality control with technical 
arQfacts having minimal influence on the dataset. iPSC samples had higher correlaQon for three 
metrics (0.26 with GC content, 0.22 with duplicaQon rate, and 0.11 with percent coding or UTR), 
with the remaining less than an absolute value of 0.04.  
 
DESeq2 analysis of differenBal expression 
Raw data was input into DESeq2 (as required for DESeq2) with library preparaQon batch included 
in the design (in line with the combat-seq correcQon strategy we used for generaQng our final 
expression matrix). We assessed baseline (without drug) control vs HCM cardiomyocytes and 
control vs DCM cardiomyocytes separately and determined significance (Benjamin-Hochberg 
corrected p-value < 0.05). Drug treatment was compared to DMSO using all samples regardless 
of disease. Geno ontology analysis for differenQally expressed genes (or for ADCY5 connected 
genes in the network, see below) was performed using DAVID bioinformaQcs,[49] with enriched 
ontologies defined as Benjamin-Hochberg corrected p-value < 0.05. 
 
Personalized co-expression network construcBon using lionessR 
Linear interpolaQon to obtain network esQmates for single samples was performed using 
lioness[18, 19] implemented in R (lionessR package). This was done separately on the HCM versus 
control cohort and the DCM versus control cohort. First, a cohort-level network was built using 
the control and diseased samples. The finalized cardiomyocte expression matrix (TMM 



normalized, batch-corrected) was input. The dataset was refined to the top 2000 most variable 
genes (greatest standard deviaQon between all samples, diseased and control samples 
combined). For the control and diseased samples separately a co-expression matrix was 
computed using Pearson correlaQon for each gene-by-gene comparison. The control matrix was 
subtracted from the diseased matrix to assess differenQal co-expression between the control and 
diseased cohorts, and the network was trimmed to the 200 most differenQal edges (LIMMA) 
between control and disease. Doing this for both the HCM and DCM data, we thus built two 
networks: an HCM network (reflecQng differenQal co-expression between HCM and control 
samples) and a DCM network (reflecQng differenQal co-expression between DCM and control 
samples). Personalized co-expression networks were inferred for each sample individually 
through an iteraQve process where lionessR removed one sample from the cohort, recalculated 
the cohort edge strengths, and determined the difference in cohort edge strength with and 
without the sample, and then applyied a linear model to esQmate the edge weights of the sample. 
 
Node strength calculaBon 
Node strength represented the total weight of all edges surrounding a gene. We calculated this 
in two ways. For Figure 3B, this was calculated by summing the weights of all edges surrounding 
a gene. This was displayed by plo�ng the summed weight on the x-axis for different genes along 
the y-axis. Samples were colored from light shades (small ADCY5 node strength) to dark shades 
(large ADCY5 node strength) and maintained the same color when displaying nodes strengths of 
other genes. This was useful for visualizing the variability across our diseased cohorts. For 
subsequent analyses of node strength in Figures 4 and 5, we modified the calculaQon such that 
greater node strength would indicate greater difference from non-diseased samples. Each edge 
surrounding a gene were previously determined by lionessR to be red (stonger in disease) or 
green (stronger in control). This was colored based on behavior of the full cohort. To calculate 
node strength in each sample, we subtracted the sum of the green edges from the sum of the red 
edges. 
 
Assessment of co-modulaBon of edges around a common hubnode 
We defined hubnodes as genes that were connected to at least three other genes. We tested 
which hubnodes represented units of network acQvaQon, in that higher co-expression of one of 
the edges co-occurred with higher co-expression of the other edges. For each disease network, 
we analyzed the disease (HCM or DCM) and control cohorts separately. We first calculated the 
Pearson correlaQon coefficient for each edge-by-edge comparison. Second, we subset all edge-
edge pairs surrounding a shared hubnode, called the “All” dataset. We also created a 
“background” dataset with all edge-edge pairs expect those for which the same gene was shared 
in both edges. We randomly sampled the All and Background datasets and calculated the 
difference in Pearson correlaQon coefficient (All – Background). We did this 10,000 Qmes to obtain 
the mean and 95% confidence intervals. Nodes whose 95% confidence interval bars do not cross 
zero are concluded to exhibit co-modulaQon of the edge strengths for their surrounding edges. 
 
Principal component analysis 
The edge weights for the HCM cohort, control cohort, and individual HCM samples were analyzed 
by principal component analysis (prcomp, scale=TRUE, in R). Separately, the same was done for 



the DCM cohort, control cohort, and individual DCM samples. Linear regression compared 
principal component 1 (PC1) to echocardiogram measurements (LVEF for DCM, IVSd for HCM) 
(Figures 4B and 4D). The contribuQon of ADCY5 edges to PC1 for the HCM network (Figure 5A) 
was computed. For each sample, the scaled edge weights were mulQplied by the loadings for PC1 
and all ADCY5 edges summed. 
 
The relaQve contribuQon of each edge to the principal component was calculated as: (loadings^2) 
/ sum(loadings^2). This was done for the full network (not on individual samples). Edges were 
ordered from highest to lowest relaQve contribuQon. Visual inspecQon of the list revealed 
enrichment of ADCY5 edges at the top of the PC1 list for highest contribuQon and ANLN edges at 
the top of the PC3 list. This was confirmed by plo�ng the cumulaQve contribuQon (sum of relaQve 
contribuQons) with each successive edge added (Figure 5B) alongside the cumulaQve contribuQon 
specifically from ADCY5 or ANLN edges only. (Note that for clarity, in Figure 5B, the cumulaQve 
contribuQon for either ADCY5 or ANLN was not plored as a smooth curve, but only displayed at 
the ADCY5 or ANLN edges.) 
 
Pearson correlaQon was used to obtain R2 values for correlaQon of hubnode strength to PC1 and 
to echocardiogram measurements and as well as to compare ADCY5 node strength to ADCY5 
expression and MEF2A expression in HCM samples. 
 
KineBc imaging cytometry to measure contracBlity 
ContracQlity was assessed as previously described.[50, 51] On approximately day 24, cells were 
dissociated (TrypLE, Fisher, 50-591-353) and replated in Matrigel-coated 384 well plates (20,000 
cells/well, 8 wells per drug condiQon), and maintained in parallel for the remainder of the 
differenQaQon. The four perimeter rows and columns of wells were not used, and filled with PBS 
to minimize the effect of temperature fluctuaQon on the assay. At the Qme of assay, 400nM 
tetramethylrhodamine, methyl ester (TMRM, Marker Gene Techonologies), a live cell stain of 
mitochondria, was added to the cardiomyocyte cell culture, and the cells were returned to the 
37°C incubator for approximately 15 min to restabilize their temperature. ContracQlity was 
analyzed on the IC200 KineQc Imaging Cytometer (Vala Sciences) running CyteSeer sofware (Vala 
Sciences), using a 0.75 NA 20x Nikon Apo VC objecQve. Cells were maintained at 37C°, 5% CO2 
throughout the assay. Time series images were acquired over 10 second at 33 Hz frequency. A 
custom MatLab script was used to further process the outputs of CyteSeer and extract key metrics 
of contracQlity, including averaging mulQple contracQons per well into a representaQve peak and 
extracQng the area under the curve (AUC) as well as average Qme between peaks (T.peak) .[52] 
AUC divided by T.peak represented the total amount of deformaQon normalized to Qme. Each 
differenQaQon was assayed in 8 wells per condiQon (DMSO and drugs).  
 
ADCY5 hub node correcBon with drug treatment 
For each edge surrounding ADCY5 in the HCM and DCM networks respecQvely, we calculated the 
mean edge weight in disease at baseline and afer drug treatment as well as in control samples 
at baseline. We computed the difference as such: HCMDMSO – ControlDMSO; HCMMYK – ControlDMSO; 
DCMDMSO – ControlDMSO; DCMOMEC – ControlDMSO. We then converted the differences to absolute 
value. Box and whisker plots displayed these values for all edges in each comparison. 
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