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ABSTRACT

Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage
groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited
from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al.
2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia,
Ecdysozoa and Spiralia. Notwithstanding this general trend of chromosome-scale conservation,
ALGs have been obliterated by extensive genome rearrangements in certain groups, most
notably including Clitellata (oligochaetes and leeches), a group of easily overlooked
invertebrates that is of tremendous ecological, agricultural and economic importance (Charles
2019; Barrett 2016). To further investigate these rearrangements, we have undertaken a
comparison of 12 clitellate genomes (including four newly sequenced species) and 11 outgroup
representatives. We show that these rearrangements began at the base of the Clitellata (rather
than progressing gradually throughout polychaete annelids), that the inter-chromosomal
rearrangements continue in several clitellate lineages and that these events have substantially
shaped the evolution of the otherwise highly conserved Hox cluster.
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INTRODUCTION

While changes in developmental processes are the immediate/proximal cause of
changes in body plan during evolution, the underlying/ultimate cause is changes in the genomic
information that is largely responsible for programming the developmental processes. A broad
spectrum of genomic changes is possible, ranging from relatively frequent (point mutations and
inversions) to much rarer (gene duplications, chromosomal translocations and whole genome
duplications). Large differences in the frequency of successful (inherited) inversions versus
translocations result in the observation that, over large evolutionary timescales, gene
co-linearity among species is lost while chromosomal synteny is preserved, i.e. orthologous
genes among species move back and forth along their respective chromosomes while largely
maintaining their chromosomal identity, even among species as divergent as cnidarians and
bilaterians, that have been evolving independently for over 600 MY (Simakov et al. 2022). Thus,
conservation of synteny has allowed the inference of 29 ancestral chromosomes/chromosome
arms (often referred to as ancestral linkage groups, ALGs) in the last common metazoan
ancestor (Simakov et al. 2022; Schultz et al. 2023).

Exceptions to syntenic conservation exist, however. In particular, when the first three
spiralian genomes were sequenced (Simakov et al. 2013), the mollusc Lottia and the polychaete
annelid Capitella [separated by 534-636 MY (dos Reis et al. 2015)] showed strong synteny, but
the genome of the leech Helobdella [a clitellate annelid separated by 476-636 MY from Capitella
(dos Reis et al. 2015) showed no synteny with either species; the dramatic acceleration of
genome rearrangements in Helobdella extended even to the highly conserved Hox cluster,
which exhibits multiple duplications and deletions along with atomization of the ancestral
spiralian 11 gene cluster itself relative to Lottia and Capitella.

This dramatic loss of chromosomal synteny is of interest for several reasons. A priori, the
relaxation of evolutionary constraints on genome architecture enhances evolutionary rates and
may contribute to the evolution of novelty at genomic and morphological levels. The
mechanisms by which synteny is lost are also of considerable interest. Inter-chromosomal
translocations are frequently lethal because they can lead to an aberrant pairing of
chromosomes during meiosis and/or gene dosage defects in the resulting gametes and
embryos (Wright 1941). How might this problem have been circumvented in the lineage leading
to Helobdella? Do the accelerated genome rearrangements result from an acceleration in all
aspects of genome evolution for this taxon, or a specific relaxation of constraints on genome
organization? Do the rearrangements seen in Helobdella result from a transient relaxation of
constraints on genome organization followed by fixation somewhere in the lineage leading to
Helobdella, perhaps within the Clitellata, or do they reflect an ongoing process?

To address these questions, we have compared the organization of 23 spiralian taxa for
which well-assembled genomes are currently available (Figure 1A): 12 clitellate annelids,
including 4 newly sequenced species (Figure 1B); 9 polychaete annelids; and 2 molluscan
outgroups. We confirm a dramatic loss of chromosomal synteny between all the clitellate
species with respect to polychaete and molluscan species. Even the most closely related
polychaete species (Capitella teleta) sampled here shows no increased loss of ALGs (Simakov
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et al. 2022). Moreover, this loss of synteny reflects an acceleration of genome rearrangements
and is accompanied by elevated rates of protein sequence evolution among several of these
taxa. Finally, comparisons among the available clitellate genomes suggest that the acceleration
of genome rearrangements reflects an ongoing relaxation of constraints on genome
organization, rather than a transient event at the base of the Clitellata. We speculate that this
change results from a combination of developmental, physiological and/or ecological factors
associated with the invasion of freshwater and terrestrial habitats by clitellate annelids.
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Figure 1: New clitellate genomes and clitellate-annelid relationships. A. Four newly sequenced
cliitellate annelids (dorsal views, anterior is up). Hirudo verbana (HVE, small adult 4.5, cm long).
Haemadipsa rjukjuana (HRJ, adult, 2 cm long). Helobdella austinensis (HAU, adult, 1.5 cm long). Perionyx
excavatus (PEX, adult, 11 cm long). B. Phylogenetic relationships (Maximum Likelihood tree based on
250 orthologous genes) among the 23 species (2 mollusks; 9 polychaete annelids; and 12 clitellate
annelids- 6 oligochaetes and 6 leeches) used in this study (see Materials and Methods for details). Each
species is assigned a three letter identifier. Photography credits: H. verbena and H. austinensis by
Christopher J. Winchell © 2024. H. rjukjuana and P. excavatus by Sung-Jin Cho © 2024.
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RESULTS AND DISCUSSION

Four new annelid genomes

Helobdella austinensis (HAU) is a small glossiphoniid leech, first identified in Austin
Texas, USA (Kutschera et al. 2013), that feeds on freshwater snails and other aquatic
invertebrates. It is a sibling species to H. robusta (HRO), which was among the first three
spiralians to be sequenced (Simakov et al. 2013). HAU was sequenced because it largely
replaced HRO as an experimental model due to its resistance to die-offs in lab culture. 90% of
the 187 Mb Mb genome was assembled onto 41 scaffolds =1 Mb in length, using lllumina
sequencing and HiRise assembly pipeline (Dovetalil).

Haemadipsa rjukjuana (HRJ) is a sanguivorous land leech found in Taiwan, Japan and
Korea (Lai, Nakano, and Chen 2011; Won et al. 2014). To our knowledge, this is the first
haemadipsid leech species to be sequenced. Chromosome-level genome assembly analysis
was achieved using PacBio sequencing and proximity ligation (Hi-C, Dovetail). The 139.8 Mb
genome was assembled into 33 scaffolds, with 99% of the assembly on 11 chromosomes.

Hirudo verbana (HVE) is a hirudinid leech, one of two species of European medicinal
leech (Siddall et al. 2007); it is widely used for the analysis of neural circuits underlying
behavior, and by plastic surgeons for relief of vasocongestion resulting from reconstructive
surgeries (Siddall et al. 2007; Kraemer et al. 1988; Houschyar et al. 2015). Previous analyses of
its genome assemblies (Babenko et al. 2020; Kvist et al. 2020) had yielded short scaffolds.
Here, a combination of PacBio sequencing and proximity ligation (Dovetail) yielded near
chromosomal scale assembly. Roughly half of the 194 Mb genome was assembled onto 7
scaffolds, and 90% was assembled onto 35 scaffolds =1 Kb in length.

Perionyx excavatus (PEX) is a megascolecid earthworm. It probably originated from the
Indian subcontinent, but it is commonly used in vermicomposting and has been collected at
locations around the world (Hendrix et al. 2008). A chromosome-level genome assembly was
achieved using PacBio sequencing and proximity ligation (Hi-C, Dovetail). The genome was
assembled into 645 scaffolds with a size of 837 Mb, and 22 scaffolds corresponding to
chromosomes were larger than 10 Mb, with a coverage of 92.16%.

Widespread loss of chromosomal synteny among clitellate annelids

Our analysis confirms the previous notion that chromosomes are generally conserved in
the animal kingdom and can be represented by "algebraic" combinations of 29 ancestral animal
linkage groups (Hendrix et al. 2008; Simakov et al. 2022). While the overall fusion rates can be
different among animal clades, the overall background rate is relatively low among most of the
metazoans (few fusions per hundreds of millions of years). However, some lineages show
‘peaks' in such rearrangements that seem to occur in a time-restricted manner. For example, at
the base of coleoid cephalopods, there has been a large-scale ALG reshuffling that resulted in a
new set of linkage groups that have remained comparatively stable so far and only underwent
species-specific fusions (Albertin et al. 2022).

The well-conserved synteny that is evident in mollusks and polychaete annelids has also
been lost for all the clitellate genomes surveyed here (Figure 2). Our genomic sampling
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suggests that the pace of genome rearrangements was dramatically accelerated at some point
in the lineage leading to earthworms and leeches after it diverged from the capitellid lineage. In
contrast to most other taxa, however, our findings for clitellates are striking in that not only the
ancestral metazoan linkage group complement has been scrambled, but the inter-chromosomal
scrambling may still be ongoing in at least some of the clitellate lineages (Figure 3).

Additional translocation-rich events happened at the base of each of the major clitellate
lineages, including Megascolecidae, Lumbricidae, and Hirudinida. Rearrangements are also
evident within the recent branches of these taxa. For example, in the leech lineages, multiple
species-specific translocations can be observed. This enhanced rate of rearrangements is
accompanied by an increased rate of protein sequence evolution among leeches (Figure 1A).
Our findings are thus more consistent with a maintained acceleration of rearrangements in this
group rather than a transient burst of accelerated rearrangements at the base followed by a
return to relative stasis.

On top of the enhanced inter-chromosomal translocation rate, our analysis also detected
whole genome duplications, confirming the already reported duplication in Metaphire (Jin et al.
2020). We observed the same duplicated karyotype in Amynthas, but not in Perionyx, which
narrows the likely timing of this duplication event. Together, these data put clitellates forward as
a model system to study the effect of chromosomal rearrangements in evolution.
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Figure 2: Rapid genome rearrangement in clitellate annelids. A. Synteny plot showing orthologs
(curved vertical lines) on chromosomal scaffolds (horizontal black bars) between pairs of species.
Orthologs are colored based on bilaterian-cnidarian-sponge ancestral linkage groups (BCnS ALGs).
Orthologs on significantly-related chromosomes are opaque (Fisher’s exact test < 0.05), and orthologs
on non-significant chromosome pairs are translucent. All major annelid clades, except the Clitellata,
retain the BCnS ALGs that are conserved in other metazoans, including the scallop Pecten maximus.
The genomes of extant clitellates show that there have been extensive structural rearrangements in the
branch leading to clitellates, and within the clitellates.
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Figure 3: Increased inter-chromosomal rearrangements in clitellate annelids. All three panels show
significantly large linkage groups from species trios, inferred with the program odp nway rbh. The
colors do not correspond between the panels. A. Ribbon diagram colored by the 29 linkage groups
inferred from the clade Hirudinida. B. Ribbon diagram colored by the 44 linkage groups inferred from the
clade Crassiclitellata. C. The ribbon diagram showing members of both the Hirudinida, the Lumbricidae,
and the Megascolecidae. The synteny plot showing orthologs (curved vertical lines) on chromosomal
scaffolds (horizontal black bars). There are not only rearrangements between the deep
Hirudinida-Crassiclitellata node, but among more recently diverged species.


https://doi.org/10.1101/2024.05.12.593736
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.12.593736; this version posted May 14, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Atomization of the Hox cluster among clitellates suggests that clitellate genome
rearrangements are ongoing

Previous work has shown that Hox genes in Helobdella robusta are not organized in a
clustered and linear array on a chromosome, as observed in many bilaterian genomes. Instead,
they are broken into a few subclusters and singlets, with a number of duplicates and gene
losses (Simakov et al. 2013). This “atomized” Hox configuration was observed in all clitellate
species examined here; furthermore, they differ in various degrees among species
(Supplementary Table 1).

To determine the extent of Hox gene translocations in the extensively rearranged clitellate
genomes, we compared Hox inventories on syntenic scaffolds in three separate clitellate
subgroups: lumbricids, megascolecids, and leeches. For each subgroup, we chose one anchor
species to which other subgroup members were compared. The anchor species was chosen as
the one with the fewest Hox-containing genome scaffolds (Eisenia for lumbricids and
Haemadipsa for leeches), or as the taxon presumed to branch basally among sampled
members of a subgroup (Perionyx for megascolecids). We grouped each Hox-containing
scaffold in the anchor species with syntenic scaffolds of other subgroup members into “synteny
sets” (Supplementary Table 1).

Comparing the Hox inventories within synteny sets allowed us to differentiate whether
syntenic clitellate chromosomes contain conserved sub-clusters or random assortments of Hox
genes (Figure 4). For the lumbricid oligochaetes (represented by Lumbricus and Eisenia), three
out of six synteny sets have identical Hox inventories (Supplementary Table 1): set 4 (Hox3, two
Scr, Post2), set 5 (Lab, Hox3, Scr, Lox5), and set 6 (Post1). In synteny set 1, each genus
possesses Pb and Post2, but they differ with respect to a third gene, which in Eisenia is Scr and
in Lumbricus is an additional copy of Post2. Both genera possess 12 genes in synteny set 3,
but relative to Eisenia, Lumbricus is missing three copies of Lox4 and two copies of Scr, has
gained an additional copy of Lab and of Post2, and possesses two copies of Dfd and one of
Lox2 (Dfd and Lox2 were not found on any Eisenia scaffold).

Within megascolecid oligochaetes, Metaphire and Amynthas are within the Pheretima
complex, a morphologically derived group within Megascolecidae (“Origin and Diversification of
Pheretimoid Megascolecid Earthworms in the Japanese Archipelago as Revealed by
Mitogenomic Phylogenetics” 2023; Sims and Easton 1972)

Sato et al. 2023(“Origin and Diversification of Pheretimoid Megascolecid Earthworms in the
Japanese Archipelago as Revealed by Mitogenomic Phylogenetics” 2023; Sims and Easton
1972), and exhibit a shared whole genome duplication relative to Perionyx (Figure 2). Thus: 1),
most individual chromosomes in Perionyx correspond to two paralogous chromosomes in
Amynthas and in Metaphire, and 2) each of these paralogous chromosomes in Amynthas has
an orthologous chromosome in Metaphire. Among these three megascolecid genomes, the Hox
cluster remnants on the paralogous and orthologous chromosomes exhibit similarities
consistent with their respective ancestries, but also differences, suggesting recent or ongoing
inter-chromosomal translocations (Supplementary Table 1).
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Thus, consistent with the whole genome duplication, we found that each of the eleven
Hox-containing scaffolds in Perionyx is syntenic with two scaffolds in both Metaphire and
Amynthas (Supplementary Table 1). The Hox inventories across 12 megascolecid synteny sets
(Supplementary Table 1) were somewhat labile, however. In multiple cases, the presence of a
particular Hox gene or set of Hox genes within a given synteny set was taxon-specific: Perionyx
(Scrin set 1; Hox3 and Scr in set 3; Post2 in set 9; Post2, Lox2, and Lox4 in set 11), Metaphire
(Pbin set 3; Pb, Lox2, Hox3 in set 6; Hox3 in set 12), Amynthas (Lox5 in set 6; Lox4 in set 7),
and Perionyx plus Metaphire (Post2 in set 2; Scr in set 4; Lox2 in set 7; Scr and Hox3 in set 10).
Despite these differences, we found that all three megascolecid species had in common the
presence of: Pb and Post2 in set 1; Lab and Lox5 in set 3; Antp in set 4; Post1 in set 5; Post2,
Lox4, Dfd, and Lab in set 6; Hox3 and Scr in set 7.

Finally, we used Haemadipsa rjukjuana as the anchor species for comparing Hox
organization in leeches (represented by Helobdella, Piscicola, Haemadipsa, Hirudo) and found
conservation of Hox inventory within all three synteny sets (Supplementary Table 1). Set 1,
contains seven Hox genes in two apparent sub-clusters (Lab-Scr-Lox5 and
Lab-Dfd-Lox4-Post2) in all four genera. Piscicola Hox3 is the only other Hox gene in leech
synteny set one. Set 2, containing Hox3 and an apparent Lox2-Scr subcluster, is conserved in
Haemadipsa, Helobdella, and Hirudo but only partially conserved in Piscicola, for which no
Lox2 gene was found and, as mentioned previously, seems to have moved its Hox3 gene from
set 2 to set 1. Set 3, containing up to 8 Hox genes, including an apparent Dfd-Lox4-Lox2-Post2
subcluster, Antp, and three Scr genes, is perfectly conserved in Haemadipsa and Helobdella,
but Piscicola and Hirudo are each missing two Scr genes. Moreover, the set 3 inventory of
Hirudo is unique in that it appears to have lost Lox2 and Antp. Consistent with previous reports,
we found no evidence of Pb or Post1 in any of these leech genomes (Simakov et al. 2013).
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Potentially conserved Hox subclusters between oligochaetes and leeches
We also observed distinct associations of several sets of Hox genes across clitellate
subgroups defined by their consistent colocalization on the same chromosomes.

1. Lab, Dfd, Lox4, and Post2 are contiguous within lumbricid synteny set 3 (Lumbricus only, as
Eisenia is missing Dfd), megascolecid synteny set 6, and leech synteny set 1. The
chromosomes in these sets share some, but not much, synteny between subgroups.

2. Hox3, Scr, and Lox2 are contiguous within megascolecid synteny set 7, leech synteny set 2,
and possibly lumbricid synteny set 3.

3. Lab, Scr, and Lox5 (plus Hox3 in oligochaetes) are contiguous within lumbricid synteny set
5, megascolecid synteny set 3 (Perionyx only), and leech synteny set 1.

4. Scr and Antp are contiguous within megascolecid synteny set 4, leech synteny set 3, and
possibly lumbricid synteny set 1 (Scr and Antp are unplaced in Eisenia but occur with Lox4
on Lumbricus scaffold 1).

Hox gene duplications and losses

As detailed above, the atomization of the Hox complement in clitellate annelids has been
accompanied by numerous instances of gene duplication. In leeches, we also note two
examples of Hox gene loss, namely pb, an anterior group gene (second in the ancestral cluster),
and post1 (a posterior group gene that comes last in the ancestral cluster).

A hallmark in the divergence of oligochaetes (earthworms) and true leeches from
polychaetes is the reduction and then total loss of segmentally iterated bristles (chaetae) that
serve to reduce slippage during peristaltic locomotion that is so familiar from earthworms.
Within the canonical spiralian Hox cluster, post1 occupies the terminal position of the posterior
group and is expressed in the chaetal sacs of several annelid and brachiopod species (Frébius,
Matus, and Seaver 2008; Kulakova et al. 2007; Schiemann et al. 2017) and is thought to play an
integral role in chaetae function and development. Interestingly, we note that Post1 is
somewhat disproportionately separated from the rest of the Hox cluster in the bivalve mollusc
(Pecten maximus - PMA, Figure 4)--specifically, the ratio of the length of the full 11 gene cluster
to the length of the 10 gene cluster when post1 is excluded is 1.4. In Owenia fusiformis - OFU,
representing the deepest branch of polychaete annelids in this study, this ratio is increased to
78.2 and post1 is now located upstream of the anterior group genes, indicative of either an
inversion or transposition. The isolation of post7 from other Hox genes is further increased in
the clitellates—post1 is commonly the only Hox gene on its scaffold in oligochaetes and is
missing altogether from leech chromosomes. The absence of post7 in the leeches is
coincidental with their loss of chaetae. Further investigation into the role and consequence of
post1 and associated genes in chaetae-bearing annelids may help clarify whether clitellates lost
chaetae due to a genomic deletion of post1, or if post1 was lost by another function, such as
relaxation of selective constraint after the loss of function at other loci. A second evolutionary
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loss from the leech species examined here is the anterior group Hox gene pb, for which there is
no obvious morphological correlate.

Factors that may contribute to relaxation of constraints on genome rearrangements in
Clitellata

It is clear from our synteny analyses that the rate of genome rearrangements (more
precisely, the inheritance and persistence of rearrangements that we measure in extant species)
was elevated in the evolutionary branches leading up to, and within, the Clitellata. The protein
phylogenomic results show that, despite the increased rate of genomic structural changes, the
rate of protein evolution in the clitellate crown group is not particularly elevated relative to other
annelids. The inference that the rate of genome rearrangements remained elevated within this
group after initial divergence from all other annelids suggests that it does not reflect a transient
process such as a wave of transposon activity that has since been silenced. The analysis of
repetitive elements in the Helobdella genome also argues against that explanation (Simakov et
al. 2013) and no effect on syntenic preservation in extremely repeat-rich genomes in vertebrates
have been observed, e.g., in the lungfish (Meyer et al. 2021). The population-level or
chromosome-scale sequencing of more genomes within the clitellates, and more broadly the
annelids, will clarify the contemporary genome rearrangement rates in these clades.

We speculate that environmental factors associated with the emergence of clitellate
annelids may have enabled the acceleration of heritable genome rearrangements in this clade.
Freshwater and terrestrial habitats occupied by clitellates are apt to be less stable than the
marine environment in which their polychaete ancestors evolved (Kuo, 2017). More ephemeral
habitats may be expected to result in smaller and less stable populations, and smaller effective
population size in turn facilitates the fixation of genomic changes through genetic drift (Viard,
Justy, and Jarne 1997; Charbonnel et al. 2002). Another possible environmental factor
contributing to increased rates of genome arrangement would be the presence of locally
concentrating clastogenic agents (e.g., irradiation or chemicals) in the clitellate habitats, which
are more heterogeneous and fragmented than the ancestral marine habitats.

We also speculate that evolutionary innovations associated with the emergence of
clitellate annelids, namely simultaneous hermaphroditism, and self-fertilization in some taxa,
might have concomitantly increased the rate at which genome rearrangements became fixed.
Simultaneous hermaphroditism occurs in clitellate annelids, but is rare in polychaetes. The
advantage of being able to mate with any con-specific adult in a small and/or low density
population presumably offsets the energetic/physiological cost of developing two sets of
reproductive organs (Heath, 1977). A more extreme adaptation to infrequent mating encounters
is the capacity for self-fertilization. Self-mating, and to a lesser extent sibling matings, provide a
possibility of rescuing chromosomal translocations that would otherwise prove lethal through
defects in homolog pairing and/or gene dosage effects.

Finally, we previously identified developmental considerations that might also contribute
to the observed increase in genome rearrangements. In many animal species, dedicated
germline precursor cells (PGCs) arise early in the embryonic cell divisions, which reduces the
number of mitoses required to get from the zygote to the gametes that will found the next
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generation. For example, PGCs in at least some polychaetes arise as the first two cells
produced by the bilateral pairs of mesodermal stem cells, corresponding to eight and nine
rounds of zygotic mitoses from the fertilized egg in the conserved spiralian cleavage patterns
[reviewed by (Rebscher 2014)]. In contrast, the PGCs in clitellate embryos are not segregated
from somatic lineages until after at least 24 rounds of zygotic mitoses and male and female
PGC precursors share the same lineages through at least 23 rounds (Rebscher 2014; Kang,
Pilon, and Weisblat 2002); (Oyama and Shimizu 2007; Cho, Valles, and Weisblat 2014)--this
long cell lineage delay to the segregation of PGCs increases both the opportunities for
chromosomal aberrations to occur and the likelihood that any chromosomal alterations will be
shared by male and female PGCs. Thus, we suggest that the increased rate of genome
rearrangements that we have documented here for clitellate annelids could result from an
increased probability for generating chromosomal abnormalities that are shared between the
male and female gametes, combined with the capacity for rescuing such abnormalities through
self-fertilization or sibling mating.

We note that other simultaneously hermaphroditic species are known, including
mangrove Killifish, and pulmonate molluscs, but sequenced representatives of these taxa do
not appear to exhibit accelerated genome rearrangements (Supplementary Figure 1).
Comparisons among these diverse taxa with respect to such variables population size and
developmental details of PGC formation may provide further insights into the mechanisms of
genome rearrangement acceleration.

CONCLUSIONS

In this manuscript, we report a comparison of key spiralian and in particular clitellate taxa
in terms of their phylogeny and chromosomal evolution. Our analyses confirm the faster rates of
protein sequence evolution in the leech lineages. Chromosomal-level synteny comparisons
reveal that the clitellate lineage underwent substantial chromosomal reorganizations, fueled by
almost complete rearrangement of the ancestral metazoan linkage groups. While such
genome-wide events were likely time-restricted, some lineages (e.g., leeches) kept up a higher
translocation rate between chromosomes after their initial divergence from other annelids. This
is also reflected in the highly partitioned and partially duplicated Hox clusters. While the
mechanisms behind the breakage of ancestral chromosomal synteny in animal genomes remain
elusive, this paper identifies several key biological factors that may have driven such events in
clitellates, including self-mating and late germline separation.
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METHODS
Genome database preparation

The following chromosome-scale and scaffold-level annelid and mollusk genomes, as well as
their genome annotations and protein sequences, were downloaded for this project: Helobdella
robusta (GCF_000326865.2) (Simakov et al. 2013), Hirudinaria manillensis (GCA_034509925.1)
(Guan et al. 2019), Metaphire vulgaris (GCA_018105865.1) (Jin et al. 2020), Amynthas corticis
(GCA_900184025.1) (Wang et al. 2021), Eisenia andrei (GWHACBEO0000000) (Shao et al. 2020),
Enchytraeus crypticus (GCA_905160935.1) (Amorim et al. 2021), Capitella teleta
(GCA_000328365.1) (Simakov et al. 2013), Streblospio benedicti (GCA_019095985.1) (Zakas et
al. 2022), Dimorphilus gyrociliatus (GCA_904063045.1) (Martin-Duran et al. 2021), Owenia
fusiformis (GCA_903813345.2) (Martin-Zamora et al. 2023), Lottia gigantea (GCF_000327385.1)
(Simakov et al. 2013), Pecten maximus (GCA_902652985.1) (Kenny et al. 2020), Riftia pachyptila
(https://phaidra.univie.ac.at/detail/0:1220865) (de Oliveira et al. 2022), Lepidonotus clava
(GCA_936440205.1) (Darbyshire et al. 2022), Sthenelais limicola (GCA_942159475.1)
(Darbyshire et al. 2023), Alitta virens (GCA_932294295.1) (Fletcher et al. 2023), Paraescarpia
echinospica (GCA_020002185.1) (Sun et al. 2021), Lumbricus rubellus (GCA_945859605.1)
(Short et al. 2023), and Piscicola geometra (GCA_943735955.1) (Doe 2023). Additionally, we
downloaded the following genomes of the simultaneously hermaphroditic species from NCBI:
Biomphalaria glabrata (GCA_947242115.1) (The Darwin Tree of Life Project et al. 2022), and
Kryptolebias marmoratus (GCF_001649575.2).

The genomes were prepared for use with the odp software package (Schultz et al. 2023)
by extracting the protein coordinate information to rbh files.

Sample collection

Adult earthworm Perionyx excavatus were obtained from the Nan-ji Water Reclamation Center
(87°35' 13" N, 126° 50' 45" E) in Kyunggi-do, South Korea. Adult leech Haemadipsa rjukjuana
were collected on Mt. Dock-Sil (altitude 639m) on the island Gageo-do (E 125° 07', N 34° 04'),
South Korea. The earthworms and leeches were collected in compliance with local regulations,
and collected animals were maintained in an animal incubation room under controlled
conditions. Helobdella austinensis (Kutschera et al. 2013) adults were originally collected from
Shoal Creek in Austin, TX (within 1 kilometer of 30° 17' 41" N, 97° 44" 44" W) in 1998 and have
been in continuous laboratory culture since. The collection of H. austinensis leeches was
performed in compliance with Texas regulations (TAC Title 31, PT 2 TPWD, Ch 69, Subchapter
J, Rule §69.302). Adult Hirudo were obtained from a commercial supplier (Leeches.com).

Haemadipsa rjukjuana and Perionyx excavatus methods

H. rjukjuana and P. excavatus DNA and RNA extraction The MagAttract HMW DNA Kit
(Qiagen, catalog no.67563) was used to extract DNA from the the muscle tissue was sampled
from an adult H. rjukjuana with a body length of 2 cm, and an adult P. excavatus with a body
length of 11 cm. DNA was eluted with 100ul of Solution AE. Total RNA was extracted from six
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individuals of each species using mirVana miRNA Isolation Kit (Ambion) according to the
manufacturer's recommended procedures.

H. rjukjuana and P. excavatus DNA Short-read Sequencing We first used a NanoDrop
spectrometer to confirm that the H. rjukjuana and P. excavatus DNA was pure, with an
0D260/280 ratio of 1.8-2.0. We also verified that the DNA was intact, using a 1% agarose gel
electrophoresis. Lastly, we quantified the DNA with a Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific).

Whole-genome shotgun sequencing libraries were prepared according to the Illlumina Truseq
Nano DNA Library prep protocol. Briefly, 0.2ug of high molecular weight (HMW) DNA was
randomly sheared using the Covaris S2 system to a median insert size of 350 basepairs. The
fragmented DNA was prepared according to the manufacturer’s protocol, and the quality of the
amplified libraries was verified by capillary electrophoresis (Bioanalyzer, Agilent). The libraries
were quantified using gPCR with SYBR Green PCR Master Mix (Applied Biosystems), then were
pooled in equimolar amounts. The pool was sequenced on an lllumina NovaSeq 6000 system
following the standard lllumina protocols for 2x150 bp sequencing.

H. rjukjuana and P. excavatus RNA Short-read Sequencing The H. rjukjuana and P.
excavatus RNA purity was determined by assaying 1 pl of total RNA extract on a NanoDrop8000
spectrophotometer. The RNA Integrity Number (RIN) value was calculated using an Agilent
Technologies 2100 Bioanalyzer. The mRNA sequencing libraries were prepared according to the
manufacturer’s instructions for random hexamer-primed RNA-seq libraries, and were amplified
with indexing primers (lllumina Truseq stranded mRNA library prep kit). The quality of the
amplified libraries was verified by capillary electrophoresis (Bioanalyzer, Agilent). The RNA-seq
libraries were quantified using qPCR with SYBR Green PCR Master Mix (Applied Biosystems).
After quantification the libraries were pooled in equimolar amounts and sequenced on an
lllumina NovaSeq 6000 system following the provided protocols for 2x100 bp sequencing.

H. rjukjuana and P. excavatus Long-read Sequencing Using the Covaris G-tube we
generated 20Kb fragments by shearing genomic DNA according to the manufacturer’s
recommended protocol. Using the AMpureXP bead purification system to remove the small
fragments. A total of 5ug for each sample was used as input into library preparation. The
SMRThbell library was constructed by using SMRTbell™ Template Prep Kit 1.0 (PN
100-259-100). Using the BluePippin Size selection system we remove the small fragments to
create a large-insert library. After sequencing primers were annealed to the SMRTbell template,
DNA polymerase was bound to the complex (Sequel Binding Kit 2.0) and purified with SMRTbell
Clean Up Columns v2 Kit-Mag: PN 01-303-600. The purification step was performed after
polymerase binding to remove excess unbound polymerases and polymerase molecules bound
to small DNA inserts. The MagBead Kit was used to bind the library complex with MagBeads
before sequencing. The SMRTbell library was sequenced using one Pacific Biosciences 8M
SMRT cell usingSequel Sequencing Kit 2.1 on 600 minute movie (continuous long read mode)
using the Pacific Biosciences Sequel 2 sequencing platform.
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H. rjukjuana and P. excavatus Dovetail Hi-C sequencing Dovetail HiC libraries were prepared
as described previously (Lieberman-Aiden et al. 2009), using a protocol first fixing tissue, then
isolating nuclei. The digestion enzyme used was Dpnll. The re-ligated DNA was then sheared to
~350 bp mean fragment size with a Covaris shearing machine, and sequencing libraries were
generated using NEBNext Ultra enzymes and lllumina-compatible adapters, then enriched then
amplified on streptavidin beads. The libraries were sequenced on an lllumina NovaSeq 6000
system.

Haemadipsa rjukjuana and Perionyx excavatus Genome Size Estimation To estimate the
genome size, we used the lllumina whole genome sequencing data to count 17-, 19-, and
21-mers with Jellyfish version 2.1.3 (Margais and Kingsford 2011). We estimated the genome
sizes using GenomeScope (Marcais and Kingsford 2011; Vurture et al. 2017) to obtain estimates
for genome sizes, heterozygosity and duplication levels.

Haemadipsa rjukjuana and Perionyx excavatus Genome Assembly For both species, the
average coverage of continuous long read (CLR) PacBio sequences was about 96-fold. The
average subread length was 16.4 Kb and N50 subread length was 23.2 Kb. The genomes were
De novo assembled using FALCON-Unzip (Chin et al. 2016) with read lengths greater than the
subread N50 value, 23.2 kbp. Duplicate haplotigs were removed using Purge Haplotigs (Roach,
Schmidt, and Borneman 2018) with default parameters. The resulting assembly was
error-corrected using Pilon (Roach, Schmidt, and Borneman 2018; Walker et al. 2014) with
primary contigs to improve the quality of genome assembly results. We checked the
assessment of the genome assemblies using BUSCO (Benchmarking Universal Single-Copy
Orthologs) (Simao et al. 2015).

Haemadipsa rjukjuana and Perionyx excavatus Hi-C Scaffolding Analysis The Hi-C reads
were aligned to primary contigs using juicer version 1.5 (Durand et al. 2016). and the alignments
were scaffolded using 3D-DNA (Durand et al. 2016; Dudchenko et al. 2017). The initial
scaffolding results were manually reviewed for correcting mis-join and unplaced contigs using
Juicebox (Dudchenko et al. 2018). Finally, 3D-DNA was used to regenerate chromosome-level
genome assemblies.

Haemadipsa rjukjuana and Perionyx excavatus Repeat Annotation A de novo repeat library
was constructed using RepeatModeler v.1.0.3 (Bao and Eddy 2002), and RECON/RepeatScout
v.1.0.5 (A. L. Price, Jones, and Pevzner 2005), with default parameters. Tandem Repeats Finder
(Benson 1999) was also used to predict consensus sequences and classification data for each
repeat. All repeats collected by RepeatModeler were searched against the UniProt/SwissProt
database (The UniProt Consortium et al. 2022); transposons were excluded. Repetitive
elements in the genome were identified using RepeatMasker v.4.0.9 with the repeat library from
RepeatModeler.

Haemadipsa rjukjuana and Perionyx excavatus Gene Prediction and Annotation Genome
prediction was performed using EVidenceModeler (EVM) v.1.1.1 (Haas et al. 2008), which
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integrates the results of multiple gene predictions. Repeat-masked genomes were used for ab
initio gene prediction using GeneMark-ES v.4.68 (Lomsadze et al. 2005) and Augustus v.3.4.0
(Lomsadze et al. 2005; Stanke et al. 2006). Then, the hints for protein and ab initio predictions
were extracted using protein sequences from Actinopterygii, a clade of bony fishes, in the
UniProt/SwissProt protein database (The UniProt Consortium et al. 2022) using ProtHint v.2.6.0
(Brlina, Lomsadze, and Borodovsky 2020). The hints were used to perform protein predictions
using GeneMark-EP+ v.4.68 (Brlina, Lomsadze, and Borodovsky 2020) and ab initio predictions
using Augustus. To obtain transcriptome-level evidence, the PASA pipeline v.2.3.3 (Brina,
Lomsadze, and Borodovsky 2020; Haas et al. 2003) with transcriptome assembly data using
Trinity v.2.8.5 (Haas et al. 2013) was used. EVM was used to integrate the ab initio,
transcriptome, and protein prediction results to obtain the final gene prediction with the weights
(ABINITIO_PREDICTION=1, PROTEIN=10, TRANSCRIPT=10). Finally, to predict changes in
exons by the addition of untranslated regions (UTRs), the PASA pipeline with Iso-Seq data was
used again. Genome Annotation Generator v.2.0.1 (Geib et al. 2018) was used for adding
start/stop codon data and generating a dff file. The predicted genes were annotated by aligning
them to the NCBI non-redundant protein (nr) database (Geib et al. 2018; Marchler-Bauer et al.
2011) using NCBI BLAST v.2.9.0 (Altschul et al. 1990) with a maximum e-value of 1x107°.

Helobdella austinensis and Hirudo verbana methods

H. austinensis and H. verbana DNA extraction and library preparation Dovetail Genomics
isolated HMW DNA from Hirudo verbena testisacs, and from a single clutch of intact, unfed
Helobdella austinensis individuals. The Helobdella austinensis DNA was processed into a whole
genome shotgun (WGS) lllumina sequencing library, and was sequenced on a 2x150 run on an
lllumina machine to a depth of 678 million read pairs. The Hirudo verbena DNA was processed
into a Pacific Biosciences SMRT library and was sequenced on CLR mode.

H. austinensis and H. verbana genome assembly. The Helobdella austinensis WGS lllumina
reads were quality trimmed with Trimmomatic (Bolger, Lohse, and Usadel 2014) using the
ILLUMINACLIP parameters “2:30:10 SLIDINGWINDOW:13:20 LEADING:20 TRAILING:20
MINLEN:23". The genome size was estimated as above for Perionyx excavatus and
Haemadipsa rjukjuana, except k-mer sizes of 19, 37, 49, 79, and 109 were used to also infer the
k-mer suitability for the Meraculous genome assembler. Meraculous v2.2.4 (Chapman et al.
2011) was used to assemble the genome into contigs and scaffolds using default parameters, a
k-mer size of 37, and an estimated genome size of 228 Mbp. Haplotigs were removed from the
assembly as part of the Meraculous genome assembly process.

The Hirudo verbena Pacific Biosciences CLR reads were assembled using the same
procedure as described above for Perionyx excavatus and Haemadipsa rjukjuana.

H. austinensis and H. verbana Dovetail Omni-C Library Preparation and Sequencing
Dovetail “Omni-C” DNAse | Hi-C libraries were prepared by Dovetail Genomics, now Cantata
Bio, for both Helobdella austensis and Hirudo verbana using their provided protocol. The
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protocol includes chromatin fixation, DNAse | digestion and random re-ligation with biotinylated
bridge oligos, and streptavidin enrichment of DNA with re-ligation junctions. The sequencing
libraries were generated using NEBNext Ultra enzymes and lllumina-compatible adapters. The
libraries were sequenced on an lllumina HiSegX platform to produce an approximately 30x
sequence coverage of the estimated genome size.

Helobdella austinensis and Hirudo verbana Assembly Scaffolding with HiRise The input de
novo lllumina assembly for H. austinensis and the de novo Pacific Biosciences H. verbana
assemblies, and their Dovetail Omni-C library reads, were used as input data for the HiRise
genome scaffolder with standard parameters (Putnam et al, 2016). Sequences were curated
post-scaffolding by Dovetail genomics such that the assemblies were largely composed of
chromosome-level scaffolds.

H. verbana and H. austinensis genome annotation. The chromosome-scale Hirudo verbana
genome assembly was annotated by Dovetail genomics. The input data for Hirudo verbana
annotation hints were existing lllumina RNA-seq data from dissected testisacs, nephridia
(Northcutt et al. 2018), ganglia, and neuronal cell types (Heath-Heckman et al. 2021).

The chromosome-scale Helobdella austinensis genome was annotated using BRAKER2
v2.1.2 (Brina et al. 2021), using protein sequences from Hirudo verbana as splice site hints.

Annotation of the Piscicola geometra genome.

The Piscicola geometra genome was downloaded from the Darwin Tree of Life Data
Portal (https://portal.darwintreeoflife.org; accession GCA_943735955; “All Seq FASTA”).
Because an annotation of this genome was not publicly available and no transcriptome data
were available for this species at the time this work was performed, we annotated it using
publicly available leech transcriptome assemblies from NCBI TSA (GBRF01.1, GGIQO01.1,
GlIvY01.1, GIVZ01.1, GIWBO01.1, GIWEO1.1, GIWF01.1, GIWGO01.1, GIWHO01.1, GIWIO1.1) and
transcriptomes from representatives of Piscicolidae and Ozobranchidae. For the latter, raw data
were downloaded from NCBI SRA (SRR6766626, SRR10997450, SRR6766627, SRR6766628,
SRR6766630, SRR6766631, SRR6766632, SRR10997434, and SRR6766629) and assembled
with Trinity v2.8.4 (Haas et al. 2013) with the following optional flags: --trimmomatic
--quality_trimming_params "ILLUMINACLIP:/kmk/scripts/trimmomatic/adapters.fasta:2:30:10
SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25" --normalize_reads. Assembled
transcriptomes were translated using TransDecoder (https://qgithub.com/TransDecoder)
following the approach used by (Kutschera et al. 2013; Drabkova et al. 2022). Repeats in the
genome assembly were annotated and softmasked with RepeatMasker and RepeatModeler
(Flynn et al. 2020) using rmblast for both programs (https://www.repeatmasker.org). For
RepeatModeler, a maximum genome sample size of 1M and the --LTRStruct option were used.
For RepeatMasker, the slow and gccalc options were used. Translated transcriptomes were
then mapped to the genome assembly with ProtHint v2.6 (Briina, Lomsadze, and Borodovsky
2020) with an e-value cutoff of 1x10?°. Using the output of ProtHint as evidence, annotation of
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protein-coding genes was performed with BRAKER v2.1.6 (Brlina et al. 2021) with the following
settings: “--epmode --softmasking --crf.”

Orthology assessment, alignment, and matrix construction. Our approach to generate
datasets for phylogenomic analysis followed the bioinformatic pipeline of (Krug et al. 2022). We
used OrthoFinder v2.4.0 (Brina et al. 2021; Emms and Kelly 2019) to identify putatively
orthologous sequences among taxa, removing sequences of <100 amino acids from fasta files
and keeping the longest non-redundant sequence. Fasta files sampled for =75% of taxa were
aligned with MAFFT v7.310 (Katoh and Standley 2013), putatively mistranslated regions
removed with HmmCleaner (Di Franco et al. 2019), and alignments trimmed to remove
ambiguously aligned regions with BMGE v1.12.2 (Criscuolo and Gribaldo 2010). Approximate
ML trees were constructed for each alignment with FastTree v2 (M. N. Price, Dehal, and Arkin
2010), and PhyloPyPruner v0.9.5 (https://pypi.org/project/phylopypruner) was used to identify
strictly orthologous sequences. We also selected the best 250 genes retained by
PhyloPyPruner based on seven properties calculated in genesortR (Mongiardino Koch 2021).

Phylogenomic analyses. We performed ML analyses on the complete dataset with |IQ-Tree v2
(Mongiardino Koch 2021; Minh et al. 2020) using three strategies: 1) the best-fitting model of
amino acid substitution for each partition (-m MFP), 2) Lanfear clustering (-m MFP+merge), and
3) the PMSF model (-m LG+C20+F+G) with the contree produced from the Lanfear clustering
analysis specified with “-ft.” The 250-gene dataset was analyzed using the PMSF model with
the contree produced by the Lanfear clustering analysis of the complete dataset as the guide
tree. Topological support was assessed with 1,000 rapid bootstraps for all analyses. Pairwise
patristic distances between taxa were calculated with Patristic v1.0. based on results of the
analysis of the complete matrix using Lanfear clustering.

Pairwise species comparisons. The odp software v0.3.0 was used to perform reciprocal best
blast hits between species pairs, to identify whether a given ortholog corresponded to a known
bilaterian, cnidarian, and sponge ancestral linkage group (BCnS ALG), to identify significantly
large linkage groups between species, and to create ribbon plots of multiple species. The
protocols for these steps have been previously described (Schultz et al. 2023).

BLAST searches for Hox genes. We used the TBLASTN operation of BLAST+ 2.15.0
(Camacho et al. 2009) to find reciprocal best hits for Hox genes between an initial set of queries
(Hox protein sequences of the polychaete Capitella teleta) and a subject genome. To identify
potential Hox duplicates, we queried the Capitella genome with multiple top hits from the initial
subject genome. In an effort to recover Hox genes whose homeoboxes contain introns, we
used the TBLASTN commands: -max_intron_length 8000 and -evalue 1e-5.
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Data Availability
Genomes and raw reads will be available under NCBI BioProject PRUNA11098083.
Code Availability

The odp software, and the scripts used to make dotplots, ribbon diagrams, and to infer
ancestral linkage groups, is available on github https://github.com/conchoecia/odp.
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Supplementary Figure 1: Two-species spiralian protein orthology dotplots. Oxford dotplots showing
protein orthology shared between two species, identified with reciprocal best blastp hits by odp. Each
axis shows the protein index along each chromosome of the depicted species. The dots are colored if
they were identified by odp as being orthologous to a BCnS ALG ortholog. Black dots were orthologs
found in these two species, but were not identified, or were a suboptimal hit for, BCnS ALG orthologs.
A. The scallop P. maximus and the annelid O. fusiformis have a similar karyotype in which the BCnS
ALGs are intact, predominantly on single chromosomes. B. The annelid P. echinospica, a more recently
diverged relative of clitellate annelids, also has a karyotype in which the BCnS ALGs are intact. C. The
BCnS ALGs have rearranged in the clitellates, shown here in the earthworm P. excavatus, and in D. the
leech H. verbana. E. Within clitellates the karyotype has changed significantly since the divergence of
earthworms and leeches. F. Several chromosome fusion and fission events have occurred since the
divergence of the leeches Hirudo and Helobdella.
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Supplementary Figure 2: Two-species spiralian protein orthology dotplots. Conservation of ALGs in
a simultaneously hermaphroditic mollusk and vertebrate. A. The genome of the simultaneously
hermaphroditic pulmonate mollusk, Biomphalaria glabrata, has a typical spiralian genome (Simakov et al.
2022). B. The simultaneously hermaphroditic fish, Kryptolebias marmoratus, has a typical vertebrate

genome (Simakov et al. 2020).

Supplementary Table 1.

Hox inventories on syntenic genome scaffolds in three clitellate subgroups
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