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Abstract

Antibodies play a crucial role in adaptive immune responses by determining B cell specificity to 

antigens and focusing immune function on target pathogens. Accurate prediction of antibody-

antigen specificity directly from antibody sequencing data would be a great aid in understanding 

immune responses, guiding vaccine design, and developing antibody-based therapeutics. In this 

study, we present a method of supervised fine-tuning for antibody language models, which 

improves on previous results in binding specificity prediction to SARS-CoV-2 spike protein and 

influenza hemagglutinin. We perform supervised fine-tuning on four pre-trained antibody 

language models to predict specificity to these antigens and demonstrate that fine-tuned language 

model classifiers exhibit enhanced predictive accuracy compared to classifiers trained on pre-

trained model embeddings. The change of model attention activations after supervised fine-tuning 

suggested that this performance was driven by an increased model focus on the complementarity 

determining regions (CDRs). Application of the supervised fine-tuned models to BCR repertoire 

data demonstrated that these models could recognize the specific responses elicited by influenza 

and SARS-CoV-2 vaccination. Overall, our study highlights the benefits of supervised fine-tuning 

on pre-trained antibody language models as a mechanism to improve antigen specificity prediction.

Author Summary

Antibodies are vigilant sentinels of our adaptive immune system that recognize and bind to targets 

on foreign pathogens, known as antigens. This interaction between antibody and antigen is highly 

specific, akin to a fitting lock and key mechanism, to ensure each antibody precisely targets its 

intended antigen. Recent advancements in language modeling have led to the development of 

antibody language model to decode specificity information in the sequences of antibodies. We 
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introduce a method based on supervised fine-tuning, which enhances the accuracy of antibody 

language models in predicting antibody-antigen interactions. By training these models on large 

datasets of antibody sequences, we can better predict which antibodies will bind to important 

antigens such as those found on the surface of viruses like SARS-CoV-2 and influenza. Moreover, 

our study demonstrates the potential of the models to “read” B cell repertoire data and predict 

ongoing responses, offering new insights into how our bodies respond to vaccination. These 

findings have significant implications for vaccine design, as accurate prediction of antibody 

specificity can guide the development of more effective vaccines. 

Introduction

Recent advancements in natural language processing (NLP) have catalyzed the development of 

antibody language models, specialized deep learning architectures trained on vast datasets of 

antibody sequences [1–8]. These models leverage techniques such as masked language modeling 

and attention mechanisms [9,10] to encode the complex sequence-structure-function relationships 

inherent in antibodies [11,12] and hold promise to improve our understanding of immune 

responses by enabling high-throughput prediction of antigen specificity. Moreover, they offer a 

powerful framework for analyzing and interpreting large-scale antibody repertoire sequencing data 

[8], shedding light on the molecular mechanisms underlying immune system function and 

dysfunction. 

Transfer learning, a cornerstone of modern machine learning, has emerged as a powerful paradigm 

for leveraging knowledge from one domain to improve performance in another. In the context of 

language models, transfer learning involves pre-training a neural network on a large dataset in a 

source domain and then fine-tuning it on a smaller dataset in a target domain, where labeled data 
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may be scarce [13,14]. This approach capitalizes on the transferability of learned representations 

across related tasks or domains, enabling models to capture generic features that are transferable 

while adapting to task-specific nuances during fine-tuning without requiring extensive 

computational resources or labeled data. In the realm of antibody language models, fine-tuning 

offers a promising avenue for enhancing predictive accuracy and generalization across diverse 

antigen-specificity prediction tasks [6,8].

In this study, we investigated the efficacy of supervised fine-tuning of pre-trained antibody 

language models in predicting binding specificity to two key antigens: the SARS-CoV-2 spike 

protein and influenza hemagglutinin. By fine-tuning pre-trained models on labeled data specific to 

these antigens, we aimed to enhance predictive accuracy and generalization across diverse 

antibody sequences. We further applied the fine-tuned models to BCR repertoire data for influenza 

and SARS-CoV-2 vaccination to investigate their ability to capture changes induced by ongoing 

immune responses.

Results

Fine-tuning antibody language models for specificity prediction

To investigate the effect of supervised fine-tuning on predicting BCR specificity, we fine-tuned 

the last three layers of four pre-trained antibody language models, including antiBERTy [1], 

antiBERTa2 [3], BALM-paired [6], and ft-ESM2 [6] (Table 1), for binary binding status 

classification for SARS-CoV-2 spike (S) protein and influenza hemagglutinin (HA) (Figure 1). 

For performance comparison, we also trained supervised SVM on pre-trained model embeddings 

on the same task and data. 
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Specificity of the models was evaluated on, in total, 15,539 and 5,514 paired full-length BCR 

sequences for S protein and HA fine-tuning classification task, respectively, from publicly 

available datasets with binding and donor/study labels (Table 2). To balance the classes, we 

sampled S protein non-binding sequences from pre-pandemic B cell repertoires, described in [15], 

and HA non-binding sequences from influenza vaccine non-responsive B cells [16]. The sampled 

non-binding sequences had similar V, J gene usage, CDR3 length, and somatic hypermutation 

frequency with the binding class (Figure S1). 

To evaluate the fine-tuned classifiers and the pre-trained model embedding classifiers, we used 

four-fold cross-validation (CV) with non-overlapping donors/studies between each train-test split 

and evaluated the performance of the models on the test split. Within the training split of each fold, 

we also performed hyperparameter selection for fine-tuning by further splitting a validation set (33 

%) from the train set or performing another three-fold cross validation to train the pre-trained 

embedding SVM. 
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Figure 1. Fine-tuning antibody language model on receptor specificity prediction tasks. (A) 
Antibody language model-based specificity classifiers for SARS-CoV-2 S protein and influenza 
hemagglutinin were trained by (B) fine-tuning pre-trained antibody language models on 
specificity classification tasks, and (C) using supervised support vector machine classifiers on 
pre-trained model embeddings of BCR sequences. (D) The performance of the classifiers was 
evaluated on the cross-validation accuracy of receptor specificity prediction and comparison 
between longitudinal time points of repertoire datasets for SARS-CoV-2 and influenza 
vaccination. 

Supervised fine-tuning improves specificity prediction performance

As a performance baseline for specificity prediction, we evaluated the nested cross-validation 

performance of an SVM model on the embeddings from the four pre-trained antibody language 

models as well as the original ESM2 protein language model for SARS-CoV-2 S protein (Figure 

2A, Table S1) and influenza HA (Figure 2C, Table S2) specificity prediction. We used different 

sequence inputs to generate the embeddings, including paired full length (FULL HL), full-length 

heavy chain (FULL H), paired CDR3 (CDR3 HL), and CDR3 heavy chain (CDR3 H). Consistent 

with previously reporting [15], the performance improved as we included longer sequences of the 

receptors for each antibody language model (FULL HL > FULL H > CDR3 HL > CDR3 H). For 

the full-length paired sequence input, ft-ESM2 performed the best across the language models for 

most of the evaluation metrics with an average CV test AUROC of 0.88 for S protein and 0.86 for 

HA.  

We fine-tuned the four antibody language models by training the last three layers of the pre-trained 

model along with sequence classification head to predict the specificity of SARS-CoV-2 S protein 

(Figure 2B, Table S3) and influenza HA (Figure 2D, Table S4) using the full-length paired BCR 

sequences and evaluated the performance of fine-tuning on the test set by the same data split using 

the four-fold cross validation procedure as the pre-trained embedding procedure. For both antigens, 

we noticed an increase in the AUROC for all CV folds for fine-tuned classifiers compared with 
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pre-trained embedding classifiers. We performed paired Wilcoxon-rank sum tests to examine 

whether the increases are significant and found that the increases are significant for all models 

except the ft-ESM2 after fine-tuning for S protein classification.  

Figure 2. Specificity prediction performance for pre-trained model embedding SVM and 
fine-tuned antibody language models. Box plot of 4-fold cross validation AUROC for pre-
trained model embedding SVM in predicting binding to (A) SARS-CoV-2 S protein and (C) 
influenza HA with different sequence inputs. The gray box plots represent the random baseline 
by training the same model on shuffled labels. Comparison of CV AUROC between the pre-
trained embedding-based SVM model and fine-tuned language models on (B) SARS-CoV-2 S 
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protein and (D) influenza HA binding data. Each line represents the test performance for one of 
the CV folds. Note that the pre-trained embedding based SVM model and fine-tuned models 
were trained and tested on the same data for each fold. Paired t-test was used to obtain the 
significance level of the increase in AUROC after fine-tuning (ns: p > 0.05, *: p <= 0.05, **: p 
<= 0.01). 

Fine-tuning increases model attention at the CDR regions

Previous studies [2,6,17] have shown that protein language models trained on antibody sequences 

with the masked language model objective have increased self-attention activations on the 

locations of long-range structural contacts or functionally important regions for binding. To 

evaluate the effect of supervised specificity fine-tuning on the antibody language model self-

attention activations [9], we randomly selected fifty antibodies specific for SARS-CoV-2 S protein 

and influenza HA from the training dataset, and computed the average intra-chain attention along 

the antibody heavy and light sequences across the last three layers of the four antibody language 

models before and after fine-tuning. We took the differences of the average intra-chain attention 

between the fine-tuned and pre-trained model and found an increase in average attention 

activations across all four models after fine-tuning in positions corresponding to the CDR regions, 

especially the CDR3 regions (Figure 3, Figure S4). 
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Figure 3. Change in average intra-heavy chain attention after fine-tuning. Attention 
activations were extracted from pre-trained and fine-tuned language models for 50 randomly 
selected antibodies specific for SARS-CoV-2 S protein (A) and influenza HA (B), respectively. 
The intra-heavy chain attention activations were averaged across heads and layers for each 
position on the heavy chain. Differences in average attention activations before and after fine-
tuning for the last three layers were computed. The x-axis represents the position along the heavy 
chain. The solid line indicates the mean change in average attention activations across the 50 
antibodies. The gray background indicates the regions spanned by CDR of the antibodies. The 
dotted line represents the mean of the difference in attention activations. 

Fine-tuned specificity classifiers capture changes in repertoire following vaccination

To further evaluate if the fine-tuned language model classifiers capture specificity information, we 

applied the classifiers to two single-cell BCR repertoire datasets measuring immune response to 

SARS-CoV-2 vaccination and influenza vaccination [16,18]. 

In the SARS-CoV-2 mRNA vaccination dataset, eight donors had samples taken from two 

different tissues at various time points after SARS-CoV-2 vaccination: peripheral blood 

plasmablasts taken one week after the second immunization (Day 28) and axillary lymph node 

samples taken one to twelve weeks after vaccination (Day 28, Day 35, Day 60, Day 110). We first 

applied the fine-tuned language model S protein classifiers on individual sequences of the SARS-

CoV-2 vaccination dataset and a control peripheral blood dataset, which were taken pre-pandemic 

and assumed to have low level of S protein-specific sequences, to see if the S protein classifiers 

can capture the immune response. We excluded any sequences within the same clone of the 

sequences in our training dataset to prevent data leakage and only kept one sequence from each 

clone to weigh each clone equally. The SARS-CoV-2 vaccination repertoires are similar in 

distribution of gene usage, CDR3 length and somatic hypermutation frequency with the control 

samples (Figure S5). We then averaged the predicted class probability from the S protein 

classifiers. We tested the difference in the mean predicted probability of binding to S protein 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.593807doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.13.593807
http://creativecommons.org/licenses/by/4.0/


between the peripheral blood plasmablast data and the control datasets using a Wilcoxon rank-sum 

test and found a significantly higher mean predicted probability of binding to S protein for the 

samples after SARS-CoV-2 vaccination repertoires (Figure 4A), which matches with the 

plasmablast response after vaccination. Similarly, we applied the S protein classifiers to the lymph 

node repertoires after SARS-CoV-2 vaccination and computed the mean predicted probability. We 

found a persistent level of the mean predicted probability across the timepoints, which is also 

consistent with the robust and persistent germinal center response observed after two doses of the 

SARS-CoV-2 vaccination (Figure 4B). 

We used the same criterion to process the influenza vaccination repertoire datasets, which 

consisted of six influenza vaccine-responsive donors with peripheral blood samples taken at pre-

vaccination (Day 0) and seven days post-vaccination (Day 7) for paired BCR heavy and light chain 

sequencing. We similarly applied the fine-tuned language model classifiers to individual 

sequences within the repertoires to compute predicted probability of individual sequences of 

binding to HA and average the predicted probability for each sample (Figure 4C). We performed 

Wilcoxon-rank sum tests between the two timepoints, and found an increase in average predicted 

class probability at Day 7 for all four fine-tuned models, with antiBERTa2 and BALM-pair 

significantly increased by paired Wilcoxon-rank sum tests, which is consistent with the observed 

antibody titer increases based on the HAI [16]. 
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Figure 4. Application of the fine-tuned language model-based classifiers to vaccine response 
repertoire datasets. (A) Mean predicted probability of SARS-CoV-2 S protein binders by fine-
tuned language model S protein classifier of the receptors from peripheral blood samples 28 days 
after SARS-CoV-2 vaccination (Day 28), compared with the pre-pandemic repertoire datasets 
(Control). Samples from the same donor were connected by lines. Paired Wilcoxon rank sum test 
was used to obtain the significance level of the increase in mean predicted probability at day 7 
(ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 1e-3, ****: p <= 1e-4). (B) Mean predicted 
probability of S protein binders applied to lymph node repertoires 28, 35, 60, 110 days after 
SARS-CoV-2 vaccination. (C) Mean predicted probability of influenza HA binders by language 
model fine-tuned on HA classification task applied to peripheral blood repertoires before and 
seven days after influenza vaccination.  
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Discussion

In this study, we investigated the efficacy of supervised fine-tuning on pre-trained antibody 

language models to improve specificity prediction to two key antigens, the SARS-CoV-2 S protein 

and influenza HA. We established a performance baseline using nested cross-validation of SVM 

models on pre-trained language model embeddings, showing improved performance with full-

length input receptor sequences as opposed to just CDR regions. We compared the performance 

of fine-tuned models with supervised classifiers trained on embeddings from the same pre-trained 

language models and found that fine-tuning the language models led to enhanced specificity 

prediction. Additionally, we observed increased attention at the CDR regions after fine-tuning, 

indicative of the models capturing relevant features for antigen specificity.  Furthermore, we 

applied the fine-tuned classifiers to longitudinal paired BCR repertoire data related to influenza 

and SARS-CoV-2 vaccination, showing their ability to capture changes in repertoire following 

vaccination, as evidenced by shifts in predicted binding probabilities. 

While our study provides valuable insights into the effectiveness of fine-tuning pre-trained 

antibody language models for antigen specificity prediction, several limitations should be 

acknowledged. Firstly, the performance of the fine-tuned models may be influenced by the size 

and composition of the training datasets, such as the low frequency of ground truth non-binding 

sequences which could affect the generalizability of our findings to different datasets or tasks [19]. 

Secondly, our evaluation focused primarily on two specific antigens, the SARS-CoV-2 S protein 

and influenza HA, limiting the broader applicability of our conclusions to other antigens or 

biological contexts. Our study also did not explore the use of information on different epitopes of 

antigens, leaving room for future investigations to explore these avenues for improvement by 

leverage approaches such as multi-task learning. Additionally, the interpretation of attention 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.593807doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.13.593807
http://creativecommons.org/licenses/by/4.0/


activations changes after fine-tuning may be constrained by the complexity of attention 

mechanisms in language models since this extracted pattern may not have a straightforward 

mapping with the interactions between amino acid residues. Future studies on ground truth data 

are needed to further examine the utility of attention patterns for interpretability. More 

generalizable methods, including linguistics-inspired experimentation and grammatical inference, 

has been suggested as potential approaches to extracting sequence-function rules that the model 

has learned [20].

In summary, our study demonstrates the efficacy of fine-tuning pre-trained antibody language 

models to enhance specificity prediction. We established performance baselines and observed 

improved prediction accuracy with fine-tuned models, particularly in capturing changes in 

repertoire following vaccination. The findings give insights for further studies to advancing our 

understanding of antigen specificity prediction applications using antibody language models.

Materials and Methods

Models

We downloaded the following four pre-trained antibody language models, with the size parameters 

listed in Table 1. 

antiBERTy [1]: Pre-trained using the BERT architecture on 588 million unpaired antibody heavy 

and light chain sequences from multiple species using a masked language modeling (MLM) 

objective.

antiBERTa2 [3]: Based on the RoFormer architecture, pre-trained with 1.54 billion unpaired and 

2.9 million paired human antibody sequences with MLM objective. 
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BALM-paired [6]: Developed using a RoBERTa-large architecture trained on 1.34 million paired 

antibody sequences with MLM objective. 

ft-ESM2 [6]: Based on 650-million parameter ESM2 (Evolutionary Scale Modeling) model [11], 

fine-tuned with 1.34 million paired antibody sequences with MLM objective.

Table 1. Parameters of publicly available pre-trained antibody language models. 

Model Parameters
Hidden 

Size
Intermediate 

Size
Attention 

Heads Layers

antiBERTy 25.76M 512 2048 8 8

antiBERTa2 202.64M 1024 4096 16 16

BALM-paired 303.92M 1024 4096 16 24

ft-ESM2 652.36M 1280 5120 20 33

Data sources

We collected antibody sequences with specificity labels to influenza HA protein and SARS-CoV-2 

S protein from public sources, as listed in Table 2. 

Influenza HA-specific sequences We extracted the paired-chain antibody sequences with influenza 

HA proteins binding/non-binding labels from public datasets [18,21,22], which consisted of 3,221 

sequences binding to various HA proteins as well as 706 were non-binding. To balance the labels, 

we sampled additional vaccine non-responsive sequences from six pre-vaccination repertoires in 

[16] as additional negative controls. The distribution in V, J gene usage and CDR3 length is similar 

between the negative controls and the positive sequences (Figure S1). In total, 6,424 receptors 

were available, with 3,221 binding (50.1 %). 
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SARS-CoV2 S protein-specific sequences We used the antibody sequences dataset we previously 

curated with binding labels to SARS-CoV-2 [15]. 

Repertoire data We collected additional single-cell paired-chain repertoire data from [16], which 

had peripheral blood samples collected before and seven days after influenza vaccination, as well 

as [18], which had both peripheral blood and lymph node samples taken from 28, 35, 60 and 110 

days after SARS-CoV-2 vaccination. 

Table 2. Data sources for antigen-specific antibody sequence and vaccination related BCR 
repertoire. 

Antigen Data source Type Description # Receptors

Influenza HA
IEDB [21], 

downloaded on 
Dec 2023

Sequence

Public database with curated BCR 
and epitope information, extracted 

human BCR sequences to influenza 
HA 

113

Influenza HA

Turner 2020 
[23]; McIntire 

2024 
(submitted)

Sequence
Human monoclonal antibodies 

sequences tested for binding to 2018 
QIV HA

1,551

Influenza HA Wang Y. 2023 
[22] Sequence

Curated database of human 
monoclonal antibodies to influenza 

HA
1,311

Influenza HA Wang M. 2023 
[16] Sequence Influenza vaccination non-responsive 

BCR sequences 2,539

Influenza HA Wang M. 2023 
[16] Repertoire

Single-cell BCR sequencing on 
patients receiving seasonal influenza 
vaccination

87,230

SARS-CoV2 S Wang M. 2024 
[15] Sequence

Collected public databases of human 
monoclonal antibodies to SARS-

CoV-2 S protein
15,539

SARS-CoV2 S Kim 2022 [18] Repertoire
Single-cell BCR sequencing on 
patients receiving SARS-CoV-2 

mRNA vaccine
164,252
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Receptor specificity prediction using pre-trained language model embedding

To establish a baseline performance for the four language models in predicting specificity to the 

SARS-CoV-2 S protein and influenza HA proteins, we trained supervised models using the pre-

trained model embedding as input. The process involved concatenating each pair of BCR heavy 

and light chain sequences, separated by two [CLS] tokens, and feeding them into each pre-trained 

antibody language model to obtain the output from the last hidden layer. Then, utilizing this 

embedding as input, we trained separate support vector machine (SVM) classifiers to predict the 

binary binding status for each antigen from each pre-trained model embedding.

Specifically, we employed sklearn SVM with an RBF kernel and implemented nested cross-

validation to split the data into training, validation, and test sets, ensuring non-overlapping donors 

and preserving class percentage with sklearn.model_selection.StratifiedGroupKFold. Three inner 

loops and four outer loops were utilized for hyperparameter search on the validation set and to 

compute test set performance, respectively. During hyperparameter search, we conducted a grid 

search over the regularization parameter C of SVM, ranging from 0.01 to 100, and selected the 

optimum value based on the validation set AUROC score. 

Evaluation of the test set performance included metrics such as AUROC, weighted-average F1 

score, precision, recall, average precision score, balanced accuracy, and Matthews correlation 

coefficient. Finally, we chose the regularization parameters that yielded the best validation 

AUROC across nested CV outer folds and trained the final classifier using all available binding 

data.
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Supervised Fine-tuning of language models for receptor specificity prediction

We fine-tuned the last three layers of each of the four language models to predict the binary binding 

or non-binding status to either the SARS-CoV-2 S protein or influenza HA proteins. We assessed 

the performance of this fine-tuning by using the same cross-validation train-test data split 

employed in the embedding SVM approach for direct comparison. For each training dataset, we 

separated out a validation set (33%) to determine the optimum epoch. To fine-tune each language 

model, we instantiated a sequence classification model using 

transformers.AutoModelForSequenceClassification) and initialized it with the pre-trained weights 

for each model in Table 1. We trained each classification model with a learning rate of 1e-5, a 

batch size of 64 for 30 epochs, and selected models from epochs with the best validation AUROC 

to evaluate the test set performance by AUROC, weighted-average F1 score, precision, recall, 

average precision score, balanced accuracy, and Matthews correlation coefficient. We determined 

the epoch that yielded the best average validation AUROC across outer folds and trained the final 

classifier using all available binding data. All models were fine-tuned on a single NVIDIA RTX 

A5000 GPU.

Applying sequence specificity classifiers to repertoires

To determine whether the classifier effectively identifies BCR specificity, we applied the 

classifiers to paired-chain BCR repertoire data from vaccinations against SARS-CoV-2 and 

influenza. In processing these datasets, we used the immcantation Change-O pipeline [24] to 

cluster BCR sequences into clonal groups. To prevent data leakage, we excluded sequences from 

the repertoires that belonged to the same clone as those used in training the specificity classifiers. 

Additionally, to minimize the confounding effects of clonal expansion, we retained only one 

sequence from each clone. For each sequence, we calculated the predicted class probability of 
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binding to a given antigen and then computed the average of these predicted probabilities for each 

repertoire.

Data and code availability

All data were from public sources as listed in Table 2. We deposited the code at 

https://bitbucket.org/kleinstein/projects/src/master/Wang2024/. Both code and data were 

deposited on Figshare at https://doi.org/10.6084/m9.figshare.25342924. 
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