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Abstract

Continued advances in variant effect prediction are necessary to demonstrate the ability of machine
learning methods to accurately determine the clinical impact of variants of unknown significance (VUS).
Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was
designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the Arylsulfa-
tase A (ARSA) gene to assess the performance of community-submitted predictions of variant functional
effects. The challenge involved 15 teams, and evaluated additional predictions from established and
recently released models. Notably, a model developed by participants of a genetics and coding bootcamp,
trained with standard machine-learning tools in Python, demonstrated superior performance among sub-
missions. Furthermore, the study observed that state-of-the-art deep learning methods provided small
but statistically significant improvement in predictive performance compared to less elaborate techniques.
These findings underscore the utility of variant effect prediction, and the potential for models trained
with modest resources to accurately classify VUS in genetic and clinical research.

Keywords: VUS, variants of unknown significance, rare disease, machine learning, variant effect prediction,
ARSA, metachromatic leukodystrophy, MLD
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1 Introduction

The characterization of variants of unknown significance (VUS) is critical for genetic diagnosis (Richards
et al, 2015), newborn screening (Hong et al, 2021; Stark and Scott, 2023), estimating disease burden (Clark
et al, 2018; Borges et al, 2020; Chen et al, 2023), and gaining insights into the molecular mechanisms of
human genetic disease (Rost et al, 2016; Shendure et al, 2019; Estrada et al, 2021). However, despite their
biomedical relevance and need for clinical deployment, sensitive, cost-effective, experimental techniques for
characterizing VUS remain elusive. In silico predictors hold such promises for characterizing VUS, but have
yet to share in the recent performance increases experienced by protein structure prediction (Kryshtafovych
et al, 2021).

Towards the understanding and improvement of in silico predictors of variant functional effect, the
Critical Assessment for Genome Interpretation (CAGI) organization has continually facilitated the use of
experimentally derived and real-world data to train and evaluate state-of-the-art predictive tools (The Crit-
ical Assessment of Genome Interpretation Consortium, 2024). As part of the sixth round of CAGI challenges
(CAGI6), a blinded competition was conducted to assess the community’s performance at predicting the
impact of missense variants in the Arylsulfatase A gene (ARSA) on its enzymatic activity.

Bi-allelic variants in ARSA can lead to Metachromatic Leukodystrophy (MLD), an autosomal-recessive
lysosomal storage disorder characterized by neuro-cognitive decline, and variable age of onset and severity
(Van Rappard et al, 2015). Without early intervention, patients with the most severe, Late-Infantile, form of
the disease survive only into early childhood, whereas Adult onset patients may not be diagnosed until the
fifth decade of life, and, in some cases, have been mistaken for having Alzheimer’s disease (Martin et al, 2013;
Johannsen et al, 2001; Stoeck et al, 2016). Multiple studies have highlighted a strong genotype-phenotype
relationship in MLD when considering well-characterized and common pathogenic ARSA mutations (Kap-
pler et al, 1991; Trinidad et al, 2023). For these reasons, understanding the performance of in silico methods
at assessing ARSA variant impact is particularly important. As more novel variants are identified, under-
standing their potential contribution to disease will be a high priority to the newborn screening community
so that early and effective therapeutic responses to disease can be employed (Hong et al, 2021).

An evaluation dataset of ARSA variants was previously tested for their impact on enzymatic activity
using a tandem mass spectrometry assay (Trinidad et al, 2023). Variants were curated from patients reported
in the literature, collected by the MLD Foundation, or reported in databases of population variants such
as gnomAD (Karczewski et al, 2020). For the ARSA Challenge, predictions of ARSA variant impact, repre-
sented as the resulting protein’s enzymatic activity relative to the wild-type (%WT activity) were solicited
before the experimentally derived %WT activity values were published.

In this paper, we report the findings of the ARSA Challenge. We observed that top predictor performance
was consistent with previous, similarly designed challenges (Clark et al, 2019). Also, consistent with previous
challenges, we observed that models employing disparate methodologies and training data were still highly
correlated with each other, suggesting common underlying characteristics influencing predictor performance.
Finally, we observed that simple machine-learning models performed on par with advanced deep-learning
methods, suggesting that feature engineering and quality of the training data can compensate for the
complexity of the learning algorithm used in the model (Nguyen, 2024).

2 Results

2.1 Challenge design and participation

The ARSA CAGI challenge was structured similar to previous related challenges (Clark et al, 2018, 2019).
First, a Curated set of 274 ARSA single-nucleotide-variants (SNVs), observed in the population or of
known disease significance was provided prior to publication of experimentally assayed %WT activity values
(Trinidad et al, 2023).

Variants were released to the community through the CAGI organization website, requesting participants
to provide predicted %WT enzymatic activity values associated with each missense mutation in the ARSA
protein (ENSP00000216124). Prediction submissions were accepted from July 15, 2022 to November 15,
2022. Additional publicly available predictions from published models were also collected, but were evaluated
separately from submitted predictions when an overall ranking of models was generated (Adzhubei et al,
2010; Ioannidis et al, 2016; Pejaver et al, 2020; Cheng et al, 2023).

Fifteen teams participated in the challenge, submitting predictions form a total of 65 predictors (Table
2, Table 1). Four teams, comprised mostly undergraduate participants (but also high school and graduate
students), of a two-week genetics and coding bootcamp that was synchronized with the challenge timeline
and academic calendars. Bootcamp participants hailed from 8 different countries: Argentina, Australia,
China, France, Italy, Japan, Turkey, and the United States, including Puerto Rico.
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Fig. 1: Model performance based on key metrics: Model performance based on Pearson’s correlation,
Kendall’s tau, AUC, and Truncated AUC; along with bootstrap-based 90% confidence intervals. The best-
performing model for each team is shown in blue. Baseline models and individual feature (evolutionary and
structure) based performance are shown in grey. Models are sorted on the y-axis based on their average
ranking according to the four metrics used. Only models with Pearson’s correlation greater than 0.25 are
shown in the figure (13 out of 15 submitted models, five out of five baseline models, and two out of seven
fundamental features). For teams that submitted multiple models, we show the performance of their best
model. Figure S1 in Supplementary Materials shows performance for all models (or the best models for
teams that submitted more than one).

2.2 Performance at predicting enzymatic activity values

To evaluate model performance, we calculated the relative ranking of each predictor according to Pearson’s
correlation, Kendall’s tau, area under the receiver operating characteristic curve (AUC), and truncated AUC
(Section 3.2). Pearson’s correlation and Kendall’s tau are used for predicting the experimentally measured
percent wild-type activity (%WT) as a continuous value. AUC and truncated AUC are used for classifying
variants as pathogenic or benign, where the variants were considered pathogenic if the %WT was ≤13% . We
look at truncated AUC in addition to AUC because a region of low false positive rate (FPR) is of particular
interest in clinical settings. A final, overall ranking was achieved by then taking the average rank according
to these four metrics (Fig. 1, Fig. 2). Since a team could have multiple predictors, we first performed ranking
within each team and picked the best ranking predictor as its representative in the final overall ranking.
Assessors were blinded to model names until models were ranked and the best ranking predictor for each
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Fig. 2: a) ROC and b) Truncated ROC: The receiver operating characteristic (ROC) and truncated ROC
curves for the best-performing model for each team and baselines.AUC and Truncated AUC values are
shown along with 1.96×standard deviation from their bootstrap estimates. Results are shown for the top
four submitted models and top two baseline models (based on their average ranking according to the four
metrics used).

team was chosen. A mapping between original identifiers and representative model names can be found in
Table S5.

Out of all ARSA challenge participants, we observed that Bootcamp Team 3’s model performed the
best (described in Section 3.5), achieving an average rank of 2 across the four evaluation metrics considered
(Pearson’s Corr = 0.576, rank = 2; Kendall’s Tau = 0.449, rank = 1; AUC = 0.845, rank = 1; Truncated
AUC = 0.478, rank = 4) (Nguyen, 2024). Qafi was the second best performing model with an average rank
of 2.5 across the four evaluation metrics (Pearson’s Corr = 0.594, rank = 1; Kendall’s Tau = 0.446, rank =
2; AUC = 0.843, rank = 2; Truncated AUC = 0.470, rank = 5) (Özkan et al, 2021).

2.2.1 Comparison with publicly available tools

We also evaluated the performance of five publicly available predictors: PolyPhen-2 (Adzhubei et al, 2010),
VEST4 (Carter et al, 2013), REVEL (Ioannidis et al, 2016), MutPred2 (Pejaver et al, 2020), and AlphaMis-
sense (Cheng et al, 2023); grey bars in Fig. 1, Fig. 2). Ranking was performed separately for this group of
models.

Out of these models, AlphaMissense showed the highest performance in evaluation (Pearson’s Corr =
0.614, rank = 1; Kendall’s Tau = 0.468, rank = 1; AUC = 0.859, rank = 1; Truncated AUC = 0.530, rank
= 1. Furthermore, AlphaMissense was the only publicly available model to perform better than the top-
performing challenge participant (Bootcamp Team 3). Though the difference in performance was statistically
significant on all four metrics, the effect size was relatively small. Statistical significance was determined using
a one-sided binomial test with number of wins on 1000 bootstrap samples as the test statistic. AlphaMissense
won 875, 763, 760 and 755 times on Pearson’s Corr., Kendall’s Tau, AUC and Truncated AUC, giving p-
values less than 10−139, 10−65, 10−63 and 10−61, respectively. The p-value was computed as the probability
that the Binomial(0.5, 1000) variable is greater than or equal to the number of wins.

2.2.2 Comparison with fundamental features

In addition to comparing participant performance with publicly available state-of-the-art predictors, we
also selected individual features based on evolutionary conservation (PhastCons2), biochemical properties
(Grantham scores), and protein structure characteristics (solvent accessibility, and backbone kappa, alpha,
phi, and psi values using the PDB structure 1AUK) for evaluation (Siepel et al, 2005; Grantham, 1974;
Kabsch and Sander, 1983).

PhastCons2 (Pearson’s Corr = 0.327; Kendall’s Tau = 0.306; AUC = 0.727; Truncated AUC = 0.228)
and solvent accessibility (Pearson’s Corr = 0.279; Kendall’s Tau = 0.260; AUC = 0.756; Truncated AUC
= 0.308) were the best two performing features. Other features (Grantham scores and backbone’s dihedral
angles) showed poor correlation (Pearson’s Corr ≤ 0.25) with the %WT activity values and were excluded
from the figure. Figure S1 in Supplementary material shows performance for all fundamental features.
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Fig. 3: Pairwise correlation: pairwise correlation coefficients between models, with Pearson’s correlation
coefficients shown on the left (a) and Kendall’s Tau shown on the right (b). The diagonal for each figure
shows the correlation of that model with observed enzymatic activity values. Results are shown for the top
six submitted models and top four baseline models (based on their average ranking according to the four
metrics used).

2.3 Correlation between predictors

We measured the correlation of predictions between models (Fig. 3). Consistent with previous challenges,
models were all more correlated with each other than with %WT activity values (Clark et al, 2019). The
top 3 performing methods in term of Pearson’s correlation (AlphaMissense, Quafi, and Bootcamp Team
3) achieved correlation with %WT activity of less than 0.60, but were more correlated with each other
(Pearson’s correlations > 0.76. This high correlation could be the result of shared methodologies or training
features. For example, Qafi, Meta-EA and BC Team 3 all utilize REVEL as a feature, while the other
top-scoring predictors do not (Table 1). Qafi and Meta-EA also both employ PSSM/MSA-based features.
Generally, Qafi had higher correlations with other models across the board (0.74−0.93), likely due to being
an ensemble method that incorporated features of variant impact predictors, structural information, and
PSSM/MSA data. Bootcamp team models all utilized the same training features, so high correlation between
them is anticipated. SNP-MuSiC, a predominantly structure-based method, showed lower correlation across
the board compared to other submitters, indicating a more unique methodology. With regards to training
data, all of the top performing models except for Qafi and Meta-EA (a non-machine learning model) were
trained on either ClinVar or Humsavar databases, likely also leading to stronger correlation between them
(Table 1).

2.4 Difficult-to-predict variants

We considered the hardest-to-predict pathogenic and benign variants to search for trends (Section 3.6). For
the current analysis we consider 13% WT activity to be the threshold that distinguishes between pathogenic
and benign variants, and considered all mutations, not just those in the evaluation dataset. We found that
the top 10 difficult-for-all pathogenic variants had a median %WT activity of 1.28, making them closer to
the pathogenic-benign threshold (13 %WT activity) on average compared to the other pathogenic variants,
suggesting that predictors have more trouble with hypomorphic mutations with residual activity (Fig. 4
(a)) (Muller, 1932). Out of all pathogenic variants, 67% have a lower %WT activity (a higher pathogenic
effect). The top 10 difficult-for-all benign variants with a median 27.6 %WT activity are also closer to the
pathogenic-benign threshold on average compared to the other benign variants. Out of all benign variants,
77% have a higher %WT activity (a higher benign effect).

Variants p.A214V and p.T410I, among the top 10 difficult-for-all pathogenic variants, are established
pathogenic variants in ClinVar annotated as P and LP, respectively. The difficulty in predicting the
pathogenicity of these variants is surprising since the variants might be present in the training set of the
supervised predictors. The variants have a low %WT activity of 0.45 and 2.9, respectively. However, 54%
and 79% of pathogenic variant have a lower %WT activity than p.A214V and p.T410I, respectively. This
provides a probable explanation for the difficulty in their prediction, especially for p.T410I. Another expla-
nation is that these mutations just happen to be false positives in terms of both their %WT activity values
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Fig. 4: Difficult to classify variants: a) The Average (purple line), Minimum False Positive Rate (FPR)
(red line), along with their difference (blue line), is given for the difficult to predict pathogenic variants.
FPR for each pathogenic variant-predictor pair was calculated as the proportion of all benign variants that
are scored higher by the method compared to the variant. The %WT activity (rounded to 1 decimal place)
for each variant and the percent of all pathogenic variants attaining a lower %WT activity are shown in
the parenthesis next to the variant identifier. The methods attaining the minimum FPR for that variant
are also shown along the bottom horizontal axis. b) Average (purple line) and Minimum False Negative
Rate (FNR) (red line) and their difference (blue line) are given for difficult-to-predict benign variants. FNR
for each benign variant-predictor pair was calculated as the proportion of all pathogenic variants that are
scored lower by the method compared to the variant. The %WT activity (rounded to the closest integer)
for each variant and the percent of all benign variants attaining a higher %WT activity are shown in the
parenthesis next to the variant identifier. The methods attaining the minimum FNR are shown along the
bottom x-axis. Difficult-to-predict mutations were defined as described in Section 3.6.

and their annotation in ClinVar. Indeed their frequency in patients is low: neither mutation was identified
in curated patients in Trinidad et al (2023), and they both have low allele frequencies in gnomAD.

Variants p.R372Q and p.T281I, among the top 10 difficult-for-all benign variants, have known clinical
significance in ClinVar, however, they are annotated as P/LP and LP respectively. Furthermore, although
in the benign range, they have low %WT activity of 23.3 and 31.9, with 81% and 74% of the benign variants
having a higher %WT activity, respectively. The conflicting annotation in ClinVar and the low %WT activity
provide a probable explanation for the difficulty in their prediction.

AlphaMissense and E-SNPs & GO attain the minimum FPR multiple times among the top 10 pathogenic
variants with highest difference between average and minimum FPR (Gap list variants). Other predictors
might gain insights from the two methods to improve their predictions on these variants. REVEL, PolyPhen-
2, E-SNPs & GO and Bootcamp Team 3 attain the minimum FNR multiple times among the top 10
benign variants with the highest difference between average and minimum FNR. Other predictors might
gain insights from the four methods to improve their predictions on these variants.

3 Methods

3.1 Evaluation set

An Evaluation set of 219 ARSA variants was obtained as a subset of the Curated set by removing vari-
ants with a definitive classification in the December, 2022, release of ClinVar (Landrum et al, 2018). This
version of ClinVar represents the release of the database immediately following the challenge’s prediction

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.05.16.594558doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594558
http://creativecommons.org/licenses/by/4.0/


submission deadline (Nov. 15, 2022). Only the ClinVar variants with clinical significance Pathogenic, Likely
pathogenic, Pathogenic/Likely pathogenic, Benign, Likely benign or Benign/Likely benign without annotation
of Conflicting interpretations in the review status were removed from the Curated set.

All variants with activity levels below 13%WT activity were considered to be pathogenic (Evaluation
set: 73, Curated set: 111), as per previously defined threshold (Supplementary Table S1) (Trinidad et al,
2023). Those mutations with greater than 13% WT were considered benign (Evaluation set: 146, Curated
set: 163). No mutation had an overall allele frequency in gnomAD (version 2.0.1) greater than 1%, though
p.P220L had an allele frequency of 2.7% in the Finnish ancestry group within gnomAD.

3.2 Evaluation metrics

To evaluate the predictors, we used standard and clinically relevant performance metrics. Two general
classes of metrics were considered: (1) those that treat measured %WT activity as a continuous value, and
(2) binary classification metrics that treat each mutation as either pathogenic or benign.

Let n be the total number of variants in the evaluation set. Let yi and ŷi denote the experimentally mea-
sured %WT activity and its prediction/score, respectively, for variant i in the evaluation set. We transform
the original predictions from a method, baseline or fundamental feature for a meaningful evaluation, as dis-
cussed in Section 3.3. Let zi = I[yi < 13] be the ground truth pathogenicity class label for variant i, taking
value 1 and 0 for a pathogenic and benign variant, respectively. Let y· =

1
n

∑n
i=1 yi and ŷ· =

1
n

∑n
i=1 ŷi be

the average experimental and predicted %WT activity, respectively, over the Evaluation set.

3.2.1 %WT activity evaluation metrics

For the regression task of predicting the percent wild-type activity (%WT), we incorporated Pearson’s
correlation (r) and Kendall’s Tau (τ) as our main two metrics and R-Squared (R2) as an additional metric;
see Supplementary Table S2. The three metrics are defined, as per their standard definitions, below.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y·)2
, r =

∑n
i=1(yi − y·)(ŷi − ŷ·)√∑n

i=1(ŷi − ŷ·)2
∑n

i=1(ŷi − ŷ·)2
, τ =

∑n
i<j sign((yi − yj)(ŷi − ŷj))

n(n−1)/2
,

where sign(x) is −1, 0 or 1, when x < 0, x = 0 or x > 0, respectively. R2, a value in the range [−∞, 1], is
used to measure the fraction of variance of %WT activity that is explained by the predictor. A predictor
with 0 mean square error has a perfect R2 of 1. An R2 of 0 indicates that the predictor is only as good as
the trivial predictor given by y· and a negative R2 would indicate an even worse performance. R2 is the
most stringent metric considered in our evaluation which requires a predictor to be well calibrated. Thus
we do not use it for ranking the methods. Pearson’s correlation, a value in the range [−1, 1], is used to
measure the statistical association between %WT activity and the predictor assuming a linear relationship
between them. Values closer to 1 would indicate a strong correlation, whereas that near or equal to 0 would
indicate a weak or no correlation. A negative value would indicate an inverse association between %WT
activity and the predictions. Kendall’s Tau, a value in the range [−1, 1], is used to measure the association
between %WT activity and its predictions, non-parametrically without assuming a linear relationship, as
the difference between the proportions of concordant (pairs of variants ranked correctly by the predictor)
and discordant pairs of variants in the Evaluation set. Like Pearson’s correlation, values of 1,−1 and 0
indicate strong positive, negative and no association, respectively.

3.2.2 Binary classification metrics

For the classification task of separating pathogenic and benign variants we incorporated the standard binary
classification metrics of the Receiver Operating Characteristic (ROC) curve, area under the ROC curve
(AUC) and recently derived clinically relevant metrics of area under the truncated ROC curve (tAUC), local
likelihood ratio plus (lr+) and posterior probability of pathogenicity (ρ) curves. Additionally, we provide the
proportion of variants for which a predictor provides supporting, moderate, and strong levels of evidence
and the corresponding False Discovery Rates (FDR). We define all the classification measures next.

The ROC curve is generated by plotting the True Positive Rate (TPR) against the False Positive Rate
(FPR) for the entire range of classification thresholds. TPR and FPR are defined as the proportion of
correctly classified pathogenic and incorrectly classified benign variants, respectively; i.e., for a given thresh-
old t, below (above) which variants are predicted to be positive (negative), TPR (FPR) is defined as the
proportion of pathogenic (benign) variants that have predicted %WT activity smaller than or equal to t.
Precisely,

TPR(t) =

∑n
i=1 1[ŷi ≤ t]1[zi == 1]∑n

i=1 1[zi == 1]
and FPR(t) =

∑n
i=1 1[ŷi ≤ t]1[zi == 0]∑n

i=1 1[zi == 0]
,
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where 1 is the indicator function equal to 1 when the condition within the bracket is satisfied, otherwise it
is 0. Note that we define TPR and FPR with ≤ t, instead of ≥ t, because ŷi is a prediction of %WT activ-
ity, where a high value corresponds to pathogenicity, unlike the typical classification score. To construct the
ROC curve for a predictor, TPR(t) is plotted against FPR(t) as t is varied taking values among its %WT
activity predictions, starting from the smallest to the largest. Ties among the predictor scores require spe-
cial consideration for correctly computing and plotting the ROC curve (Fawcett, 2006). AUC is numerically
computed as the area under the ROC curve, requiring special considerations for ties (Fawcett, 2006). Math-
ematically, AUC is the probability that a random pathogenic variant has a predicted %WT activity smaller
than that of a random benign variant. For a more accurate definition that accounts for ties in predictions,
a term giving the probability of randomly picked pathogenic and benign variants having equal predictions
is added after multiplying by 1/2 (Byrne, 2016). Intuitively, AUC captures how well a predictor separates
the pathogenic and benign variant distributions. AUC takes value in the range from 0 to 1. A value above
0.5 is expected from any classifier that captures some signal for pathogenicity. A salient aspect of AUC is
that it is insensitive to class imbalance or the proportion of pathogenic and benign variants in the dataset
(Hanley and McNeil, 1982).

Though AUC is a useful measure for the overall classification performance, it has limitations when
applied to a decision-making setting such as the one encountered in the clinic. Typically, clinically relevant
score thresholds that determine the variants satisfying Supporting, Moderate or Strong (Richards et al,
2015) evidence lie in a region of low false positive rate (FPR). A measure well-suited to capture the clinical
significance of a predictor ought to be sensitive to the variations in the classifier’s performance in the low
FPR region (when predicting pathogenicity). However, the contribution of the low FPR region to AUC is
relatively small. To mitigate this problem, we incorporate the recently derived Truncated AUC (tAUC),
the area under the ROC curve truncated to the [0, 0.2] FPR interval (The Critical Assessment of Genome
Interpretation Consortium, 2024). The truncated AUC is normalized to span the entire [0, 1] range by
dividing it by 0.2, the maximum possible area under the un-normalized truncated ROC.

3.3 Prediction normalization and missing values

We noticed that some teams submitted predictions for posterior probability of pathogenicity instead of %WT
activity. The baseline methods considered in this work also predict the posterior probability of pathogenic-
ity. Directly applying the evaluation metrics on such predictions would give an incorrect assessment of
their performance, since posterior probability of pathogenicity and %WT activity are anti-correlated. Fur-
thermore, even the teams that indeed submit predictions for %WT activity, use a different scale than the
experimentally measured %WT activity values. The measured values range from the minimum of −0.016
to the maximum of 161.17, whereas teams were expected to submit predictions on a scale, where 0 means
no activity, 1 means %WT activity and values > 1 mean higher than %WT activity, as per the submission
format. For a meaningful interpretation of computed R-Squared, it is necessary that the predictions are on
the same scale as the %WT activity values.

To address this issue, we transform the predictions for %WT activity as ŷi = 100ri, where ri represents
the original prediction for variant i. We transform the predictions for posterior probability of pathogenicity as
ŷi = 100(1−ri). Since we do not always know which methods predict %WT activity and which ones predict
posterior probability of pathogenicity, we use AUC computed on the original predictions as a heuristic to
separate those cases. Precisely, if using the original predictions give an AUC < 0.5, we interpret them to
represent posterior probabilities of pathogenicity and use ŷi = 100(1−ri), otherwise we use ŷi = 100ri. Note
that using ŷi = 100ri would give exactly the same values for Pearson’s correlation, Kendall’s Tau and AUC
as the original predictions. In case of ŷi = 100(1− ri), the sign of Pearson’s correlation and Kendall’s Tau
is flipped but their magnitude is the same and the transformed AUC is 1− AUC of the original predictions.

The fundamental features are not explicitly derived to predict the %WT activity or the posterior
probability of pathogenicity. For a meaningful evaluation, we apply the following transform to the fun-
damental features. If AUC computed with an un-transformed feature is greater than equal to 0.5 we
use ŷi = 100

ri−minj rj
maxj rj−minj rj

(Min-max normalization followed by multiplication by 100), otherwise we use

ŷi = 100
maxj rj−ri

maxj rj−minj rj
(Min-max normalization on the negated predictions followed by multiplication by

100).
In the case where a submitted method, baseline or a feature had missing values, we performed imputation

by the mean of the non-missing predictions. Prediction normalization was performed after the imputation.

3.4 Uncertainty quantification

To quantify the uncertainty in performance estimation, we obtained 1000 bootstrap estimates of each metric.
Each bootstrap sample was created by sampling n = 219 (size of the Evaluation set) variants from the
Evaluation set with replacement. Each performance metric was estimated on each of the 1000 bootstrap

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.05.16.594558doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594558
http://creativecommons.org/licenses/by/4.0/


samples. Confidence interval for each metric was obtained from the 5th and 95th percentile of its bootstrap
estimates; see Figure 1 and Table S2. A gaussian approximation based 95% confidence interval was provided
with the AUC and Truncated AUC values in Figure 2 as 1.96×standard deviation derived from the bootstrap
estimates.

3.5 Bootcamp participant models

A training dataset for Bootcamp models was generated using ClinVar variants annotated as pathogenic or
likely pathogenic as positive training data points, and all others as negative data points. Features for each
mutation were generated from predictor scores from the dbNSFP website (Liu et al, 2011). Predictor features
consisted of predictions from meta-predictors such as REVEL, essentially making the model a meta-meta
predictor.

For Bootcamp Team 3, regression models were trained on eight methods, including: logistic regression,
perceptron, support vector machine, K-nearest neighbors, decision tree, random forest, neural network,
Gaussian Naive Bayes using default parameters in sklearn (Nguyen, 2024). Five-fold cross-validation with
shuffle was applied. The best-performing method from cross-validation was found to be the random forest.
A search for the optimal parameters was then conducted, including estimator (100, 200, and 300), max
features (5,10,15 and auto), max depth (None, 10, and 20), min samples split (2, 5, 8), and min samples
leaf (1, 4, 7). The best parameters were found to be max features of 15, max depth of None, min samples
split of 2, and min samples leaf of 1.

3.6 Categorization of difficult-to-predict mutations

We split difficult-to-predict mutations into pathogenic (Supplementary Table S3) and benign (Supplemen-
tary Table S4), where pathogenic and benign mutations are defined as described in Section 3.1. For each
pathogenic variant (those with < 13% WT activity) and each predictor, we calculated the false positive rate
(FPR) for that variant/predictor combination as the proportions of benign variants that had lower %WT
activity than the variant at hand. We then considered the minimum and average FPR for each variant
across all predictors that attained an overall AUC > 0.8. The 10 variants with the highest minimum FPR
were then taken as a list of difficult-for-all methods to classify pathogenic mutations (Difficult-for-all list).
The top 10 variants with the highest average FPR comprised the set of variants that are difficult to predict
on average (Difficult-on-average list). The top 10 variants with the highest difference between average and
minimum FPR give a list of pathogenic variants with the highest performance gap (Gap list).

Similarly, for each benign variant (those with > 13% WT activity) and each predictor, we calculated the
false negative rate (FNR), or proportion of all pathogenic variants that had higher %WT activity than that
particular variant. We then calculated the minimum and average FNR for each variant across all model that
attained an AUC > 0.8. The top 10 variants with the highest minimum FNR were taken as a list of benign
variants that were difficult for all methods to classify (Difficult-for-all list), and the top 10 variants with
the highest average FNR comprised the set of variants that are difficult to predict on average (Difficult-on-
average list). The top 10 variants with the highest difference between average and minimum FNR give a list
of benign variants with the highest performance gap (Gap list).

The union of the variants in the three lists was taken to give a final list of difficult variants, separately
for the pathogenic and benign categories.

4 Discussion

CAGI has served as a platform for using real-world and experimental data to further our understanding
of the molecular causes of human disease (The Critical Assessment of Genome Interpretation Consortium,
2024). The CAGI6 ARSA challenge assessed in silico models at their ability to predict variant impact
on ARSA’s enzymatic activity. We observed that top models exhibited similar performance at predicting
ARSA variant impact on %WT activity compared to previous studies (Clark et al, 2019). Also, as pre-
viously observed, models exhibited high correlations with each other despite differences in methodologies,
suggesting shared training features and data as the underlying cause. Ten out of 18 submitted models uti-
lized ClinVar or Humsavar for their training database, while four other models relied on deep mutational
scanning data from an overlapping set of proteins. Many submissions were meta-predictors incorporating
scores from similar models, such as REVEL, VEST3, PROVEAN, MutationTaster, and PolyPhen-2. The
best-performing model, Bootcamp Team 3’s, was a meta-meta predictor.

Consistent with previous findings (Pejaver et al, 2017), we also observed that variant effect predictors
designed to predict pathogenicity as a binary class, can be adapted to predicting %WT activity as a con-
tinuous variable, though all models seem to have greater difficulty at identifying hypomorphic mutations.
Disagreements between in vitro assays and the severity of disease affected by a mutation in patients present
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an additional study limitation. An example of such a variant is p.P428L, which has repeatedly produced
%WT activity values lower than expected based on its behavior in patients (Trinidad et al, 2023).

Perhaps the most notable result is the competitiveness between AlphaMissense and Bootcamp Team 3’s
model. Though AlphaMissense presents an elegant solution to the problem of predicting missense variant
functional effects, it requires a complex deep-learning architecture and significant resources to train. In
contrast, the top performing challenge participant, submitted by a team who took part in a 2-week coding
and genetics bootcamp, was a minimalist random forest meta-meta predictor trained on a personal laptop.
It should also be noted that AlphaMissense was published after the %WT activity values were publicly
released, though these data were not directly used to train their model. Despite the disparity in resources
needed to train each model, AlphaMissense only performed marginally better than Bootcamp Team 3’s
model.

Determining the impact of missense variation on protein function and pathogenicity remains a complex
challenge. Given the influence of VUS on the diagnostic odyssey, advances in the field have the potential to
directly impact patients (Bauskis et al, 2022). As more VUS are encountered in newborn screening due to
increasing availability of treatments for rare diseases, predictors of variant functional effect will be valuable
tools for quickly interpreting their potential relevance to disease (Stark and Scott, 2023). This is especially
true for MLD, which has just seen the approval of new therapeutic approaches, and for which early diagnosis
is essential for effective intervention (Adang et al, 2024). While the field of variant effect prediction has yet
to see advances in performance seen in the field of protein structure prediction (Kryshtafovych et al, 2021),
top models incorporate information from state-of-the-art structure prediction tools (Cheng et al, 2023).
In many aspects protein structure prediction may be an easier learning task than predicting a mutation’s
pathogenicity. It is possible to determine the position of a molecule in a crystallized protein structure at
angstrom resolution, whereas the gold standard for determining the disease relevance of a rare missense
variant requires observing it multiple times in patients (Richards et al, 2015).

While MLD is a monogenic disease, whose severity can be largely explained by the residual activity of two
enzymes, ARSA and PSAP, many human diseases are polygenic, or have strong polygenic backgrounds that
can influence the penetrance of mutations in genes associated with monogenic disease (Khan et al, 2023).
Studies of genes such as ARSA, which have clear functional readouts, can help train better computational
models. This will consequently have the potential to improve predictions for genes that are harder to study,
advancing the field of clinical and medical genetics.

Table 1: A table of each predictor, its primary reference if available, categories of features used, and training
data sources.

Method
name

Reference PolyPhen,
SIFT,
Provean
or other
features
from
dbNSFP

Structure
Based
Features

PSSM,
MSA
Based
Features

ML Method Training
Database

Bootcamp
Team 1

NA Yes No No AdaBoost ClinVar

Bootcamp
Team 2

NA Yes No No ClinVar

Bootcamp
Team 3

Nguyen (2024) Yes No No Random forest ClinVar

Bootcamp
Team 4

NA Yes No No ClinVar

Ken Chen NA No No No Neural Network ClinVar
Meta-EA
clinical

Katsonis and
Lichtarge (2014)

Yes No Yes None None

TCS
Research
India

NA No No No Neural Network humsavar, Clinvar,
gnomAD v3.1.2,
the Pompe disease
mutation database,
the Leiden Open
Variation Database
3.0

Shoni.cagi6 NA No No No Hybrid, GENN ClinVar
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Random
Forest
Ensemble

NA Yes Yes Yes Random Forest
Ensemble

ClinVar

Qafi Özkan et al
(2021)

Yes Yes Yes Multiple Linear
Regression and
Ensemble

Deep mutational
scanning data for
30 proteins

Evolutionary
Index

Frazer et al
(2021)

No No Yes Neural Network MAVEDB

E-SNPs &
GO

Manfredi et al
(2022)

No No No SVM ClinVar, humsavar

Zero-shot
protein
language

Sun and Shen
(2023)

No No No Transformer
encoder/decoder

Pfam

SNPMuSiC Ancien et al
(2018)

Yes Yes No Artificial Neural
Network

ClinVar

Random
Forest
Labeling

NA Yes No No Random Forest ClinVar

Table 2: A table of each predictor and individuals who participated in the model’s development or
submission to the ARSA CAGI Challenge.

Team Members

Boot Camp Team 1

Kaiya Jones
Fang Ge
Ailin Glagovsky
Cameron Jones

Boot Camp Team 2

Giankaleb Moran
Boqi Wang
Kobra Rahimi
Sümeyra Zeynep Çalıcı

Boot Camp Team 3

Thanh Binh Nguyen
NA
Santiago Diaz Neto
NA

Boot Camp Team 4

Luis Cedillo
Silvia Berardelli

Buse Özden
NA

Neural Network Ken Chen

Meta-EAclinical
Panagiotis Katsonis
Amanda Williams
Olivier Lichtarge

TCS Research India

Sadhna Rana
Swatantra Pradhan
Rajgopal Srinivasan
Rakshanda Sajeed
Dinesh joshi

Shoni.cagi6
Eshel Faraggi
Robert Jernigan
Andrzej Kloczkowski

A Random Forest
Regressor on Other
Model Results

Jierui Xu
Zigang Song

Qafi
Selen Özkan
Natàlia Padilla
Xavier de la Cruz

Evolutionary Index
Rocio Acuna-Hidalgo
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Andrea Grafmüller
Laura Jiménez Barrón

E-SNPs & GO

Matteo Manfredi
Castrense Savojardo
Giulia Babbi
Pier Luigi Martelli
Rita Casadio

Protein language mod-
eling for zero-shot vari-
ant effect prediction

Yuanfei Sun
Shaowen Zhu
Yang Shen

SNPMuSiC

Fabrizio Pucci
Marianne Rooman
Gabriel Cia
Daniele Raimondi
Pauline Hermans

Random Forest Label-
ing

Kinsey Long
Sofia Kwee
Ella Chen
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Supplementary information

Fig. S1:Model performance based on key metrics:Model performance based on Pearson’s correlation,
Kendall’s tau, AUC and Truncated AUC. The best-performing model for each team is shown in blue.
Baseline models and individual feature (evolutionary and structure) based performance are shown in grey.
Models are sorted on the y-axis based on their average ranking according to the four metrics used.

Table S1: Mutation Information: A list of ARSA missense mutations from (Trinidad et al, 2023), their
observed %WT activity values, and submitted scores from CAGI challenge participants, supplementary
publicly available models, and fundamental features. An indicator column (evaluationSet) denotes whether
variants were included in the final evaluation dataset.

Table S2: Model performance based on key metrics: Performance of top methods from each team
according to the evaluation metrics described in Section 3.2, and their respective rank according to each
metric.

Table S3: Difficult to predict pathogenic mutations. A table of difficult-to-predict pathogenic
mutations, generated as described in Section 3.6.

Table S4: Difficult to predict benign mutations. A table of difficult-to-predict benign mutations,
generated as described in Section 3.6.

Table S5: ID mapping: A mapping between raw model ID’s and those used for each team’s top performing
model in figures.
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