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Key Points 
 

Question: How well do candidate genes from an algorithm designed to predict risk of 
opioid use disorder, which recently received pre-marketing approval by the Food and Drug 
Administration, perform in a large, independent sample? 
 
Findings: In a case-control study of over 450,000 individuals, the 15 genetic variants from 
candidate genes collectively accounted for 0.4% of the variation in opioid use disorder risk. 
In this independent sample, the SNPs predicted risk at a level of accuracy near random 
chance (52.8%). 
 
Meaning: Candidate genes from the approved genetic risk algorithm do not meet 
standards of reasonable clinical efficacy in assessing risk of opioid use disorder.  
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Abstract 
 

Importance: Recently, the Food and Drug Administration gave pre-marketing approval to 
algorithm based on its purported ability to identify genetic risk for opioid use disorder. 
However, the clinical utility of the candidate genes comprising the algorithm has not been 
independently demonstrated. 
 
Objective: To assess the utility of 15 variants in candidate genes from an algorithm 
intended to predict opioid use disorder risk. 
 
Design: This case-control study examined the association of 15 candidate genetic variants 
with risk of opioid use disorder using available electronic health record data from 
December 20, 1992 to September 30, 2022.  
 
Setting: Electronic health record data, including pharmacy records, from Million Veteran 
Program participants across the United States. 
 
Participants: Participants were opioid-exposed individuals enrolled in the Million Veteran 
Program (n = 452,664). Opioid use disorder cases were identified using International 
Classification of Disease diagnostic codes, and controls were individuals with no opioid 
use disorder diagnosis.  
 
Exposures: Number of risk alleles present across 15 candidate genetic variants. 
 
Main Outcome and Measures: Predictive performance of 15 genetic variants for opioid 
use disorder risk assessed via logistic regression and machine learning models. 
 
Results: Opioid exposed individuals (n=33,669 cases) were on average 61.15 (SD = 13.37) 
years old, 90.46% male, and had varied genetic similarity to global reference panels. 
Collectively, the 15 candidate genetic variants accounted for 0.4% of variation in opioid use 
disorder risk. The accuracy of the ensemble machine learning model using the 15 genes as 
predictors was 52.8% (95% CI = 52.1 - 53.6%) in an independent testing sample. 
 
Conclusions and Relevance: Candidate genes that comprise the approved algorithm do 
not meet reasonable standards of efficacy in predicting opioid use disorder risk. Given the 
algorithm’s limited predictive accuracy, its use in clinical care would lead to high rates of 
false positive and negative findings. More clinically useful models are needed to identify 
individuals at risk of developing opioid use disorder.   
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Introduction 

 Opioid misuse and opioid use disorder (OUD) are significant public health 

problems. In 2022, 6.1 million Americans aged 12 or older met criteria for OUD,1 with 

94.8% of these individuals acknowledging misuse of prescription analgesics and 40.9% 

reporting receipt of the medication from a healthcare provider.1 Given a surge in opioid 

overdose deaths,2,3,4 efforts have been made to identify individuals at greatest risk of opioid 

misuse. 

 However, at a population level, common genetic variation accounts for a small 

proportion of differences in OUD liability.5 Polygenic scores (PGS) derived from common 

genetic risk variants (i.e., single nucleotide polymorphisms, SNPs) across the genome 

account for much less variance in OUD risk (3.74%) than sociodemographic factors 

(41.32%).6 Nonetheless, attempts have been made to develop and commercialize genetic 

algorithms to identify individuals susceptible to developing OUD.7-9 These models usually 

include a few SNPs in genes that are considered causal candidates based on their 

presumed effect on neural systems that underlie OUD risk. In addition to their small 

effects,10 few candidate variants have been substantiated in genome-wide association 

studies (GWAS), a more rigorous method of identifying risk variants.11-13  

 Genetic predictive models are also vulnerable to confounding based on differences 

in patterns of genetic similarity, which can create the false appearance of strong 

prediction.14 If the prevalence of OUD varies among individuals with historically different 

geographic origins (either due to real differences or biases in the data used to train a 

machine learning (ML) model), the model will falsely attribute predictive power to SNPs 
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that are markers of global or local similarity rather than disorder risk. Such spurious 

associations arise from population stratification, i.e., differences in allele frequencies that 

result from historical migration and mating patterns (Supplementary Figure 1). Used in real-

world settings, these ML models are likely to bias predictions and lead to the false 

conclusion that they are useful for predicting risk of complex traits like OUD. 

The U.S. Food and Drug Administration (FDA) recently gave pre-marketing approval 

to an algorithm that incorporates 15 SNPs with proprietary weights to predict OUD risk.15 

We assessed these SNPs individually and collectively in relation to OUD in a genetically 

diverse sample of over 450,000 U.S. Veterans (Table 1) using logistic regression and ML 

analyses. Specifically, we assessed (1) whether the SNPs were individually associated with 

OUD risk, (2) how much variance in OUD risk the SNPs accounted for collectively, (3) 

whether the SNPs were better predictors of genetic similarity than OUD risk, and (4) 

whether basic demographics (i.e., age and sex) were better predictors of OUD risk than the 

SNPs. 

Methods 

Participants 

 The Million Veteran Program (MVP), an initiative of the U.S. Department of Veterans 

Affairs to discover the genetic etiology of diseases relevant to Veterans, was approved by 

the Central Veterans Affairs Institutional Review Board (IRB) and all site-specific IRBs. We 

followed all relevant ethical regulations for research with human subjects. Using electronic 

health record (EHR) data, we identified patients enrolled in MVP who had filled an 

outpatient prescription for any opioid analgesic. Cases were defined based on having at 
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least one International Classification of Diseases (ICD)-9/10 OUD code. Controls were 

opioid-exposed individuals with neither an OUD diagnosis code nor any prescription fill for 

medications commonly used to treat OUD (i.e., buprenorphine, methadone, and 

buprenorphine/naloxone). This yielded 452,664 opioid-exposed individuals (Mage = 61.15, 

SD = 13.37; 90.46% male) with genotype data, including 33,669 cases. As sensitivity 

analyses, we removed cases who had received only one outpatient OUD diagnosis code (n 

= 8,355) and re-ran all models, which yielded similar results (Supplementary Tables). The 

sample’s genetically inferred ancestry (GIA) composition, which was assigned based on 

patterns of similarity to reference genomes of individuals in the 1000 Genomes project,16 

was 67.46% European (EUR), 20.90% African (AFR), 9.50% admixed American (AMR), 

0.81% East Asian (EAS), and 0.07% South Asian (SAS), with 1.25% unassigned 

(Supplementary Figure 2).  

Among opioid-exposed individuals, we also selected a subset with only short-term 

documented exposure to opioids (4-30 days total), as this reflects the relative opioid 

naivete of patients for whom genetic testing would likely be sought. This yielded 125,514 

individuals (3,704 cases) whose mean age was 59.98 (SD = 14.84) and who were 

predominantly male (90.37%). This subsample’s GIA composition was similar to the full 

sample (67.59% EUR, 19.22% AFR, 10.36% AMR, 1.25% EAS, 0.11% SAS, and 1.47% 

unassigned).  

Genotyping and Imputation 

 MVP samples were genotyped using a custom Affymetrix Axiom Biobank Array (MVP 

Release 4). Quality control and imputation were performed by the MVP Genomics Working 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.24307486doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.16.24307486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

   
 

 

Group.17 Duplicate samples and those with a sex mismatch, seven or more relatives in MVP 

(kinship > 0.08), excessive heterozygosity, or a genotype call rate < 98.5% were removed. 

Monomorphic variants and variants with high missingness (call rate < 0.8) or a Hardy–

Weinberg equilibrium p-value < 1×10−6 were removed. Genotypes were phased with 

SHAPEIT418 and imputed using Minimac4 software,19 with biallelic SNPs imputed using the 

African Genome Resources reference panel by the Sanger Institute. 

 To infer similarity to reference genomes and generate principal components (PCs) to 

account for global and local differences in genetic similarity, GIA composition was 

calculated by the MVP gwPheWAS Working Group.20 Reference genomes used to infer 

genetic ancestry were from individuals from the Yoruba in Ibadan, Nigeria (YRI), the Luhya 

in Webuye, Kenya (LWK), the British in England and Scotland (GBR), the Han Chinese in 

Beijing, China (CHB), and Peruvians from Lima, Peru (PEL). Further details on how 

subgroups were derived from genetic similarity PCA coordinates by the MVP gwPheWAS 

Working Group can be found in Hunter-Zinck et al.17 In summary, a random forest classifier 

was trained on the reference dataset using the first ten PCs. The algorithm was applied to 

the MVP principal components analysis (PCA) data, and GIA was inferred when the 

classifier’s predicted probability was greater than 50%. Individuals with lower assignment 

probabilities were retained in the full sample analyses. Although guidelines on the use of 

population descriptors in human genetics research21 were published after GIA analyses 

were conducted in MVP, we follow the recommendations as closely as possible. 
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Single-SNP Association Analyses 

We conducted association analyses for each of the 15 candidate SNPs with OUD 

case/control status using logistic regressions in PLINK 2.0.22 Analyses were also performed 

within GIA groups and the subset of short-term opioid-exposed individuals. To account for 

non-independence, we randomly removed one individual from each pair of related 

individuals (N = 24,585). Three sets of analyses were conducted: (1) with no covariates, (2) 

including the first 10 genetic similarity PCs, and (3) including age, sex, and genetic 

similarity PCs as covariates. 

Combined-SNP Regression Analyses 

Using the glm() function in R, we fit logistic regressions to examine the collective 

association of the 15 SNPs with OUD case/control status. We followed a procedure similar 

to that used with the single-SNP models, performing analyses in the full sample, short-

term opioid-exposed subsample, and GIA groups. We also ran three sets of models with 

increasing levels of adjustment, akin to the single-SNP models. We calculated 

Nagelkerke’s R2 to estimate the proportion of variance in OUD status accounted for by each 

model and the area under the receiver operating characteristic curve (AUC-ROC) to 

evaluate performance. 

Machine Learning Models 

We developed ensemble ML models in the full sample, the subset of short-term 

opioid-exposed individuals, and within GIA groups. We chose to use ML techniques, as 

they are useful for modeling non-linear relationships between variables. However, their 

performance is constrained by the strength of the underlying genetic effects on OUD risk.  
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To examine ML’s ability to predict OUD vs. genetic similarity, additional models were 

developed using data confounded by inferred genetic ancestry, such that all cases were in 

one GIA group and controls in another.14 The confounded models show how biases in the 

patterns of population stratification within training datasets can influence model 

performance. All ML analyses were performed using the caret package in R, which allows 

for consistency in the data structure and preprocessing steps across models.23 

To prepare the analysis, dosage data for each of the 15 SNPs were recoded as hard 

calls (i.e., “0”, “1”, or “2”), reflecting the number of risk alleles for each individual. Of the 15 

genetic variants of interest, 8 were directly genotyped and 7 were imputed, all with 

imputation quality > 0.8. In all models, controls were under-sampled to yield equal 

proportions of cases and controls, which was required to address the severe imbalance in 

the number of cases relative to controls. In confounded models, we sought to preserve the 

greatest number of cases. Thus, in all models where GIA was unbalanced, the more 

common GIA group was assigned as cases and the less common one as controls. We used 

a 75%/25% data split to obtain independent training and testing sets. To prevent overfitting, 

we used 10-folds cross-validation during training, which systematically validates the model 

across subsets ("folds”) of the data. We used caret’s default tuning parameter search 

feature, with the optimal parameters selected based on ROC to provide the best balance 

between sensitivity and specificity. 

We selected as base ML models two random forest implementations, “rf” (Breiman 

and Cutler's random forests) and “ranger” (recursive portioning with random forests). We 

also used a linear support vector machine (SVM) implementation (svmlinear2, using the 
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e1071 library24 in caret) to approximate the methodology used for the algorithm that 

received pre-marketing approval, as the actual algorithm is proprietary.9 Base model 

predicted probabilities were aggregated with the 15 SNPs to serve as predictors in a 

stacked ensemble ML model, which was trained using a binomial generalized linear model. 

This step allows the ensemble model to learn from the predictions of each of the base ML 

models, which can be used to enhance its performance. Accuracy, sensitivity, and 

specificity were the primary metrics used to evaluate model performance, although we 

also examined positive and negative predictive values as secondary metrics. These metrics 

were used to calculate a diagnostic odds ratio (DOR), indicating how much higher the odds 

are that the classifier produces a positive prediction in an individual with OUD than an 

individual without OUD. 

Results 

In single-SNP models that did not account for genetic similarity, 13 of 15 SNPs were 

significantly associated with OUD risk after Bonferroni correction (Table 2). However, upon 

inclusion of measures of global genetic similarity (i.e., PCs) that number declined to three 

(Table 2). Five of the ten SNPs whose associations became nonsignificant when we 

controlled for genetic similarity had opposite directions of effect in analyses that were 

uncontrolled. In analyses within GIA groups that accounted for local variations in genetic 

similarity by including 10 PCs, the three significant SNPs were associated with OUD risk 

only in individuals genetically similar to the EUR superpopulation. Similar results were 

obtained among short-term opioid-exposed individuals (Supplementary Tables 1 and 2).  
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In full sample logistic regressions, the 15 SNPs collectively accounted for 0.40% of 

the variance in OUD status (Figure 1), with an AUC of 0.54. In comparison, age and sex 

alone accounted for 3.27% of the variance and improved the model AUC to 0.66. Including 

PCs as covariates reduced the number of significant SNP associations from 11 to 5. In 

analyses conducted within GIA groups, 7 SNPs were significant in the EUR group, 2 in the 

AFR group, and 1 in the AMR group. The variance collectively accounted for by the SNPs 

was between 0.04% (AFR) and 0.16% (AMR) in models conducted within GIA groups, and 

AUC values ranged from 0.51 (AFR) to 0.53 (AMR). Supplementary Tables 3 – 6 provide full 

results of the logistic regressions.  

 The accuracy of the ensemble ML model predicting OUD risk in the full sample 

(Figure 2) was slightly greater than chance (52.83%, 95% CI = 52.07 to 53.59%). In test data, 

the model correctly identified 50.72% of OUD cases (sensitivity) and 54.95% of controls 

(specificity). Of the model’s predicted cases, 52.96% were true cases (positive predictive 

value), and of the predicted controls, 52.72% were true controls (negative predictive value). 

The DOR was 1.25, suggesting that a predicted case is 1.25 times as likely to have OUD 

than a predicted control. In analyses conducted within GIA groups that accounted for local 

variations in genetic similarity by including 10 PCs, accuracy did not exceed random 

chance (EUR: 50.65% [95% CI = 49.67 to 51.62%]; AFR: 50.53% [95% CI = 49.09 to 51.96%]; 

AMR: 49.69% [95% CI = 47.21 to 52.16%]). Similarly, the DOR dropped to between 0.99 

(AMR) and 1.03 (EUR). Similar results were obtained for the short-term opioid-exposed 

subsample (Supplementary Tables 7 and 8).  
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Confounded models assessing the ability of the SNPs to differentiate individuals 

based on their genetic similarity to global superpopulations performed better than models 

predicting OUD status (Figure 3 and Supplementary Table 9). Models distinguishing 

individuals who were genetically similar to EUR from AFR superpopulations had an 

accuracy of 90.22% (95% CI = 89.63 to 90.79%) and those distinguishing AFR from AMR 

had an accuracy of 87.53% [95% CI = 86.56 to 88.46%]. The model was less accurate at 

distinguishing  EUR from  AMR (66.07% [95% CI = 65.15 to 66.99%]), likely due to the higher 

prevalence of genetic similarity between EUR  and AMR individuals.25  

In the full sample ML models, age and sex alone yielded more accurate predictions 

of OUD risk (59.49% [95% CI = 58.82 to 60.16%]) than the 15 SNPs. The sensitivity and 

specificity of the model were 0.51 and 0.68, respectively. The accuracy of models within 

GIA groups was comparable for individuals who were genetically similar to AFR and AMR 

superpopulations (AFR: 57.92% [95% CI = 56.50 to 59.33%]; AMR: 57.78% [95% CI = 55.32 

to 60.21%]), and better in individuals who were genetically similar to the EUR 

superpopulation (63.50% [95% CI = 62.55 to 64.43%]). Full results are in Supplementary 

Tables 10 and 11. 

Discussion 

In a diverse sample of over 450,000 opioid-exposed individuals (including 33,669 

OUD cases), we found no evidence to support the clinical utility of the 15 candidate SNPs 

purported to predict OUD risk using a proprietary algorithm. Collectively, the SNPs 

accounted for 0.4% of the variance in OUD risk, consistent with small individual effects of 

common genetic variants on complex traits.26,27 In a hold-out testing subsample, we 
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observed high rates of false positives and negatives, with approximately 47 of 100 

predicted cases or controls being incorrectly classified, which is no better than random 

chance prediction. False positives can contribute to stigma, cause patients undue 

concern, and bias healthcare decisions.28 For example, providers exposed to information 

that emphasized genetic causes of mental health conditions had less empathy toward 

patients than providers presented with psychosocial causes.29 False negatives could give 

patients and prescribers a false sense of security regarding opioid use and lead to 

inadequate treatment plans. Notably, clinicians could better predict OUD risk using an 

individual’s age and sex than the 15 genetic variants. In summary, although the test 

approved by the FDA is intended to complement standard clinical assessment, its use is 

unlikely to confer additional benefits and may instead give providers and patients false and 

potentially harmful information. 

We also found consistent evidence that when variations in genetic similarity were 

not considered, it resulted in biased findings. In single-SNP logistic regressions, 10 of 13 

significant associations (77%) with OUD risk were rendered nonsignificant when measures 

of global genetic similarity were included as covariates. Half of these associations showed 

a reversal in the direction of effect when genetic similarity covariates were included. In 

contrast, the ML models highlighted the SNPs’ ability to differentiate individuals who varied 

in their genetic similarity to global superpopulations with high accuracy, implying ancestral 

confounding in unadjusted models.14 To avoid spurious associations and ensure the 

validity of results, developers of genetic risk models intended for clinical care should 
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carefully consider and account for bias attributable to population stratification and 

sociodemographic factors. Failure to do so may exacerbate existing health inequities.30 

Several limitations of this study should be considered. First, models were evaluated 

using EHR diagnosis codes, whose assignment is susceptible to bias.31 However, 

comparable results were previously obtained in a smaller sample where diagnoses were 

assigned using structured interviews.14 Second, the MVP sample is predominantly male, 

though given its size, the analyses included over 40,000 women (2,619 OUD cases), which 

far exceeds the full sample on which the pre-marketing approved algorithm was developed 

(Ntotal = 1,762, Ncases = 653; EM-24069 AvertD™ Package Insert as of 12-15-2023). The MVP 

sample also has higher rates of OUD and pain32 and is older than the general population.33 

We encourage efforts to evaluate the 15 genetic variants in additional datasets. Third, we 

used GIA group–the current standard for MVP research–as a population descriptor. Despite 

being an improvement over previous descriptors that combined GIA with self-reported race 

and ethnicity,34 we note that GIA population descriptors do not fully align with recent 

guidance.21 Finally, MVP uses array genotyping, which is less accurate than, for example, 

that involving mass spectrometry,35 and imputation was required for about half of the SNPs. 

Although this may have reduced genotyping accuracy, which is important for individual-

level risk prediction, it would not be expected to impact the results in a large sample like 

ours. 

Genetics researchers have argued against the use of candidate genes to predict 

OUD and other psychiatric traits.36 Because genetic risk models in psychiatry will continue 

to emerge and could prove to be clinically useful, it is crucial that researchers and 
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regulatory agencies adopt rigorous standards for developing and evaluating them prior to 

their application in clinical settings. When regulatory agencies evaluate genetic risk 

algorithms that use advanced statistical methodologies (e.g., ML), it is imperative to heed 

the guidance of scientific advisors and independently validate the findings. By applying 

rigorous standards to reduce sources of bias, the potential benefits of genetic risk models 

can be maximized while protecting patient safety and well-being. 
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Table 1. Opioid use disorder case/control status across genetically inferred ancestry 
groups.  

Any Opioid Exposure Short-term Opioid Exposure  
Cases Controls Cases Controls 

ALL 33669 418995 3704 121810 
EUR 20392 284986 1982 82859 
AFR 9496 85118 1211 22910 
AMR 3215 39790 411 12586 
Note: ALL = full sample, including individuals genetically similar to the East Asian and 
South Asian superpopulations, and those missing on genetically-inferred ancestry, EUR 
= individuals genetically similar to the European superpopulation, AFR = individuals 
genetically similar to the African superpopulation, and AMR = individuals genetically 
similar to the admixed American superpopulation.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.24307486doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.16.24307486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

   
 

 

Table 2. Single nucleotide polymorphism (SNP) associations with opioid use disorder 
case/control status among opioid exposed individuals. 

SNP 
(Gene) 

Model AFR 
OR (p-value) 

AMR 
OR (p-value) 

EUR 
OR (p-value) 

ALL 
OR (p-value) 

rs7997012 
(HTR2A) 

Unadjusted 1.057 (0.064) 1.005 (0.849) 0.993 (0.487) 0.893 (3e-39) 
Adjusted 1.018 (0.555) 1.003 (0.906) 0.998 (0.837) 0.998 (0.803) 

rs2236861 
(OPRD1) 

Unadjusted 1.031 (0.301) 1.016 (0.633) 1.035 (0.005) 0.957 (3e-5) 
Adjusted 1.018 (0.546) 1.013 (0.696) 1.032 (0.011) 1.028 (0.010) 

rs4680 
(COMT) 

Unadjusted 0.996 (0.801) 1.033 (0.229) 0.984 (0.126) 0.953 (4e-9) 
Adjusted 0.988 (0.474) 1.022 (0.430) 0.978 (0.038) 1.012 (0.173) 

rs1045642 
(ABCB1) 

Unadjusted 0.982 (0.348) 0.993 (0.806) 1.009 (0.382) 0.902 (2e-37) 
Adjusted 0.965 (0.078) 0.990 (0.696) 1.010 (0.365) 0.985 (0.086) 

rs1800497 
(ANKK1) 

Unadjusted 0.973 (0.102) 0.988 (0.673) 1.060 (4e-6) 1.079 (8e-16) 
Adjusted 0.978 (0.186) 1.050 (0.094) 1.056 (4e-5) 1.031 (0.002) 

rs4532 
(DRD1) 

Unadjusted 1.044 (0.084) 0.993 (0.818) 1.020 (0.066) 0.931 (5e-16) 
Adjusted 1.025 (0.337) 0.969 (0.300) 1.019 (0.081) 1.015 (0.126) 

rs948854 
(GAL) 

Unadjusted 0.989 (0.491) 0.996 (0.885) 1.024 (0.044) 1.124 (5e-43) 
Adjusted 0.976 (0.146) 0.968 (0.289) 1.020 (0.097) 1.017 (0.068) 

rs211014 
(GABRG2) 

Unadjusted 0.988 (0.495) 0.964 (0.293) 0.966 (0.009) 1.042 (2e-5) 
Adjusted 0.992 (0.658) 0.960 (0.246) 0.968 (0.015) 0.975 (0.013) 

rs1801133 
(MTHFR) 

Unadjusted 1.007 (0.776) 0.991 (0.735) 1.026 (0.021) 0.939 (2e-12) 
Adjusted 0.992 (0.756) 1.036 (0.209) 1.023 (0.042) 1.018 (0.056) 

rs6347 
(SLC6A3) 

Unadjusted 1.000 (0.970) 1.041 (0.251) 1.004 (0.741) 1.107 (9e-27) 
Adjusted 1.009 (0.641) 0.992 (0.829) 1.004 (0.776) 1.005 (0.588) 

rs1611115 
(DBH) 

Unadjusted 0.952 (0.033) 0.922 (0.010) 0.994 (0.672) 0.957 (4e-5) 
Adjusted 0.950 (0.024) 0.958 (0.179) 0.992 (0.562) 0.979 (0.045) 

rs1051660 
(OPRK1) 

Unadjusted 0.967 (0.213) 1.063 (0.255) 0.980 (0.273) 0.985 (0.322) 
Adjusted 0.967 (0.223) 1.042 (0.447) 0.976 (0.192) 0.976 (0.102) 

rs1799971 
(OPRM1) 

Unadjusted 1.032 (0.516) 0.881 (0.001) 0.885 (1e-13) 0.816 (8e-49) 
Adjusted 0.994 (0.905) 0.910 (0.011) 0.882 (2e-14) 0.894 (5e-15) 

rs3758653 
(DRD4) 

Unadjusted 0.997 (0.908) 1.030 (0.375) 0.987 (0.392) 0.993 (0.532) 
Adjusted 0.998 (0.930) 1.066 (0.056) 0.984 (0.301) 0.999 (0.907) 

rs9479757 
(OPRM1) 

Unadjusted 1.019 (0.424) 1.115 (0.020) 1.067 (2e-4) 1.098 (2e-12) 
Adjusted 1.022 (0.337) 1.116 (0.019) 1.070 (1e-4) 1.057 (3e-5) 

Note: Bold indicates significance at Bonferroni-adjusted p-value (0.05/15 = 0.003). Italics 
indicates significance at p < 0.05. Unadjusted models include the 15 SNPs as predictors, while 
adjusted models also include the first 10 genetic similarity PCs as covariates. OR = odds ratio, 
SE = standard error, SNP = single nucleotide polymorphism, AFR = African, AMR = Admixed 
American, EUR = European, ALL = full sample (including East Asian, South Asian, and 
participants missing on GIA). GIA is based on genetic similarity to global superpopulations 
defined by the 1000 Genomes Project.  
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Figure 1. Percent of variance in opioid use disorder case/control status explained by 
combined-SNP regression models. 

 

Note: AFR = individuals genetically similar to the African superpopulation, AMR = 
individuals genetically similar to the admixed American superpopulation, EUR = individuals 
genetically similar to the European superpopulation, OUD = opioid use disorder. No 
covariates model included only the 15 single-nucleotide polymorphisms, genetic PC 
covariates model included the first 10 principal components (PCs) indexing global 
variations in genetic similarity as covariates, and the genetic PC + demo covariates model 
included the first 10 PCs reflecting genetic similarity, age, and sex as covariates. 
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Figure 2. Receiver operating characteristic curves predicting opioid use disorder case/control status. 

   
A) presents results from the full sample of individuals with any opioid exposure, B) presents results from the full sample of 
individuals with short term opioid exposure. Linear SVM = linear support vector machine model. The diagonal line represents a 
classifier model that predicts at chance levels. 
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Figure 3. Receiver operating characteristic (ROC) curves of models predicting genetically-
inferred ancestry from 15 candidate single nucleotide polymorphisms. 
 

European vs. African Inferred Ancestry African vs. Admixed American Inferred Ancestry

                  
European vs. Admixed American Inferred Ancestry 

 
Note: Linear SVM = linear support vector machine model. The diagonal line represents a 
classifier model that predicts at chance levels. Genetically-inferred ancestry was based on 
genetic similarity to global superpopulations defined by the 1000 Genomes Project.
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