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ABSTRACT 46 

Studying lung adenocarcinoma (LUAD) early carcinogenesis is challenging, primarily due to the 47 

lack of LUAD precursors specimens. We amassed multi-omics data from 213 LUAD and LUAD 48 

precursors to identify molecular features underlying LUAD precancer evolution. We observed 49 

progressively increasing mutations, chromosomal aberrations, whole genome doubling and 50 

genomic instability from precancer to invasive LUAD, indicating aggravating chromosomal 51 

instability (CIN). Telomere shortening, a crucial genomic alteration linked to CIN, emerged at 52 

precancer stage. Moreover, later-stage lesions demonstrated increasing cancer stemness and 53 

decreasing alveolar identity, suggesting epithelial de-differentiation during early LUAD 54 

carcinogenesis. The innate immune cells progressively diminished from precancer to invasive 55 

LUAD, concomitant with a gradual recruitment of adaptive immune cells (except CD8+ and 56 

gamma-delta T cells that decreased in later stages) and upregulation of numerous immune 57 

checkpoints, suggesting LUAD precancer evolution is associated with a shift from innate to 58 

adaptive immune response and immune evasion mediated by various mechanisms. 59 

 60 

 61 

INTRODUCTION 62 

Lung cancer remains the leading cause of cancer-related mortality globally, in large part due to 63 

frequent diagnosis at late-stage with markedly reduced chances for cure. Early detection through 64 

low-dose CT-guided lung cancer screening has demonstrated a significant reduction in lung 65 

cancer mortality1. Meanwhile, widespread adoption of chest CT scans for screening or 66 

management of other medical conditions has resulted in a significant surge in the detection of 67 

indeterminate pulmonary nodules (IPNs)1. While many IPNs are benign, a subset are precursor 68 

lesions that may progress to invasive lung adenocarcinoma (LUAD), the most common subtype 69 

of lung cancer2. These LUAD precursors include atypical adenomatous hyperplasia (AAH), which 70 

may progress into preinvasive adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma 71 

(MIA) 3, 4, 5, 6 and finally to fully invasive LUAD (ADC). Whereas many IPNs can be resected with 72 

minimal morbidity7, such invasive intervention may be medically unnecessary if the lesion was 73 

destined to remain benign8. In addition, up to 25% of patients may harbor multiple IPNs9, 10, which 74 

makes surgical resection more challenging. While chemoprevention to halt or slow the 75 

progression of these LUAD precursors to invasive LUAD is appealing in principle, clinical trials to 76 

date have been disappointing11, 12, 13, 14, 15, 16, 17, 18, 19. This may be due to a multitude of factors 77 

including a lack of biomarkers for risk prediction and lack of effective therapies for early 78 

intervention due to our limited understanding of early lung tumorigenesis. 79 

 80 

Understanding the molecular mechanisms of the early stages of lung tumorigenesis is essential 81 

to discovering new targets for precise diagnosis, prevention, and therapy. However, studying early 82 

carcinogenesis of LUAD is challenging primarily due to the scarcity of adequate clinical specimens 83 

of precursor lesions, as surgery is not the standard of care. Over the past decade, we and other 84 

groups have made extensive efforts to collect and characterize resected LUAD precursors to 85 

depict the molecular evolution and associated immune response during early carcinogenesis of 86 

LUAD. A series of studies from our group have revealed that LUAD precursors present a simpler 87 

molecular landscape20, 21, 22, 23, and more active immunity than invasive LUAD22, 23, 24. However, 88 

previous studies have been limited by the small sample size. In addition, the transcriptomic 89 

features of these LUAD precursors of different histologic stages have not been systematically 90 

investigated.  91 

 92 

In this study, we sought to capture the evolutionary processes of early LUAD carcinogenesis by 93 

performing multi-regional whole exome sequencing (WES), whole genome sequencing (WGS) 94 

and RNA-sequencing (RNA-seq) on a large cohort of resected LUAD and LUAD precursors of 95 



3 

 

various histologic stages, with the intent to improve our understanding of the molecular and 96 

immune alterations associated with the initiation and progression of LUAD precursors.  97 

 98 

 99 

RESULTS 100 

Aggravating chromosomal instability is associated with accumulation of genetic 101 

alterations during the neoplastic evolution from precancer to invasive lung 102 

adenocarcinoma.  103 

To investigate the genomic alterations during early LUAD carcinogenesis, we analyzed multi-104 

regional whole exome sequencing (WES) data from 472 samples consisting of 213 LUAD and 105 

LUAD precursor lesions of various stages (50 AAH, 46 AIS, 70 MIA, and 47 ADC) that presented 106 

radiologically as ground glass opacities (GGO) predominant pulmonary nodules (Supplementary 107 

Data 1). The median exome sequencing coverage was ~300x. We also performed whole genome 108 

sequencing (WGS) in a subset of 26 lesions and their matched normal lung tissue with sufficient 109 

DNA at a median coverage of ~45x. There was no significant difference in age, smoking status, 110 

or sex between different histologic groups (Supplementary Data 2).  111 

 112 

After systematic filtering of single nucleotide variants (SNVs) to remove potential artifacts in 113 

formalin-fixed, paraffin-embedded samples, a total of 39,811 mutations from WES were subjected 114 

to subsequent analysis. In line with our previous study20, we observed higher total mutational 115 

burden (TMB) in later-stage lesions (Fig.1A). TMB was higher in smokers compared to non-116 

smokers across all stages (Fig.1A). Subclonal analysis demonstrated that the proportion of clonal 117 

mutations was lower in AAH lesions compared to AIS/MIA/ADC. LUAD precursors from smokers 118 

exhibited a higher proportion of clonal mutations than non-smokers in all disease stages (Fig.1B). 119 

Furthermore, phylogenetic analysis of LUAD precursors with multi-regional WES data revealed a 120 

higher proportion of truncal mutations in later-stage lesions (Fig.S1). Taken together, these 121 

results suggest that the neoplastic transformation of LUAD precancers predominantly occurs as 122 

a clonal sweep model20. 123 

 124 

Next, we analyzed somatic copy number alterations (SCNA). SCNA events were observed in AAH 125 

lesions, which became more prevalent in AIS, MIA and ADC (Fig.1C, Fig.S2). The frequent 126 

chromosome arm aneuploidy (CAA) events reported in invasive LUAD25, including 1q, 5p and 8q 127 

gains and 3p, 8p, 9p, 9q, and 13q losses became prevalent after AIS. Moreover, polyploidy started 128 

to emerge at the AIS stage and further expanded in MIA and ADC lesions (Fig.2A). Whole 129 

genome doubling (WGD) was not detected in AAH lesions, but it was detected in 9% of AIS 130 

lesions, 9% of MIA and 30% of ADC lesions (Fig.2B). In addition, we observed a progressively 131 

increased number of chromosomes exhibiting aneuploidy (Fig.2C) and a progressive increase in 132 

the weighted genomic instability index (wGII, defined as the fraction of genome altered)26 (Fig. 133 

2D) in later-stage lesions. Importantly, wGII was positively correlated with ploidy, SCNA burden 134 

and frequency of aneuploidy (Fig.S3 A-C). Taken together, these findings suggest accumulated 135 

chromosomal instability along with neoplastic progression during early carcinogenesis of LUAD, 136 

particularly after malignant transformation post AIS stage.  137 

 138 

In addition to SCNA, chromosomal instability can also manifest as structural variants that may 139 

have profound impacts on tumor biology27, 28. Leveraging WGS data from LUAD precursors of 140 

different stages to investigate the timing of structural variants during early LUAD carcinogenesis, 141 

we detected structural variants in lesions of all stages (Fig.S4), suggesting these may be early 142 

genomic events.  143 

 144 

 145 

https://www.nature.com/articles/s41467-021-20907-z#MOESM3
https://www.nature.com/articles/s41467-021-20907-z#MOESM3
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A                                              B                                            C 146 

 147 

D 148 

 149 
Figure 1. Progressive genomic evolution from AAH to ADC. (A) Violin plot of mutational burden 150 

across histologic stage. Each point represents the mutational burden in each lesion from smokers 151 

(solid) or non-smokers (hollow). Cross bars represent the mean. Kruskal–Wallis H test was used to 152 

compare mutational burden across all stages. (B) Violin plot showing the proportion of clonal mutations 153 

in each lesion. Each point represents the clonal fraction in each lesion from smokers (solid violin) or 154 

non-smokers (hollow violin). Cross bars represent the mean clonal fraction. The difference across 155 

stages was assessed by Kruskal–Wallis H test. Only lesions with a minimum of 10 SNVs were included 156 

for subclonal deconvolution analysis. (C) Violin plot of the proportion of chromosomal regions with 157 

copy number alterations in each lesion. Each point represents the fraction of chromosomal regions 158 

with copy number gain (total copy number > 2.5) or loss (total copy number < 1.5) over the exome 159 

capture region across all chromosomes in smokers (solid violin) or non-smokers (hollow violin). Cross 160 

bars represent the mean CNV burden. The difference across stages was assessed by Kruskal–Wallis 161 

H test. Only regions with a minimum of 50 reads were included to determine copy number alterations. 162 
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(D) The landscape of cancer gene mutations and copy number aberrations in lesions. Cancer gene 163 

mutations were defined as nonsynonymous mutations in known cancer genes identical to those 164 

hotspots previously reported and stop-gain variants in tumor suppressor genes. Cancer genes located 165 

in chromosomal segments with copy number gains (red) or losses (green) are shown. A threshold of 166 

focal copy number ≥3 or ≤1 was used to determine chromosomal gains or losses, respectively.  167 

 168 

A                                                                    B 169 

    170 
C                                                                    D 171 

    172 
Figure 2. Propagated genomic instability in lesions of different histological stages. (A) Density 173 

plot showing the distribution of the ploidy among different histological stages. X-axis shows the density 174 

of ploidy numbers. The short whiskers show the estimated ploidy value in each lesion. The vertical 175 

cross lines show mean ploidy value of all lesions in AAH, AIS, MIA, and ADC, respectively. (B) The 176 

prevalence of whole genome doubling (WGD) among different histological stages. Each bar 177 

represents the proportion of lesions with WGD (green) and without WGD (pink) in each stage. (C) 178 

Density plot showing the prevalence of the aneuploidy among different histological stages. X-axis 179 

shows the number of chromosomes. The short whiskers show the number of chromosomes detected 180 

with mosaic aneuploidy in each lesion. The vertical cross lines show mean number of chromosomes 181 

carrying aneuploidies from all lesions in AAH, AIS, MIA, and ADC, respectively. (D) Weighted genomic 182 

instability index (wGII) amongst different histological stages. Each point represents genomic ability 183 

index in each lesion, and the brown cross bars represent the mean genomic instability index of all 184 
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lesions of each histologic stage in smokers (solid) and non-smokers (hollow), respectively. Kruskal-185 

Wallis H test was used to compare genomic instability indexes across stages. 186 

 187 

 188 

The top frequently mutated cancer genes in this cohort of LUAD and precursors included EGFR, 189 

KRAS, TP53, STK11, and LRP1B, most of which emerged at the precancer AAH stage. In addition, 190 

copy number losses in tumor suppressor genes (TSG) such as CDKN2A, TP53, NOTCH1, 191 

PTPRD, STK11, and copy number gain in oncogenes such as MYC, EGFR, and MET were 192 

detected in precancers of all stages but with higher incidence in later-stages (Fig.1D). These 193 

observations indicate that worsening chromosomal instability may have led to copy number gain 194 

or loss of critical cancer genes, which subsequently may have contributed to the initiation and 195 

progression of LUAD precancers. 196 

 197 

Telomere shortening may represent a pivotal early genomic event underlying 198 

chromosomal instability during early carcinogenesis of lung adenocarcinoma.  199 

Telomere length shortening has been reported to be causative of chromosomal insstability29 30. 200 

In the LUAD precursors for which WGS data was available, telomere shortening (compared to 201 

matched normal lung tissues) was a common and early genomic event, which was observed in 202 

19 out of 26 lesions with WGS data available (Fig.3A), including 4 of 5 AAH lesions. In parallel, 203 

the expression of telomerase (TERT) gradually increased in later-stage lesions (Fig.3B) and 204 

negatively correlated with telomere length (Fig.3C). These data indicate that chromosomal 205 

instability, an important cancer hallmark, may be an early genomic event during LUAD 206 

carcinogenesis that emerges at precancer stage, while telomere shortening is a potential genomic 207 

alteration underlying chromosomal instability. 208 

 209 

Evolution from pre-cancer to invasive LUAD is associated with increased transcriptomic 210 

intratumor heterogeneity and epithelial dedifferentiation.  211 

To understand early LUAD carcinogenesis at the transcriptomic level, we performed RNA 212 

sequencing (RNA-Seq) on a subset of 168 LUAD and LUAD precursors with adequate tissue 213 

available. Principal component analysis (PCA) and hierarchical clustering displayed distinct 214 

clusters between normal lung, AAH and AIS/MIA/ADC (Fig.S5A-B) highlighting the transcriptomic 215 

divergence at the transition of malignant transformation. Pseudo-time analysis further revealed 216 

the evolutionary trajectory from normal lung tissue to AAH, then AIS/MIA/ADC (Fig.4A-B). In 217 

addition, the proliferative index based on a pan-cancer proliferative gene signature31 218 

(Supplementary Data 3) was significantly higher in later-stage than early stage lesions (Fig.4C) 219 

indicating increasing proliferation rate along with neoplastic progression. Furthermore, network 220 

entropy analysis32 to infer transcriptomic intra-tumoral heterogeneity (ITH) uncovered a higher 221 

level of transcriptomic ITH in later stage lesions than their early stage counterparts (Fig.4D and 222 

Fig.S6), in line with the higher degree of heterogeneity in methylation in later stage LUAD 223 

precursors21, 33.  224 

 225 

One hallmark of cell plasticity in cancers is dedifferentiation, a process whereby tumor cells lose 226 

their specialized properties and revert to less differentiated phenotypes reminiscent of early 227 

embryonic development or regenerative processes34. To understand the dedifferentiation process 228 

during early LUAD carcinogenesis, we estimated cancer stem cell (CSC) scores 35 229 

(Supplementary Data 3), which revealed significantly higher CSC scores and pluripotency 230 

signaling in later stage lesions (Fig.5A and Fig.S7A-B). In parallel, we observed a progressive 231 

decrease in the alveolar scores36 (Fig.5B, Supplementary Data 3). Importantly, the alveolar 232 

scores were negatively associated with the CSC scores (Fig.5C). Further analysis revealed that 233 

the expression of pluripotency transcription factors such as FOXM1, OCT4, SOX9, TWIST1, 234 

gradually increased, while KLF4 gradually decreased in later-stage lesions (Fig.S8A-E). These 235 

https://www.nature.com/articles/s41467-021-20907-z#MOESM3
https://www.nature.com/articles/s41467-021-20907-z#MOESM3
https://www.nature.com/articles/s41467-021-20907-z#MOESM3
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results indicate the dedifferentiation of epithelial cells may be regulated by the core pluripotency 236 

stem cell transcriptional factors during early LUAD carcinogenesis.    237 

 238 

A                                                                 239 

 240 
B                                                                    C                                                        241 

       242 
Figure 3. The telomere length and TERT expression in each lesion. (A) Each bar represents the 243 

relative telomere length (RTL) in each lesion based on WGS profiling. (B) TERT expression amongst 244 

different histological stages. Each blue dot represents normalized expression of TERT in each 245 

pulmonary nodule and the solid brown dots represent the mean expression of all lesions of each 246 

histologic stage. Kruskal-Wallis H test was used for comparing normalized TERT expression between 247 

all stages. (C) The correlation of absolute telomere length by WGS profiling and normalized TERT 248 

expression between lesions (only lesions profiled by both WGS and RNAseq) assessed by two-tailed 249 

Spearman’s correlation analysis. Each dot represents each lesion from Normal (brown), AAH (orange), 250 

AIS (cyan), MIA (purple) and ADC (rose), respectively.  251 

 252 

 253 

 254 

 255 
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A                                                                        B                                                          256 

  257 
C                                                                      D 258 

           259 
Figure 4. Transcriptomic trajectory and intra-tumoral heterogeneity (ITH) of lesions across 260 

distinct pathological stages. (A) Pseudotime trajectory was estimated using selected genes with 261 

high variance and expression in specimens of different pathological stages. Point colors represent 262 

histological stage. (B) Trajectory plot colored by estimated pseudo time. (C) The proliferative scores 263 

amongst different histological stages. Each blue point represents the proliferative indices in each 264 

pulmonary nodule and the solid brown points represent the mean proliferative indices of each 265 

histologic stage. Kruskal-Wallis H test was used to compare proliferative indices between all stages. 266 

(D) Transcriptomic ITH scores among different histological stages. Each blue point represents ITH in 267 

each pulmonary nodule and the solid brown points represent the mean ITH of each histologic stage. 268 

Kruskal-Wallis H test was used to compare ITH scores between all stages. 269 

 270 

 271 

Neoplastic progression of LUAD precursors is associated with transition from innate to 272 

adaptive immune response and immune evasion. 273 

The initiation and development of LUAD precancers is influenced by the intricate interplay 274 

between evolving neoplastic cells and host factors, particularly anti-tumor immunity37. We next 275 

leveraged the gene expression data to delve into the immune features of LUAD precursors at 276 

various stages. Transcriptomic deconvolution demonstrated reduced infiltration of innate immune 277 

cells including NK cells, neutrophils, monocytes, eosinophils, and mast cells in later stage lesions 278 

(Fig.6A-B, Fig.S9A-D). Conversely, there was an increase in activated myeloid dendritic cells 279 

(mDCs) that are known to play important roles in antigen presentation and T cell priming38, as 280 
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well as various adaptive immune cells, such as B cells, plasma cells, regulatory T cells (Treg),  281 

with notable exception  of CD8+ T cells and gamma-delta (γδ) T cells with reduced infiltration in 282 

later-stage lesions (Fig.6D-F. Fig.S9E-H). The cytotoxic score also decreased in later stages (Fig. 283 

6C).  284 

 285 

A 286 

 287 
B                                                          C 288 

                                              289 
Figure 5. Cancer stemness signatures in lesions of different stages and associated genomic 290 
features. (A) The top bars show genomic instability scores calculated based on WES allelic copy 291 

number data, ITH scores estimated using transcriptomic network entropy; and proliferative scores 292 

inferred by gene signature. The stars (*) indicate lesions with genomic features greater than the cut-293 

off values. The heatmap panel shows cancer stemness signatures (derived from different resources) 294 
grouped in different stages including AAH (typical adenomatous hyperplasia), AIS (adenocarcinoma 295 

in situ), MIA (minimally invasive adenocarcinoma), and ADC (invasive adenocarcinoma). (Source data 296 

is provided as a source data file). (B) The alveolar scores among different histological stages. Each 297 
blue dot represents alveolar score in each pulmonary nodule and the solid brown dots represent the 298 

mean alveolar scores within each histologic stage. Kruskal-Wallis H test was used to compare alveolar 299 
scores between all stages. (C) Correlation of cancer stemness signatures and alveolar scores 300 

amongst different histological stages. 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 
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A                  B                   C 310 

 311 
D                             E                   F 312 

 313 
G       H                   I 314 

 315 
J       K                   L 316 

 317 
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Figure 6. Immune cell infiltration and immune gene expression in lesions of different 318 

histological stages. Representative innate immune cell infiltration (A-C) and adaptive immune cell 319 

infiltration (D-F) based on deconvolution using Consensus amongst different histological stages. Each 320 

blue dot represents averaged enrichment score inferred in each pulmonary lesion and the solid brown 321 

dots represent the mean enrichment score of all lesions in each histologic stage. Kruskal-Wallis H test 322 

was used to compare the enrichment score across stages. The GSVA enrichment score of genes 323 

associated with tertiary lymphoid structures (TLS) (G), innate immunity (H) and adaptive immunity (I), 324 

respectively. (J-L) Normalized expression of representative immune checkpoint genes across stage.  325 

 326 

 327 

We further applied GSVA to determine the expression of essential immune genes in LUAD 328 

precursors of different stages. Intriguingly, the tertiary lymphoid structure (TLS) score was higher 329 

in later-stage lesions (Fig.6G). Correspondingly, the densities of lymphoid follicles, lymphoid 330 

aggregates, and TLS, based on pathological assessment, were also higher in later-stage lesions 331 

(Fig.S10, S11), aligning with previous pathomics analysis39. This suggests an organized host anti-332 

tumor immune response amid neoplastic progression of LUAD precursors. Consistent with 333 

deconvolution analysis, GSVA revealed a decrease in the expression of innate immunity markers 334 

(Fig.6H) and an increase in adaptive immunity in later-stage lesions (Fig.6I). Lastly, numerous 335 

immune checkpoints were upregulated in later-stage lesions (Fig.6J-L). 336 

 337 

Taken together, these findings imply a transition from innate to adaptive immune response during 338 

the neoplastic progression from precancer to frankly invasive LUAD. However, neoplastic cells 339 

eventually evade host anti-tumor immunity through multiple mechanisms, including an increase 340 

in negative immune regulators such as Tregs and immune checkpoints, as well as downregulation 341 

of immune effectors such as cytotoxic lymphocytes, leading to progression into invasive LUAD. 342 

 343 

 344 

DISCUSSION 345 

Despite major advances in its treatment, lung cancer remains the leading cause of cancer-related 346 

death. There is an urgent need for effective strategies to prevent the development of this deadly 347 

malignancy. While risk avoidance, such as smoking cessation, represents a key strategy for 348 

reducing lung cancer risk, up to 20% of lung cancer patients are non-smokers40, 41. Moreover, 349 

among smokers with lung cancer, the majority have quit smoking well before their diagnosis, 350 

further highlighting the critical need for alternative active approaches for lung cancer interception42, 351 
43.  352 

 353 

Although it has long been known that LUAD precursors often present as GGO-predominant lung 354 

nodules, interception of LUAD has been hindered by our rudimentary understanding of the 355 

underlying molecular events and associated tumor microenvironment changes fueling malignant 356 

transformation and neoplastic evolution. Recent studies have characterized the molecular and 357 

immune features of early-stage LUAD and its precursors 20,21,24,44, 45, 46. However, the evolutionary 358 

trajectory and intricate crosstalk with host immunity during the initiation and progression of LUAD 359 

precursors remain understudied. Leveraging a large cohort of resected LUAD precursors through 360 

international collaborations, this study aimed to identify the sequential molecular changes driving 361 

LUAD precancer initiation and progression, along with the associated immune response and 362 

evasion. 363 

 364 

We found that critical driver alterations, including canonical EGFR and KRAS mutations, were 365 

detected across the spectrum of lung cancer precursors. This observation underscores the 366 

potential for interception of precancerous lesions of LUAD by targeting these early events. 367 
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However, a substantial proportion of LUAD precursors lacked targetable driver mutations, 368 

presenting a challenge for interception using targeted therapy agents. Alternatively, an immune-369 

based strategy may be more widely applicable, as immune evasion is a universal phenomenon 370 

in cancers. Immune prevention has shown success in cancers associated with infectious agents 371 

such as hepatitis B47 and human papillomavirus48. However, applying lung cancer immune 372 

prevention faces challenges due to our limited understanding of the evolving interplay between 373 

premalignant/malignant cells and the host's anti-tumor immunity during the formation and 374 

progression of pre-cancerous lesions.  375 

 376 

Host immunity continuously evolves during cancer development. Our study revealed a dynamic 377 

immune response marked by a transition from innate to adaptive immunity with neoplastic 378 

progression. During early LUAD carcinogenesis, the broad, non-specific, and rapidly acting innate 379 

response serve as the first line of defense. As cancer evolves, anti-tumor immunity gradually 380 

transitions to a more specific and potent adaptive immune response both in quantity (higher level 381 

of various adaptive immune-cell infiltration) and quality (more organized TLS) in later-stage 382 

lesions. Such a transition has also been observed in precancer evolution in oral squamous cell 383 

carcinoma49 and colorectal cancers50. This transition marks the host’s attempt to sustain anti-384 

cancer immune surveillance. However, cancer cells eventually evade immune attacks through 385 

mechanisms that include increasing negative regulators (e.g., Tregs and immune checkpoints) 386 

and decreasing effectors (e.g., CD8+ T cells). 387 

 388 

Our findings support a potential role for immune interception of LUAD precursors to prevent lung 389 

cancer development. In keeping with this hypothesis, our group has launched two investigator-390 

initiated immune interception trials: Can-Prevent-Lung (NCT04789681, testing reprogramming 391 

primarily of innate immunity through canakinumab --anti-IL1β monoclonal antibody treatment) and 392 

IMPRINT-Lung (reprogramming adaptive immunity by the anti-PD1 agent pembrolizumab). The 393 

planned interim analysis of the Can-Prevent-Lung trial demonstrated that canakinumab has a 394 

good safety profile and promising activity in treating persistent high-risk lung nodules51. These 395 

promising early successes mark a crucial step toward immune interception for lung cancer 396 

prevention. The results in the current study suggest that while both innate and adaptive immunity 397 

exhibit potential for immune interception, targeting innate immunity may be more efficient at earlier 398 

stages, whereas targeting adaptive immunity may have advantages in later-stage lesions. One 399 

major challenge is to distinguish early versus late-stage lesions without surgical resection and 400 

pathological assessment. Advanced technologies, including liquid biopsies and radiomics 401 

approaches52, may have the potential to characterize the stage and molecular subtype of lesions 402 

for precise immune interception.  403 

 404 

Neoplastic progression involves the outgrowth of tumor subclones with reduced immunogenicity, 405 

allowing escape from immunosurveillance. In the current study, we observed de-differentiation of 406 

epithelial cells during precancerous progression, increased cancer cell stemness, and diminished 407 

alveolar epithelial cell identity in later-stage lesions. This phenomenon is consistent with 408 

observations in genetically engineered mouse models of LUAD 53 and other cancers including 409 

glioblastoma54, intestinal tumors54, melanoma55, and breast cancer56. In principle, immunity has 410 

evolved to protect stem cells, which are essential for normal development and tissue 411 

homeostasis57. Emerging evidence highlights the pivotal role of stemness in immune editing and 412 

the evolution of cancer57. In the context of LUAD development, increasing stemness may act as 413 

a mechanism driving immune evasion, facilitating the transition of LUAD precursors into invasive 414 

tumors. Whereas the clinical translation of cancer stem-cell biology is still in its infancy, targeting 415 

pre-cancer stem cells may represent a potential cancer interception strategy57.  416 

 417 
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The scarcity of resected LUAD precursor specimens has impeded our understanding of early 418 

carcinogenesis of LUAD. This limitation has become a bottleneck hindering the trials aimed at 419 

preventing progression to invasive LUAD. Our multi-omics study on a large cohort of resected 420 

LUAD unveiled a transition from innate to adaptive immune response during the early neoplastic 421 

evolution. These findings have provided biologic support for our ongoing immunoprevention trials 422 

targeting innate immunity (Can-Prevent-Lung) and adaptive immunity (IMPRINT-Lung) for lung 423 

cancer interception. Future studies are warranted to delve into cell-cell interactions, key cytokines, 424 

chemokines, and their gradients at distinct stages of early LUAD carcinogenesis and provide 425 

novel insights for the development of novel and effective precision interception strategies. 426 

 427 

Limitations of the study 428 

One important caveat of the current study, common to most other similar studies, is that all the 429 

analyses were based on resected specimens, which only provide single molecular snapshots of 430 

the evolutionary process of LUAD. While a linear model of evolution from AAH to AIS, MIA, then 431 

to ADC was assumed, whether all AAH lesions progress to AIS, MIA, or ADC, and whether every 432 

ADC follows the hypothetical linear evolutionary trajectory are unknown. Understanding how the 433 

genomic landscape evolves over time with neoplastic progression and its association with patient 434 

outcomes requires longitudinal biopsies throughout the disease course, which is impractical in 435 

clinical practice. Future studies using animal models or leveraging longitudinal biopsy specimens 436 

from interception trials, such as IMPRINT-Lung (NCT03634241) and Can-Prevent-Lung 437 

(NCT04789681), may present good opportunities offer to investigate the temporal changes in 438 

molecular features during the neoplastic progression of LUAD.  439 

 440 

 441 

METHODS 442 

Patient cohort 443 

A total of 473 resected tumor specimens and 111 matched adjacent normal lung tissue samples 444 

were obtained from 111 patients presenting with GGO-predominant lesions by LDCT-guided 445 

screening or incidental findings, who underwent surgery at New York University, Nagasaki 446 

Hospital (Japan) and Zhejiang Cancer Hospital (China) from 2014 to 2019. None of these patients 447 

received preoperative chemotherapy or radiotherapy (Supplementary Data 1). 472 specimens 448 

were subjected to multi-regional whole exome sequencing. Whole RNA sequencing analysis 449 

included a subset of 168 samples and whole genome sequencing included 42 of those specimens, 450 

respectively. Available demographic information included patient age at date of specimen 451 

collection, age at diagnosis, gender, stated race and ethnicity, smoking status and tumor histology 452 

based on two independent pathologists’ review. Written informed consent was obtained from all 453 

patients. The analysis was performed using de-identified data under the Institutional Review 454 

Boards (IRB) at MD Anderson Cancer Center, New York University, Zhejiang Cancer Hospital 455 

and Nagasaki University Graduate School of Biomedical Sciences. 456 

 457 

Next-Generation Sequencing 458 

Manual macro-dissection on the H&E slides of FFPE specimens was performed to ensure a 459 

minimum of 40% diseased (atypical or malignant) cells in each multi-region sample based on the 460 

region of interest (ROI) diagnosed by the pathologists. Samples with lower disease content were 461 

excluded from further analyses. Adjacent normal lung tissue (≥2 cm from tumor margin, 462 

morphologically negative for malignant cells) from the same patients was used as germ line 463 

control. DNA and RNA were extracted using Ionic® purification system, respectively (Purigen 464 

Biosystems). The resulting genomic DNA was processed using Twist NGS Library Preparation 465 

and Capture Kits (#104175) with the Human Twist Comprehensive Exome Panel and subjected 466 

to whole-exome sequencing (WES) on the S4 flow cell of NovaSeq 6000 system (Illumina) 467 

running NovaSeq Control Software v1.7.5 at 150nt paired-end with dual 10 index reads. The 468 
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whole-genome sequencing (WGS) run at 150nt paired-end was performed on NovaSeq6000 469 

sequencer (Illumina) by Novogene. The RNA library was prepared with TruSeq® Stranded Total 470 

RNA Library Prep Gold (#20020599) and subjected to one lane of S4 flow cell on NovaSeq 6000 471 

running NovaSeq Control Software v1.7.5 at 101nt paired end with dual 8 index reads. The 472 

demultiplex of both runs was performed using bcl2fastq v2.20.0. 473 

 474 

Single-Nucleotide Variants (SNVs) detection from WES and WGS  475 

Sequencing reads were quality controlled and trimmed by fastp (v0.23.0) 58, then mapped to the 476 

human reference sequence GRCh38 (hg38) using the Burrows-Wheeler Aligner (BWA)-477 

MEM algorithm (v0.7.17). Duplicate reads were marked using Picard (v1.67) followed by 478 

realignment around known indels and base quality recalibration was performed using GATK 3.7. 479 

Somatic mutation calls were performed using Mutect (v1.1.7), Varscan2 (v2.4.2), Strelka2 (v2.9.2), 480 

Lancet (v1.1.0), SomaticSniper (v0.7.4), allowing at least 0.02 variant allele frequency and 481 

coverage of ≥ 20 in tumor and up to maximum of 0.01 allele frequency and coverage of ≥ 10 in 482 

normal samples. First, we manually curated a trustworthy list of mutations by combining WUST 483 

cancer mutations and TCGA_LUAD mutation profiles, to which SNVs matched are preserved 484 

from further filtering. Then those variants detected by at least two above callers were selected, 485 

and suspicious artifacts due to sequencing errors in FFPE samples were marked by MicroSEC 59 486 

and SOBDetector 60. Finally, only single-nucleotide variants (SNVs) 1) detected by at least two 487 

callers and 2) not marked as suspicious artifacts and 3) excluded from dbSNP146 and 4) tumor 488 

allele frequency >=0.04 and LOD >=10 or included in cosmic database containing census genes 489 

were selected. And then the resulting list of somatic SNVs were annotated by multiple databases 490 

using Ensembl Variant Effect Predictor (VEP). 491 

 492 

Estimation of telomere length 493 

Telomerehunter (v1.1.0) 61 was applied to quantify telomere content and composition using 10 494 

telomere variant repeats including TCAGGG, TGAGGG, TTGGGG, TTCGGG, TTTGGG, 495 

ATAGGG, CATGGG, CTAGGG, GTAGGG and TAAGGG in matched tumor and normal samples.  496 

 497 

Identification of chromosomal instability related events 498 

Tumor purity was inferred using TITAN framework62 and ASCAT63, somatic copy number 499 

alterations (SCNAs) were detected using CNVkit64. The allelic copy number profiles and 500 

corresponding ploidy of tumor samples were generated applying “FACETS” packages 65 using 501 

the matched germline data. Whole-Genome Doubling (WGD) was determined (p-value <0.001 for 502 

samples with ploidy ≤3) based on random simulation test of WGD. Each sample, s was 503 

represented as an aberration profile of major and minor allele copy numbers at chromosome arm 504 

resolution. From which Ns, the total number of aberrations (relative to diploid) and Ps, the 505 

probabilities of loss/gain for major and minor allele at each chromosome arm were calculated. 506 

10,000 simulations were run for each sample. In each simulation, Ns sequential aberrations, 507 

based on Ps, were applied to a diploid profile. A P-value for genome doubling was obtained by 508 

counting the percentage of simulations in which the proportion of chromosome arms with a major 509 

allele copy number ≥2 was higher than that observed in the sample. The weighted Genome 510 

Instability Index (wGII) was calculated to estimate the proportion of the genome with aberrant 511 

copy number compared with the median ploidy, weighted on per-chromosome length basis. The 512 

mosaic chromosomal aneuploidies were identified using MAD-seq66, based on fitting a mixture 513 

model of alternate allele frequencies (AAFs) at heterozygous loci. The subclonal architecture 514 

reconstruction was inferred by CliP using a penalized likelihood model 67.  515 

 516 

Detection of structural variants 517 

Five variant callers were used to identify somatically acquired structural variants from matched 518 

tumor and germline whole genome sequencing data: DELLY68, LUMPY69, BRASS (BReakpoint 519 

https://www.google.com/search?sca_esv=568334486&sxsrf=AM9HkKmt83B1wkXLNHMpF2CI_hqfbQMbnQ:1695685679927&q=trustworthy&si=ALGXSla0Spp1kHC9LAamd4BHsp51TUZRDJnsqkSbLQ8xy8fPPYchRR0Cl-veWveqzjI94epjv4gXOlexJQevS2LfB-ivJiYkDmc5DLm4Vb7x5TV6Vyk2Cdw%3D&expnd=1
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AnalySiS) (https://github.com/cancerit/BRASS/), Manta 70 and SVABA 71. These were merged into 520 

a final call set using SURVIVOR 72, a graph-based algorithm to identify overlapping breakpoint 521 

junctions across different callers, accepting all structural-variant calls made by two or more of the 522 

five algorithms to obtain best trade-off between sensitivity and specificity. “gGnome” package was 523 

used to graph the genomic intervals.  524 

 525 

Bulk RNAseq processing and gene expression matrix construction 526 

Initially, raw sequencing data underwent quality control and adapter trimming using FASTP 527 

(v0.20.0). Subsequently, ribosomal RNAs (rRNAs) were eliminated using SortMeRNA73, followed 528 

by mapping to human transcriptome reference (hg38) using STAR aligner. The expected 529 

transcript counts were quantified using RSEM (v1.3.3). Then outliner samples were removed via 530 

voom (voomWithQualityWeights) and RSEM transcripts were filtered with a minimum of two 531 

counts in all samples and variance stabilized transform (VST, DESeq2) was applied. Batch effects 532 

were assessed with Principal Component Analysis (PCA) and removed with LIMMA via linear 533 

modeling (removeBatchEffect) using DESeq2 (v1.38.3). The normalization of gene expression 534 

matrix was performed by subtracting the median of each transcript across all samples, and only 535 

transcripts mapped to coding genes (GENCODE -human release 38) were selected for 536 

downstream analysis.   537 

 538 

Pseudotime analysis of specimens diagnosed with different histological stages 539 

The trajectory paths were inferred using “tradeSeq” 74 and “monocle” packages74 on selected 540 

genes with high variance and expression across all the samples diagnosed with different 541 

pathological stages. 542 

 543 

Tumor heterogeneity analysis using transcriptomic profiling 544 

The transcriptome-based ITH was estimated using nJSD, an entropy-based distance metric 545 

between two networks of tumor and matched normal samples, with Jensen-Shannon Divergence 546 

(JSD) 32. 547 

 548 

Deconvolution of tumor infiltrating immune cells 549 

The content of tumor infiltrating NK cells, monocytes, cytotoxicity innate lymphoid cells, 550 

neutrophils, eosinophils, activated dendritic cells, B cells, regulatory T cells, CD8+ T cells were 551 

estimated using Consensus75. The mast cells resting, plasma cells were calculated using 552 

Cibersort76. The infiltration of naïve CD4+ T cells, memory CD4+ T cells and activated myeloid 553 

dendritic cells were inferred using xCell77 based on bulk RNAseq expression matrix.  554 

 555 

Gene Set Variation Analysis (GSVA) 556 

The normalized gene expression matrix was then processed to produce ssGSEA enrichment 557 

scores by GSVA, which calculates per sample overexpression level of a particular gene list by 558 

comparing the ranks of the genes in that list with those of all other genes78. A list of gene sets that 559 

are functionally associated with proliferation, cancer cell stemness, alveolar differentiation, tertiary 560 

lymphoid structures (TLS), innate immunity and adaptive immunity were used as gene signatures 561 

(Supplementary Data 3). Differential expression at the gene set level was assessed using a 562 

multivariate linear model and the empirical Bayes method in LIMMA.  563 

 564 

Assessment of lymph nodes aggregates (LA) and tertiary lymphoid structures (TLS) in 565 

H&E-stained image 566 

The archived Hematoxylin and Eosin (H&E) stained pathology slides were first scanned at 20X 567 

magnification using Aperio AT2 scanner and uploaded to the digital image analysis software 568 

HALO-AI-v3.5 (Indica Labs) (https://indicalab.com/halo-ai/). Then the deep learning tissue 569 

classification algorithm was applied to annotate some representative ROIs under the pathologist’s 570 

https://github.com/cancerit/BRASS/
https://indicalab.com/halo-ai/
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supervision, and the entire tissue section was classified into LA/TLS versus lung tissue, finally 571 

LA/TLS were manually assessed for tissue classification accuracy and the numbers of lymph 572 

nodes aggregates including TLSs on individual slide were quantified.  573 

 574 

Statistical analysis 575 

All statistical analyses were performed using R software version 4.1.0. Violin plots were generated 576 

using “geom_violin” function in ggplot2 (v.0.9.1) to represent data point density along the Y-axis, 577 

and the “stat_summary” function from ggplot2 (v.0.9.1) was used to calculate the mean as the 578 

center point. Differences in TMB, fraction of clonal mutations, relative telomere length, genomic 579 

instability, proliferation, cancer cell stemness and normalized gene expression, immune cell 580 

infiltration, TLS scores between the lesions of different stages were assessed using the Kruskal–581 

Wallis H test. Two-sided Spearman’s correlation coefficient was used to access the association 582 

between two variables. Confidence intervals for proportions were computed using a 2-sample z-583 

test without continuity correction. All tests were carried out at the 5% significance level with 584 

Benjamini-Hochberg correction for multiple testing. 585 

 586 
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