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Abstract 9 

Glycosylation is described as a non-templated biosynthesis. Yet, the template-free premise is 10 

antithetical to the observation that different N-glycans are consistently placed at specific sites. It 11 

has been proposed that glycosite-proximal protein structures could constrain glycosylation and 12 

explain the observed microheterogeneity. Using site-specific glycosylation data, we trained a 13 

hybrid neural network to parse glycosites (recurrent neural network) and match them to feasible 14 

N-glycosylation events (graph neural network). From glycosite-flanking sequences, the 15 

algorithm predicts most human N-glycosylation events documented in the GlyConnect database 16 

and proposed structures corresponding to observed monosaccharide composition of the 17 

glycans at these sites. The algorithm also recapitulated glycosylation in Enhanced Aromatic 18 

Sequons, SARS-CoV-2 spike, and IgG3 variants, thus demonstrating the ability of the algorithm 19 

to predict both glycan structure and abundance. Thus, protein structure constrains glycosylation, 20 

and the neural network enables predictive in silico glycosylation of uncharacterized or novel 21 

protein sequences and genetic variants. 22 

 23 

 24 

 25 

 26 

Introduction 27 

Glycosylation is difficult to study as the one supposedly non-templated biopolymer.1 Unlike 28 

RNA, DNA, and proteins, glycan sequences are understood to be determined by local metabolic 29 

and enzymatic conditions, including the availability of charged nucleotide sugars, enzyme 30 

availability, Golgi localization, and substrate competition.2 These well-supported claims do not 31 

explain how different glycosylation sites within one protein are consistently differentially 32 

glycosylated; a phenomenon called “microheterogeneity.”3 33 

 34 

Indications of protein structure bounded biosynthesis for glycans has existed for decades. After 35 

the N-glycosylation sequon (NX[S/T]) was defined, proximal-amino acid variation was found to 36 

impact glycosylation complexity,4–6 occupancy,7 efficiency,8 and glycan class.9 Conversely, 37 

amino acid sequence alignments of similarly glycosylated glycosites suggest the presence of 38 

glycosite-flanking sequence conservation.10 In influenza and HIV, variation in glycosylation and 39 
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genetic variation proximal to glycosites can facilitate immune evasion.11,12 Examples of how the 40 

protein context can constrain glycosylation include observations of higher-order structures such 41 

as β-sheets and α-helices,13 accessibility,14–16 and glycosylation kinetics,17–20 all of which impact 42 

glycan structure. We quantified associations between glycan substructures and local protein 43 

structure, showing that protein structural constraints can predict glycosylation. Together, these 44 

protein-glycan relations form a more comprehensive framework we call bounded biosynthesis, 45 

wherein glycosylation is bounded by both metabolic conditions and genome-encoded protein 46 

structural constraints.21 That study describes protein structure as a major determinant of 47 

glycosylation, but there is a need to functionalize the proteomic bounds on glycosylation such 48 

that it can be leveraged with ease to predict glycosylation from protein structure. 49 

 50 

Machine learning can be applied to the complex structures of glycans for the analysis of glycan 51 

structure, function, and classification. For example, natural language processing can encode 52 

glycans longitudinally from the reducing end.22,23 The SweetTalk glycan embedding 53 

recapitulated both antigenic glycans and microbial pathogenicity and phylogeny. Another study 54 

leveraged the branched nonlinear glycan structure to scaffold graph convolutional neural 55 

networks.24 SweetNet identified glycan targets of viral lectins. Beyond glycan embedding, 56 

biosynthetic constraints and outcomes have been modeled using neural networks.25 Previous 57 

attempts have been made to relate glycan branching with glycosite-proximal protein structure.26 58 

In the absence of meaningful embeddings and biosynthetic-substructure decomposition like 59 

SweetNet and GlyCompare,27 previous observations were limited to the association between 60 

surface accessibility and glycan complexity. With these new embeddings and the knowledge 61 

that glycan biosynthesis is a protein structure guided process, we can now functionalize protein-62 

based glycan predictions. 63 

 64 

Here we present the Interloping Saccharide Neural Network Extrapolation (InSaNNE) model, 65 

which predicts N-glycosylation from glycosite-proximal protein features. Using long short-term 66 

memory (LSTM) units,28 a type of recurrent neural network, we analyze glycosite-proximal 67 

amino acids and leverage the functional and biosynthetic glycan encodings of SweetTalk, 68 

SweetNet, and GlyCompare to generate an accurate mapping of glycan structure to protein 69 

sequence and structure. We train and validate our glycosite-glycan pairing model on empirically 70 

observed site-specific glycosylation. The model is trained using data from UniCarbKB29 and 71 

validated using more extensively curated data from GlyConnect30. We further validate our 72 

predictions on important glycosylation events on the coronavirus spike protein, immunoglobulin, 73 
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and the enhanced aromatic sequon. All N-glycan predictions are integrated in GlyConnect for 74 

easy access. With InSaNNE, we leverage the new bounded biosynthesis paradigm to open 75 

glycobiology to everyone by predicting expected and differential glycosylation onto their proteins 76 

of interest. 77 

Results 78 

Graph convolutional neural networks accurately predict glycan-79 

glycosite pairs 80 

We developed a model to predict the presence of specific glycans given the flanking amino acid 81 

sequence at N-linked glycosylation sites. Specifically, glycan structures can be ranked to 82 

indicate the most feasible glycosylation events at a glycosite of interest. To train, validate, and 83 

test the model, we collected and annotated 1,721 unique glycosylation events across 75 human 84 

glycoproteins from UniCarbKB29 wherein glycan structure was previously fully determined (see 85 

Methods). The model incorporates modules that analyzed both glycan structures (Figure 1a) 86 

and the protein sequences (Figure 1b). To analyze the protein sequences, we used long short-87 

term memory (LSTM) units,28 a recurrent neural network module effective at modeling protein 88 

structure by asserting language-like processivity31 (Figure 1b). Both sequence-proximal 89 

(glycosite-flanking) and spatially proximal (within n-Angstroms) protein features are important for 90 

predicting feasible glycosylation. We examined two separate LSTM-based modules into our 91 

model for analyzing the sequence-proximal and spatially proximal amino acids, separately. For 92 

the analysis of the glycan component, we tested three glycan embeddings: (1) a fully connected 93 

neural network using GlyCompare glycan substructure features27 as input, (2) a glycan-based 94 

language model in the style of SweetTalk,23 and (3) a graph convolutional neural network based 95 

on SweetNet.24 96 

 97 

On average, the model based on GlyCompare glycan substructure features achieved a 76.3% 98 

accuracy in predicting which glycans have been observed at specific glycosites (Table 1). The 99 

recurrent neural network (SweetTalk; 79.9%) or graph convolutional neural network (SweetNet; 100 

83.1%) models further improved the performance, demonstrating that optimizing the glycan 101 

analysis modules increases prediction performance. Choosing the SweetNet-based model as 102 
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our best-in-class performer, we used stochastic weight averaging (SWA; Izmailov et al., 2019) 103 

to further optimize performance. SWA improved SweetNet-based model accuracy to 87.5% 104 

(Table 1) and was therefore selected as our final model and used for all downstream analyses. 105 

Table 1 – A model for glycan-glycosite matching was developed to predict permissible glycans on a glycosylation site. 106 
Modules analyzing the glycosite-flanking protein sequence and additional spatially proximal amino acids consisted of 107 
recurrent neural networks, while the module analyzing glycans was either a fully connected neural network using 108 
GlyCompare substructure features as input (GlyCompare), a glycan-based language model (SweetTalk), or a graph 109 
convolutional neural network (SweetNet). We further tested the effect of stochastic weight averaging (SWA) on model 110 
performance. Removing the information about spatially proximal amino acids from the model input is denoted by “-111 
Spatial” while the addition of the whole protein sequence as an additional input for the model is indicated by 112 
“+Whole”. Results represent the mean values for accuracy and area under the curve (AUC) for the receiver-operator 113 
curve (ROC) on our test set after five independent training runs. 114 

Metric GlyCompare SweetTalk SweetNet SweetNet 

SWA 

SweetNet 

SWA 

-Spatial 

SweetNet 

SWA 

+Whole 

Accuracy 0.763 0.799 0.831 0.875 0.861 0.879 

ROC AUC 0.823 0.871 0.894 0.929 0.920 0.930 

 115 

After optimizing the glycan analysis module, we analyzed the role of protein sequences on 116 

prediction performance. We trained a model that only had access to the glycan structure and 117 

the glycosite-flanking sequence, without additional spatially (3D) proximal amino acids. 118 

Compared to the full InSaNNE model (87.5% accuracy), the model without spatially proximal 119 

amino acids achieved a slightly worse performance (86.1%, Table 1). The marginal 120 

performance loss suggests that, while spatially proximal information helps, the glycosite-flanking 121 

residues are most important.  122 

We next trained a model with access to the whole sequence of each protein, in addition to 123 

glycosite-proximal amino acids, and glycan structures. The additional information from the 124 

whole protein slowed training and inference, while providing a limited performance improvement 125 

(87.9% accuracy, Table 1). We concluded that distant amino acids carry limited relevant 126 

information for predicting permissible glycan structure that is not already captured in the nearby 127 

sequence and spatially proximal amino acids. 128 
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Different glycosites prefer specific glycan features 129 

True negatives, infeasible glycans, are hard to obtain experimentally, so we focused on recall 130 

(True Positive Rate). InSaNNE achieved a recall of 84.8% for N-linked glycosylation events in 131 

our dataset. The notable performance in these glycan-type-specific models, suggests that 132 

InSaNNE performs with exceptional recall – recovering most permissible glycans at a given 133 

glycosite. 134 

Next, we examined which N-glycan motifs were more difficult for InSaNNE to predict. For this, 135 

we calculated the average prediction accuracy for each glycan feature in the validation set. 136 

Several rare glycan motifs (<10 observations) were more difficult to predict (Figure 2a). 137 

However, InSaNNE exhibited a predictive accuracy of >80% for most motifs (Figure 2b). Since 138 

glycan features represent a hierarchical feature set, rare motifs with low prediction accuracy are 139 

not independent from each other and formed clusters based on glycan structure similarity 140 

(Figure 2c). For example, glycan features with lower predictive performance were enriched for 141 

oligomannose. Analogous to the glycan features, most glycosites exhibited an aggregate 142 

predictive accuracy >90% (Figure 2d) and we found prediction performance correlated with the 143 

number of observed glycans for similar glycosites (close in the embedding manifold; 144 

Supplementary Figure 1). Predictions were robust to the removal of single amino acids or 145 

short motifs, suggesting redundancy within glycosite-flanking sequences and soft boundaries on 146 

the flanking window size (Supplementary Figure 2). Furthermore, the flanking residues, rather 147 

than the central sequon-proximal residues, informed model predictions the most; ablation of 148 

upstream residues was most impactful on performance (Supplementary Figure 2). In general, 149 

given the consensus sequence of N-linked glycosylation, flanking residues are more variable, 150 

and may carry more information for deep learning models, than more conserved sequon-151 

adjacent residues. 152 

To illustrate the capabilities of InSaNNE, we used the model to predict the feasibility of all 153 

glycans in our dataset at the glycosite GTVLTRNETHATYS (P07911:N396) from human 154 

uromodulin – the most abundant protein in human urine and relevant for chronic kidney 155 

disease.32 Notably, 58 of 61 experimentally observed glycans were placed in the top 80 156 

predicted glycans (Figure 2e). Additionally, top glycans that were not previously reported at this 157 

glycosite shared features with the observed glycans, such as a strong negative charge via 158 

sialylation and/or sulfation. These results further demonstrate protein-sequence-based glycan 159 

prediction and emphasize the value and relevance of our model. 160 
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Single amino acid changes modulate specific glycan features 161 

While the ablation of individual glycosite-flanking amino acids does not substantially diminish 162 

model performance (Supplementary Figure 2), glycosylation efficiency and range can be 163 

impacted by glycosite-flanking mutations.5,6,9,11 Therefore, we tested if InSaNNE can predict how 164 

changes to the glycosite-flanking sequence will impact glycosylation. This could facilitate 165 

glycoengineering and elucidate structural interactions between protein and glycan structures at 166 

the glycosylation site. We performed a deep mutational scan in silico (replacing each of the 14 167 

glycosite-flanking amino acids with all amino acids) on every N-glycosite in our dataset. Using 168 

the modified glycosite sequences as inputs for InSaNNE, we analyzed the changes in predicted 169 

glycans compared to the wild-type sequence. To focus interpretation, we grouped glycans into 170 

“sialylated” and “fucosylated.” This allowed us to track the changes in predicted probability for 171 

each of these features following specific glycosite-flanking mutation (Figure 3, Supplementary 172 

Figure 3). However, while these reflect general trends of individual glycosites across all 173 

proteins, amino acid substitutions may have effects that deviate from these general trends. 174 

 175 

 176 

For multiple amino acid substitutions, we observed distinct changes in the predicted 177 

glycosylation of modified glycosites, with clear differences between changes to upstream and 178 

downstream regions. The introduction of some amino acids (e.g., tyrosine; Figure 3a) had the 179 

same qualitative effect regardless of where they were introduced. Meanwhile, other amino acids 180 

(e.g., cysteine; Figure 3b) have diverging effects, with a decrease in predicted complex glycans 181 

when introduced upstream and an increase when it is present downstream. We also observed 182 

that predicted changes in glycosylation were impacted more strongly by mutations in the distal 183 

parts of the glycosite-flanking sequence (e.g., glutamate; Figure 3c). These general trends of 184 

amino acid-glycan associations could be useful for glycosite-specific glycoengineering. 185 

Uncharacterized glycoproteins and glycan compositions can be 186 

annotated with candidate glycan structures  187 

Computational prediction to annotate protein features and functions is done routinely for newly 188 

discovered proteins, yet limited in silico characterizations exist for glycosylation. However, the 189 

relative speed of predicting glycosylation would make it invaluable for new, existing, or poorly 190 

characterized proteins; typical glycoprofiling approaches can otherwise take several months. 191 
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Even many well-characterized glycoproteins have only compositional measurements 192 

(unstructured monosaccharide counts) since glycan structure measurement and 193 

characterization are resource and expertise-intensive processes. Thus, InSaNNE could be 194 

invaluable for annotating glycosylation sites.  195 

Predicting glycosite location is one of the few high-confidence bioinformatic predictions involving 196 

glycosylation.33–37 To extend this capability, we predict the feasible glycan structures of 2,763 197 

human N-linked glycosites in the GlyConnect database.30 For this, we used InSaNNE to analyze 198 

the annotated glycosylation sites together with the six upstream and seven downstream amino 199 

acids. For each glycosite, we predicted the likelihood of 199 N-linked glycans (Supplementary 200 

Dataset 1). Using our independent test set, we ascertain a threshold with an acceptable false-201 

positive rate (AUC 0.92, Figure 4a). A threshold of 0.6 (predicted presence) corresponded to a 202 

false-positive rate <10% while maintaining a true positive rate >85%. This allowed us to assess 203 

the recall or sensitivity of our predictions within GlyConnect by quantifying known glycan 204 

structures that were successfully predicted (Figure 4b). Thus, InSaNNE could inform future 205 

experiments and comparative analyses of structure-based constraints in glycosylation and 206 

functional impacts.  207 

InSaNNE predicts complex glycans in the enhanced 208 

aromatic sequon and the SARS-CoV-2 Spike 209 

N-glycans are commonly grouped into categories, such as highly processed complex glycans, 210 

hybrid glycans, and immature oligomannose glycans.38 Previous work showed that an aromatic 211 

residue located two-positions N-terminal from a glycosylation site results in less complex N-212 

glycosylation at the site, termed the enhanced aromatic sequon.6 In this case, an L to F 213 

substitution two residues upstream of the CD2 glycosylation site transformed the site from 214 

predominantly complex (sialylated) and hybrid structures to low complexity (oligomannose) 215 

structures. When InSaNNE evaluates the same sequences, the F allele sequence shows 216 

significantly higher predicted presence for higher-mannose structures. We predict an 217 

enrichment for 7-mannose structures (One-sided Mann-Whitney-Wilcoxon, p=0.017) and predict 218 

an overall increase in oligomannose structure for the F allele (Linear model; Wald, p<0.001; F-219 

statistic, p=7.44x10-5; Figure 5a). We see a corresponding decrease in sialylated structures in 220 

the F allele (One-sided Mann-Whitney-Wilcoxon, p<1e-4; Figure 5b).  221 

 222 
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InSaNNE also recapitulates glycan types of SARS-CoV-2. These sites have been extensively 223 

characterized throughout the pandemic.15,39–41 N234, N717, and N801 are highly reproducible 224 

oligomannose sites.15 Oligomannose at N234 is consistently high (80-100%)15 and appears 225 

necessary to support the open ACE2-binding spike conformation.42 Our predictions show strong 226 

preference for Man5 and Man9 structures and a strong anticorrelation with sialylation (Figure 227 

5c-d). Sites N717 and N80115) are predicted here to have almost no sialylation (Figure 5c-d). 228 

Predictions for all glycosylation sites were mostly consistent with empirical observations 229 

(Supplementary Figure 4).  230 

 231 

We wondered if the spike protein of new strains shows predictable changes in glycosylation. We 232 

examined InSaNNE predictions at site N616 in a simulated D614G variant (Supplementary 233 

Figure 6) and N717 in a T716I variant (Figure 5e-f). We found distinct changes in predicted 234 

glycosylation. T716I, between the furin cleavage site and the fusion peptide, is within the more 235 

conserved S2 sequence and retains moderate antibody accessibility regardless of RBD 236 

conformation.43 To focus on relevant changes, we examined those with non-negligible ancestral 237 

predicted-presence (>0.1) and substantial fold change (|logFC|>1) relative to the ancestral 238 

spike. At site N717 in the T716I variant, many asialylated sugars with one to three galactose 239 

residues decrease relative to ancestral (Figure 5f, blue points). Additionally, a small number of 240 

sugars with zero to two sialic acids and one to four galactose residues increase. Though 241 

InSaNNE predicts that site N717 becomes variably permissible to mono-, di-, tri- and tetra-242 

antennary sialylated and asialylated structures, empirically, it is an oligomannose site, 243 

suggesting these terminal galactoses may not be visible without additional mutations to the site. 244 

Distinctly, InSaNNE reveals few confident changes at site N616 in the D614G variant 245 

(Supplementary Figure 6). If glycan structure can be predicted from primary sequence, site 246 

occupancy may also be bound by these constraints. 247 

 248 

InSaNNE predictions recapitulate biantennary abundance 249 

on human IgG3  250 

Mutations can perturb glycosylation in IgG3.9 Eight complex biantennary structures in human 251 

IgG3 were measured for wildtype (wt) and glycosite (N297; P01860:N227) proximal mutants. 252 

While the wt IgG3 showed a preference for core-fucose and a1-6-branch galactose, R301A 253 
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increased all terminal galactose, and Y296A accepted no galactosylation (Figure 6a). Thus, 254 

primary protein structure can profoundly influence glycosylation. 255 

We compared InSaNNE predictions for the R301A and Y296A mutants and found that 256 

predicted-presence and change in predicted-presence were correlated with empirical 257 

occupancy. Abundance-prediction correlation was high for the R301A mutant (R2=0.876; Figure 258 

6b) and moderate for wt abundance (R2=0.25; Figure 6b). Predicted presence was consistent 259 

with measured abundance in the Y296A mutant (R2=0.33; Figure 6b). Interestingly, prediction 260 

performance increased when we compared changes relative to wt. The predicted presence log 261 

fold-change in R301A relative to wt was highly correlated with measured abundance log fold-262 

change (R2=0.87; Figure 6c). Yet, the consistency in predicted vs observed change for Y296A 263 

decreased dramatically (R<0, R2=0.27; Figure 6c). To further probe the prediction failure in 264 

Y296A, we removed glycans with small predicted changes (|logFC|<1). Without the low-265 

confidence changes, abundance prediction performance for wt (R2=0.52), R301A (R2=0.99), 266 

and log fold-change (R301A vs. wt: R2=0.95) improved (Figure 6d-e), while nearly all 267 

predictions for Y296A dropped out. These results suggest that InSaNNE can predict occupancy 268 

and occupancy change for non-small (|log fold-change|>1) changes. 269 

Accessing InSaNNE predictions and continuous comparison 270 

through GlyConnect 271 

We evaluated the agreement between InSaNNE predictions and GlyConnect data at the 272 

compositional level. Figure 7a shows the protein-page d3 heatmap illustration comparing 273 

GlyConnect-annotated glycosylation events for human coagulation factor XI (UniProt:P03951; 274 

GlyConnect:818) with InSaNNE predictions; GlyConnect:818 is supported by four published 275 

references. Table 2 summarizes the comparison between GlyConnect annotation and InSaNNE 276 

predictions for human coagulation factor XI. 277 

 278 

 

reported  

structures  

reported 

compositions 

predicted  

structures 

overlap 

Asn-90 7 0 2 2 

Asn-126 5 4 4 2 

Asn-163 2 1 9 4 

Asn-450 4 4 4 2 

Asn-491 10 5 6 6 
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Total glycans 42 27 16 

Number of 

compositions 
14 7 7 

Table 2 - Summary of knowledge of human coagulation factor XI (P03951) as stored in the 279 
GlyConnect database at structural (first column) and compositional (second column) resolutions 280 
along with predicted structures (third column). The overlap between stored and predicted 281 
(predicted presence ≥ 0.8) structures is shown in the fourth column and the last row features the 282 
overall number of compositions. Note that overlap refers to matches between predicted 283 
structures and reported structures or compositions; one reported composition can map to 284 
multiple predicted structures. 285 

 286 

The first composition, H5N4 (five hexoses and four hexosamines), matches three structures 287 

with similar linkages recorded in GlyConnect. At site P03951:N491, in composition block H5N4, 288 

we see InSaNNE correctly predicts the presence of GlyConnect glycan 3471; the dashed-line 289 

compositional matches to glycans 2363 and 3233 are expected as all three glycans are 290 

members of the same composition block. Additionally, glycan 2363 is highly predicted at N491 291 

suggesting a partial linkage resolution for the incompletely determined structure stored in 292 

GlyConnect. Likewise, structures matching the H5N4S2 (five hexoses, four hexosamines, and 293 

two sialic acids) compositions contain glycan 3353 predicted and observed at all sites. Within 294 

composition block H5N4S2, InSaNNE predicts a higher likelihood (>0.9) for glycan 1641 at 295 

N163 (biantennary α2,3-Neu5Ac). Glycan 1641 offers a complete resolution of structural 296 

ambiguity for H5N4S2 at N163. Prediction and annotation both involve flexible linkage 297 

definitions, particularly for non-core residues. In contrast, the prediction at site N163 is more 298 

extensive than reported data. Interestingly, N163 is a rare NXC sequon, which may explain the 299 

smaller number of reported structures and provides novel insights into the distinct preferences 300 

of this rare sequon. 301 

 302 

For human coagulation factor XI, GlyConnect contains site-specific observations of 42 303 

structures and compositions, and 14 additional distinct but structurally related glycans (Table 2). 304 

Compositional similarity was displayed using Compozitor (Figure 7b). The Compozitor graph 305 

shows 14 compositional nodes connected through the addition of a single monosaccharide. Two 306 

virtual nodes (green: H6N4S2 and H5N5S2) are needed to fully connect the graph.44 All site-307 

specific InSaNNe-predicted structures correspond to previously annotated site-specific 308 

compositions in GlyConnect (magenta). InSaNNE fails to predict structures corresponding to 309 

three previously reported compositions the H6N5S2, H6N5F1S2, and H6N5F1S23. 310 
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Interestingly, the glycan property distribution (Figure 7c) is similar between reported and 311 

predicted compositions, suggesting a lack of systematic bias that would diminish expected 312 

performance for specific glycotypes. Other compositions were found in large scale 313 

glycoproteomics experiments without any precise structural features and may be less reliable 314 

annotations. 315 

Discussion 316 

Here we present InSaNNE, the Interloping Saccharide Neural Network Extrapolation, for 317 

predicting glycans on membrane-bound and secreted proteins. This approach employs a 318 

recurrent neural network and a graph convolutional neural network with stochastic weight 319 

averaging to predict feasible glycan structures based on the underlying protein sequence. 320 

InSaNNE successfully predicts known glycan structures on a wide range of proteins and 321 

assesses the impact of single amino acid substitutions on resulting glycan structures. Beyond 322 

initial cross-validation and test-set validation, we successfully predicted glycans on uromodulin, 323 

SARS-CoV2, IgG3, and across the GlyConnect database. We have added the glycan 324 

predictions to the glycome database GlyConnect, making them accessible for further study of 325 

this discovery. Importantly, InSaNNE further questions the premise of template-free glycan 326 

biosynthesis. Glycosylation through the bounded biosynthesis paradigm, and its accessibility 327 

through the InSaNNE framework, will facilitate more accurate and accessible study of diverse 328 

glycoproteins and glycoproteomic behaviors.    329 

 330 

InSaNNE enables the draft annotation of glycosylation on novel proteins, glycoprotein 331 

composition analyses, glycoinformatics, and whole proteomes. By increasing the predictability 332 

of glycans, we have reduced the challenge of measuring glycans. Mass spectrometry is the gold 333 

standard in glycan measurement today, but these measurements may produce partially 334 

ambiguous structures and topologies. Consequently, the field is rich with datasets and 335 

databases of partially or minimally assembled glycoprofiles.45–48 Combining measured glycan 336 

compositions with site-specific predictions of feasible glycosylation should facilitate automated 337 

glycoprofile assembly. These annotations can be completed for novel and existing glycoprofile 338 

assemblies; because of the automated nature, structural glycoprofiles can be assembled for 339 

single experiments or entire databases with comparable ease. The sequence-only nature of the 340 

prediction is especially important, as many proteins lack experimental structural observations; 341 

an algorithm that can operate on the primary sequence is considerably more portable than one 342 
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requiring structural information. A sequence-only prediction can even be used to quickly 343 

compare different isoforms or predict glycans on newly discovered protein sequences.  344 

 345 

We demonstrated our ability to glycosylate an entire proteome by predicting decoration 346 

throughout GlyConnect. Newly glycosylated proteins can be used to identify lectin-binding, 347 

glycan co-ligands, alternative charge, or steric conformations on proteins of interest, and 348 

changes in protein dynamics. These predictions can be disseminated to enrich databases 349 

detailing glycosylation30,49,50 and other post-translational modifications,51–53 protein structure,54,55 350 

domains,56,57 and interactions.58–61 Future work will extend this approach to O-linked glycans, an 351 

even more challenging endeavor due to less available data for training and a seeming absence 352 

of a clear consensus sequence on the protein side.62 353 

 354 

Predicted glycosylation can be used to inform large genetic and genome-wide studies. Genetic 355 

variation can change protein function and resulting phenotype, but here we demonstrate that it 356 

can impact glycosylation. InSaNNE can predict such changes and thus provide further 357 

hypotheses for elucidating disease mechanisms. For example, adding predicted differential 358 

glycosylation to a study of a high-heterogeneity critical immune gene like Human Leukocyte 359 

Antigen (HLA) will be invaluable. This is because HLA has a functional binding-groove adjacent 360 

glycosite63,64 that could contribute to the behavior, accessibility, and peptide presentation. Some 361 

HLA molecules have already been observed to carry allotype-specific glycans.65 Beyond HLA, 362 

understanding differential glycosylation on reference and variant molecules can help distinguish 363 

benign from pathogenic mutations: characterized (e.g., ClinVar) or uncharacterized (e.g., 364 

precision medicine). Additionally, certain glycoforms can modulate secretion.66,67 Because each 365 

glycan may confer a change in behavior, phenotypes of highly diverse glycoproteins such as 366 

secretion, protein-ligand interactions, cell-cell interactions, and extracellular protein complexes 367 

can be enriched by knowledge of glycosylation. These are only a few of the studies that may 368 

benefit from protein-predicted glycosylation potential. 369 

 370 

Bounded biosynthesis provides a more complete picture of immune evasion by evolving 371 

pathogens. Glycan-coated viruses have been responsible for many pandemics, while nearly 372 

every decade has seen epidemic strains of viruses, such as influenza. Recent work has 373 

highlighted the alignment of these fluctuations with changes in glycans decorating these 374 

viruses.12 Without specific glycoforms, it is not possible to determine which of these viruses 375 

successfully disguised critical immune epitopes and which viruses created or maintained new 376 
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lectin-targeted epitopes. With specific glycan prediction, we may predict the most concerning 377 

mutations, those that may reinforce a glycan shield,11,68–70 stabilize virulence factors,42 or 378 

occlude immunogenic antigens.71 Glycoform predictions can provide these missing data along 379 

with previously inaccessible insight into the history and future of viral evolution. 380 

 381 

In summary, bounded glycan biosynthesis, as functionalized by InSaNNE and made accessible 382 

through GlyConnect, will enable investigators to easily consider glycosylation across many 383 

areas of biological study. InSaNNE will thereby sharpen our understanding of the extracellular 384 

space and innumerable intercellular phenotypes. 385 
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Methods 396 

Site-specific glycosylation training set construction 397 

Empirical site-specific glycosylation data from humans was obtained from UnicarbKB29 and 398 

Glyconnect72 with supplemental information from GlyGen.73 The protein structure annotation 399 

was done using the Structural Systems Biology (ssbio) package in python.74 Protein structure 400 

analysis was performed in Python v2.7.15 using ssbio v0.9.9.8 to retrieve and calculate: existing 401 

empirical and homology models from PDB and SWISSMOD (PDBe SIFTS),75 de novo 402 

homology models (I-TASSER v5.1), sequence properties (EMBOS v6.6.0.0 pepstats), sequence 403 

alignment (EMBOS v6.6.0.0 needle), secondary structure (DSSP v3.0.0, SCRATCHv1.1::sspro 404 

and SCRATCHv1.1::sspro8), solvent accessibility (DSSPv3.0.0 and FreeSASAv2.0.2), and 405 

residue depth (MSMSv2.2.6.1). Additional amino acid aggregate features were calculated using 406 
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R::seqinr. Glycan structures were annotated using a combination of glypy76 and GlyCompare27 407 

for structure parsing and comparison, respectively. All glycan substructures, a connected subset 408 

of monosaccharides with and without linkage information, were extracted from each glycan, 409 

merged to make a superset of substructures, then mapped to each glycan. This resulted in a 410 

mapping from every glycan in the input database to shared substructures. 411 

 412 

For the dataset used to train InSaNNE, we extracted 1,721 unique glycosylation events from 413 

UniCarbKB.29 This included the glycan structure that was observed and the glycosite-flanking 414 

sequence (14 amino acids, with the glycosylated amino acid in the center) and structural 415 

information in the form of additional amino acids within 6Å if structural simulations converged. 416 

As negative examples, we generated the same number of combinations of glycosites and 417 

glycans that have not been observed. 418 

Model construction 419 

All glycan-glycosite matching models comprised (1) a recurrent neural network that analyzed 420 

the amino acid sequence of the glycosite, (2) another recurrent neural network analyzing the 421 

amino acids of the three-dimensional glycosite surroundings, (3) a model analyzing the glycan 422 

structure, described below, and (4) a part consisting of fully connected layers to use the 423 

concatenated features generated by the previous modules to predict whether a glycan is 424 

permissible at a glycosite. The recurrent neural networks consisted of a 128-dimensional 425 

embedding layer followed by two bidirectional long short-term memory (LSTM) layers. The fully 426 

connected model part consisted of a linear layer, a leaky ReLU (rectified linear unit) activation 427 

function, a batch normalization layer, and a multi-sample dropout scheme77 followed by a 428 

sigmoid function. 429 

We compared three different model architectures for the glycan analysis module. For assessing 430 

GlyCompare,27 the glycan analysis module comprised a fully connected neural network using 431 

the 12,259 GlyCompare features as inputs for two linear layers interspersed with dropout, leaky 432 

ReLU, and batch normalization layers. For the model containing a SweetTalk-based language 433 

model for glycan analysis,22 we converted glycans to glycowords and used a bidirectional 434 

recurrent neural network for protein sequences. For the SweetNet-based model,24 we converted 435 

glycans to graphs by constructing a list of nodes (representing monosaccharides or linkages) 436 

and edges to denote graph connectivity. All glycan processing for SweetTalk and SweetNet was 437 
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done using glycowork version 0.5.78 The corresponding model contained an embedding layer 438 

and three graph convolutional layers, interspersed by leaky ReLUs, Top-K pooling layers, and 439 

both global mean and global maximum pooling operations. Model architectures and 440 

hyperparameters were optimized using cross-validation. 441 

Model training and prediction 442 

All models were trained with an NVIDIA® Tesla® K80 GPU using PyTorch version 1.11.0.79 We 443 

split the data on a protein level into 80% for training and 20% for testing. For the RNNs, all 444 

glycosite-flanking protein sequence and glycan structure were brought to the same length by 445 

padding. Linear layers and RNNs were initialized using Xavier initialization80 while SweetNet-446 

type models were initialized using a sparse initialization scheme with a sparsity of 10%. 447 

We used a batch size of 64 for all models. As an optimizer, we used ADAM (adaptive moment 448 

estimation) with a weight decay value of 0.00001 and a starting learning rate of 0.00001, which 449 

was decayed according to a cosine function over 170 epochs. We trained models for a 450 

maximum of 250 epochs, with an early stopping criterion of 25 epochs without a decrease in 451 

validation loss. As a loss function, we used binary cross-entropy. Beginning from epoch 150, we 452 

additionally employed stochastic weight averaging81 with a learning rate of 0.0001. 453 

The presence or absence of each glycan can be predicted from the trained InSaNNE model by 454 

inputting a glycosite and glycans to predict whether these glycans could occur on this glycosite. 455 

To heuristically boost signal for glycans with limited representation in the training set, we 456 

generated a naturalistic background of predicted presence for each glycan. Predictions were 457 

generated from all training-set glycosites to capture the biases and variation of the dataset as a 458 

background predicted-presence distribution for each glycan. The background-adjusted 459 

predicted-presence is the product of predicted presence and the predicted-presence cumulative 460 

probability (statsmodels::ECDF v0.12.2) relative to the naturalistic background for that glycan. 461 

 462 

Integration and display of predictions in GlyConnect 463 

Using InSaNNe, we calculate the predicted presence of 512 N-linked glycans for each N-linked 464 

glycosite in the GlyConnect dataset. Prediction data were processed to fit the requirements of 465 
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the GlyConnect database format, mainly storing association between glycans, glycoproteins and 466 

glycosites.30 467 

 468 

IUPAC-represented glycans,82,83 output by InSaNNe, were transformed to GlycoCT84 using the 469 

GlyConnect API function, convertIupacToGlycoct (https://bitbucket.org/sib-pig/sugar-470 

converter/downloads/). Transformed prediction data was integrated in the database to enable 471 

dynamic mapping through predefined queries for glycan structures and glycoprotein sites. Once 472 

transformed, any update of the InSaNNE prediction will easily be reflected in the database. 473 

 474 

JSON files resulting from querying GlyConnect REST API are used for data export and display. 475 

A d3.js heatmap (https://d3-graph-gallery.com/heatmap) was selected as an appropriate data 476 

visualizer. The dimensions are defined as glycan structures/compositions and glycoprotein sites 477 

(designated by UniProt accession numbers and glycosylated amino acid sequence position). 478 

Heatmaps are created in three types of pages: (1) protein page featuring all glycan structures 479 

and compositions found attached to that protein, (2) structure page, featuring one structure and 480 

the many proteins on which they are found attached, and (3) composition page, featuring all 481 

matching glycan structures and the many proteins on which they are found attached. This data 482 

can be exported as csv files. Prediction data can also be visualized and compared using 483 

GlyConnect Compozitor.44 484 

 485 
 486 

487 
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Figure Captions 489 

Figure 1 InSaNNE model architecture. A) Three model architectures were used to embed glycan structures in 490 
meaningful manifolds;23,24,27 given a glycan, these models output glycan-specific coordinates within the embeddings. 491 
To analyze the GlyCompare features of glycans, we used a fully connected neural network, while a SweetTalk-based 492 
language model used linear glycan sequences and a SweetNet-based graph convolutional neural network relied on 493 
glycan connectivity (see Methods for details). B) Full model architecture of InSaNNE. The results of one of the glycan 494 
embedding modules (A) is concatenated with protein-structure and protein-sequence embeddings output by the two 495 
protein-language models. These outputs were analyzed by a fully connected neural network and yielded the 496 
predicted probability of a glycan-glycosite match. Specifically, InSaNNE takes in a 14 amino acid glycosite-flanking 497 
sequence, optional spatially proximal amino acids, and a comprehensive library of 700 representative glycans on 498 
which InSaNNE was trained. Glycan libraries containing non-represented glycans can be used following additional 499 
training. 500 

 501 

Figure 2 – Characterizing the glycan-glycosite-matching model InSaNNE. A) Dependence of glycan feature 502 
prediction performance on occurrence. Using our trained InSaNNE model, we plotted the averaged prediction 503 
performance of glycan features against their counts in our dataset. B) Glycan feature accuracy distribution. A 504 
histogram of the prediction performance for all observed glycan features is shown. C) Clusters of difficult-to-predict 505 
glycan features. We used t-SNE to visualize the glycan representation learned by InSaNNE for all glycan features. 506 
Each feature was colored by its averaged prediction performance to identify structurally related clusters of glycan 507 
features that are more difficult to predict for InSaNNE (shown in brighter colors). D) Prediction performance 508 
depending on the glycosite was visualized using a t-SNE of the glycosite representations learned by InSaNNE. For all 509 
glycosites in our dataset, we averaged prediction performance over all glycans and colored glycosites by prediction 510 
performance to identify difficult to predict glycosite clusters. E) Experimentally observed and predicted glycans at a 511 
glycosylation site of human uromodulin were compared. GTVLTRNETHATYS  (P07911:N396) was used to predict 512 
permissible glycans using the trained InSaNNE model, and the top 80 predicted glycans were analyzed and 513 
compared to previously observed glycans at that site 32. 514 

 515 

Figure 3 - Effects of amino acid substitutions on predicted glycosylation ranges. A-C) For all N-linked 516 
glycosites in our dataset, we substituted each amino acid with tyrosine (A), cysteine (B), or glutamate (C) and input 517 
the modified glycosite-flanking sequences into our InSaNNE model and predicted feasible glycosylation. We then 518 
calculated the average change (predicted presence difference) compared to the predicted wild-type glycosylation 519 
glycosites; shown here with a 95% confidence interval. Lines for changes to fucosylated (red) and sialylated (purple) 520 
glycans are shown. See Supplementary Figure 3 for analogous plots for other amino acid substitutions. 521 

 522 

Figure 4 - Enriching GlyConnect with InSaNNE predictions. A) For classification thresholds between 0 and 1, we 523 
assessed true and false positive rates of InSaNNE predictions on the independent test set and compared it to a 524 
random classifier baseline. B) We validated InSaNNE predictions with existing structures on GlyConnect by 525 
investigating the influence of classification threshold on the hit rate (i.e., recall/sensitivity) of InSaNNE accurately 526 
predicting known glycan structures in GlyConnect. The grey dotted line marks the 0.6 threshold used. 527 

 528 
Figure 5 InSaNNE predicts complex glycans around the enhanced aromatic sequon and the SARS-CoV-2 529 
spike protein. (A-B) Boxplot distributions of predicted-presence for the L and F variants at N-2 stratified by number 530 
of (A) mannoses per glycan and (B) sialic acids per glycan. (C-D) Boxplots describing predicted glycosylation by (C) 531 
mannose per glycan and (D) sialic acid per glycan for three oligomannose sites in the SARS-CoV-2 spike 532 
glycoprotein. See Supplementary Figure 4 for all SARS-CoV-2 spike glycosylation sites. (E-F) Fold changes of 533 
predicted glycans at site N717, labeled by number of (E) galactose and (F) sialic acid units, between the wild-type 534 
and B.1.1.7 spike protein. Predicted-presence fold-change (y-axis) is stratified by the basal predicted-presence for 535 
each glycan in the wild-type (x-axis). Predicted-presence fold-change from wild-type by galactose, mannose, GlcNAc, 536 
and sialic acid is provided for N717 and N616 in B.1.1.7 (Supplementary Figure 5) and D615G (Supplementary 537 
Figure 6) variants respectively. ns:  p>0.05, *: p<0.05, **: p<0.01, **: p<0.001, ***: p<1e-3, ****:p<1e-4 538 
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 539 

Figure 6 - InSaNNE predictions of relative abundance on IgG3. A) Heatmap showing the log-scale abundance of 540 
various glycan species observed in wt and mutant Fc on human IgG3.9 B) The background-adjusted InSaNNE 541 
predicted-presence is compared with the empirical abundance in wild type (black), R301A mutant (blue), and the 542 
Y296A mutant (teal). C) Log fold change between glycan abundance for mutants relative to wildtype were compared 543 
between empirical and predicted abundance for all glycans. D-E) The bottom panels mirror panels B-C except 544 
glycans with a predicted absolute log fold-change less than 1 were removed. 545 

 546 

Figure 7 Predicted glycosylation pattern of human coagulation factor XI (P03951). H: hexose, N: hexosamine, F: 547 
fucose, S: sialic acid. (A) The heatmap displays the predicted presence for glycan structures at each known N-548 
glycosite and indicates agreement with glycans previously observed at those sites retrieved from GlyConnect. The 549 
structures in each row are ordered by glycan composition; columns represent the five annotated N-glycosites of 550 
P03951. Site-specific glycan structure predictions are many-to-many relationships in the GlyConnect database since 551 
the same structure may be associated with several sites and conversely a single site may be predicted to present 552 
several similar yet non-mutually exclusive glycan structures. Composition blocks contain all structures matching a 553 
specific composition. Color indicates the strength of the predicted presence from 0.8 (lower-bound cutoff) to 1 554 
(predicted presence upper-bound). A solid-line borders indicate exact structural matches (identical precise 555 
monosaccharides and identical linkages) while dashed lines indicate composition matches (monosaccharide 556 
category, e.g., hexose) with at least one non-identical linkage; composition-equivalent blocks (e.g., H5N4) are 557 
labelled. (B) A Compozitor graph representing compositional similarity between predicted and observed glycans. 558 
Fourteen glycan compositions are reported in GlyConnect for human coagulation factor XI. Nodes are connected via 559 
single monosaccharide additions represented as the edge label. Seven compositions are predicted and all included in 560 
the fourteen previously observed compositions (magenta). Two virtual nodes (green) were added to connect the 561 
graph. Numbers within the blue nodes express a correspondence in GlyConnect data between a composition and 562 
structures. When the number is absent it means we only have compositional data. The size of the non-blue nodes 563 
represents a comparison with the total content of GlyConnect to indicate the likelihood of the composition. For large 564 
nodes, the composition occurs often, irrespective of the protein where it is seen. (C) The bar chart represents glycan 565 
properties mapped in all subsets (database, predicted and virtual). It highlights the similarity across properties of 566 
predicted and stored structures. 567 

 568 
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