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Abstract

Background: Breakthroughs in skin cancer diagnostics have resulted from recent image recognition and Artificial
Intelligence (AI) technology advancements. There has been growing recognition that skin cancer can be lethal to humans.
For instance, melanoma is the most unpredictable and terrible form of skin cancer.

Materials and Methodology: This paper aims to support Internet of Medical Things (IoMT) applications by developing a
robust image classification model for the early detection of melanoma, a deadly skin cancer. It presents a novel approach
to melanoma detection using a Convolutional Neural Network (CNN)-based method that employs image classification tech-
niques based on Deep Learning (DL). We analyze dermatoscopic images from publicly available datasets, including DermIS,
DermQuest, DermIS&Quest, and ISIC2019. Our model applies convolutional and pooling layers to extract meaningful features,
followed by fully connected layers for classification.

Results: The proposed CNN model achieves high accuracy demonstrates the model’s effectiveness in distinguishing between
malignant and benign skin lesions. We developed deep features and used transfer learning to improve the categorization
accuracy of medical images. Soft-max classification layer and support vector machine have been used to assess the classi-
fication performance of deep features. The proposed model’s efficacy is rigorously evaluated using benchmark datasets:
DermIS, DermQuest, and ISIC2019, having 621, 1233, and 25000 images, respectively. Its performance is compared to current
best practices showing an average of 5% improved detection accuracy in DermIS, 6% improvement in DermQuest, and
0.81% in ISIC2019 datasets.

Conclusion: Our study showcases the potential of CNN in melanoma detection, contributing to early diagnosis and improved
patient outcomes. The developed model proves its capability to aid dermatologists in accurate decision-making, paving the
way for enhanced skin cancer diagnosis.
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Introduction
In recent decades, skin cancer has been among the most
prevalent causes of death worldwide, contributing to the
overall rise in cancer-related mortality rates. Countries
with extreme weather patterns and long-term solar exposure
are the known causes.1 Skin lesions may be benign or
malignant, such as melanoma, pigmented benign keratosis,
basal cell carcinoma, or squamous cell carcinoma.2,3 Due to
the great degree of similarities between various skin lesions,
visual inspection remains difficult and may result in an
incorrect diagnosis. Therefore, a highly efficient and well-
trained professional is needed for manual diagnosis due to
the high resemblance across lesions.4 Melanoma, a skin
cancer type, can be deadly without early detection. Much
study continues to focus on developing more accurate
methods of detecting melanoma at an early stage so that
medical professionals can more accurately distinguish
between the two. Traditional techniques were used to
extract critical visual features based on color and texture
in images, whereas contemporary technology takes cues
from natural processes, such as Artificial Intelligence
(AI)5 and Deep Learning (DL),6 e.g., Convolutional
Neural Networks (CNNs).7 Deep CNN (DCNN) learns sys-
tematically using a variety of inputs. Data scarcity, segmen-
tation, pre-processing, and augmentation hamper the
performance of existing computer-aided approaches for
dermatological image classification.8

The adoption of AI has significantly led to the early iden-
tification of melanoma.9 Particularly, CNNs have demon-
strated promising results in melanoma detection from
images.10 By adjusting the hyperparameters of CNNs,
researchers have improved their accuracy and decreased
the number of false positives in melanoma detection.11–13

In addition, incorporating Internet of Things (IoT) or
Internet of Medical Things (IoMT)14 devices with CNNs
has made it possible to diagnose melanoma non-invasively
by capturing images of the skin lesion using a smartphone
or other portable devices.15,16 This integration has increased
the accessibility of melanoma detection, particularly in
remote or low-resource areas with limited access to health-
care facilities. CNNs can autonomously learn features from
images and attain high classification accuracy.17,18

However, it depends significantly on hyperparameters
such as learning rate, sample size, and the number of
layers to achieve optimal performance. The process of
determining the optimal combination of hyperparameters
for a given task is known as hyperparameter optimization.
It is crucial in developing CNN-based melanoma detection
systems with high accuracy and generalizability on unob-
served data.19

However, tuning the hyperparameters of a CNN is
crucial for increasing the detection accuracy of melanomas.
Finding the optimal hyperparameter values can substan-
tially enhance the model’s precision and generalizability.

The model may suffer from underfitting or overfitting if
the hyperparameters are not appropriately tailored.20 The
primary cause of underfitting is the oversimplified model
that cannot represent the data’s complexity. It induces
poor performance for the training and testing datasets. On
the other hand, overfitting arises when a model is overly
complex and suits the training data too closely, resulting
in inadequate generalization to new, untrained data.
Fine-tuning hyperparameters can prevent both issues and
increase the model’s precision. Adjusting the learning
rate, for instance, can help the model converge more
quickly during training, while increasing the number of
layers can enhance the model’s capacity to learn intricate
features. This paper presents a comprehensive technical
analysis of hyperparameter optimization for CNN-based
melanoma detection. Through meticulous experimentation,
we unearth the remarkable potential of hyperparameter
tuning to refine and fundamentally elevate the prowess of
CNN-based melanoma detection. Our revelations stand
poised to reshape the landscape of medical imaging,
driving the evolution of melanoma detection systems
toward unparalleled accuracy and efficiency, all within
the powerful framework of CNN technology. The paper
contributions are summarized as follows:

1. Introducing a CNN-based method for melanoma detec-
tion that employs image classification techniques based
on DL.

2. Investigating the efficacy of CNN hyperparameter fine-
tuning in enhancing the detection accuracy of melano-
mas to aid dermatologists in providing an accurate
and timely diagnosis.

3. The proposed model is augmented using mathematical
modeling and formal description, which is further ela-
borated using mathematical examples.

4. Evaluating the proposed method on benchmark datasets
and comparing the results to current best practices.

5. Review the most recent research on melanoma detection
using DL techniques, including various approaches,
datasets, and performance measures.

6. Improving accuracy, precision, recall, and F1-Score for
the benchmark datasets.

This paper constitutes the following sections: The literature
review is analyzed in the “Related work” section, followed
by the background in the “Background” section. The
Alexnet model is presented in the “AlexNet model”
section, and the “Proposed architecture and model”
section details the proposed architecture and model. The
Experimentation and results are delineated in the
“Experimentation and results” section, whereas the conclu-
sion is in the “Conclusion and future work” section.
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Related work
This section details various classification studies of skin
cancer using machine learning models and their compre-
hensive analysis.

Promising findings for employing Support Vector
Machines (SVMs) to predict melanoma skin cancer are dis-
cussed by Lingaraj et al.21 However, the results cannot be
applied to a broader population due to the study’s limited
sample size and absence of external validation. Another
possible drawback is that SVM models are not easily inter-
pretable, and in clinical settings, it is essential to consider
the model’s specificity and false-positive rate. Machine
learning models’ clinical value and cost-effectiveness in
clinical settings should be evaluated. Future research
should confirm the model’s performance on external data-
sets and produce more interpretable models. Using DL
models, the authors22 investigated the influence of several
pre-processing methods on the classification accuracy of
skin lesion photographs. They discovered that pre-
processing methods might considerably increase the classi-
fication accuracy of photos of skin lesions, with CLAHE
producing the overall best outcomes. The scientists also
offer insights into the processes underpinning the enhanced
performance, which will help guide future studies on the
classification of skin lesions. Overall, the study significantly
adds to skin lesion classification by highlighting the value
of pre-processing approaches and outlining the best ones.
The results significantly enhance the precision and depend-
ability of DL-based automated skin lesion detection. The
study uses a single dataset constraint, and further investiga-
tion is needed to see whether the results can be applied to
other populations and other datasets. Liang and Wu23 eval-
uated the effectiveness of decision trees and neural network
algorithms in identifying skin cancer from dermoscopy
images. The neural network algorithm outperformed the
decision tree algorithm in terms of sensitivity, but both
the neural network and decision tree algorithms demon-
strated high accuracy in detecting skin cancer. However,
it did not consider the algorithms’ specificity, which
is crucial in clinical practice to prevent false positives and
pointless biopsies. The study only used a small dataset,
which may limit how broadly the results can be applied
to other populations and datasets. The authors did not
address the number of malignant and benign cases being
imbalanced, variations in image quality and lighting condi-
tions, or other potential biases in the dataset. These biases
may impact the effectiveness and generalizability of the
algorithms.

To increase the precision of skin cancer classification,
Ashraf et al.24 proposed a CNN-based architecture that con-
sidered global and local skin lesion attributes. The article
offers a promising advancement in DL-based skin cancer
classification. However, the suggested model may increase
the efficacy and accuracy of a skin cancer diagnosis while

lowering the demand for invasive biopsies. In addition,
The number of convolutional layers (CLs), filters, pooling
operations, and how the hyperparameters were chosen for
the CNN architecture should have been explained.
Hyperparameter tuning is crucial to maximize the capabil-
ities of the CNN architecture and guarantee its transferabil-
ity to other datasets. The study only used a small sample of
images of skin lesions, which may have limited generalized
results. To identify skin cancer, Ashraf et al.25 suggested a
DL architecture combining transfer learning and
region-of-interest methods. On a dataset of skin lesion
images, the authors test the effectiveness of their suggested
approach and demonstrate high classification accuracy, sen-
sitivity, specificity, and AUC values. However, the study
has several limitations, including a relatively small
dataset, a lack of information regarding the hyperparameter
selection, limited interpretability, a restricted view of the
lesion, and a lack of analysis of dynamic changes in skin
lesions over time. Similarly, Ali et al.26 proposed a frame-
work for classifying medical images using stacked
patched auto-encoders based on DL. It demonstrated the
efficacy of the proposed method by evaluating its perform-
ance on two distinct medical imaging datasets and achiev-
ing high levels of precision and sensitivity. However, the
study has several limitations, such as a lack of a detailed
explanation of hyperparameter selection, limited generaliz-
ability due to evaluating only two datasets, lack of interpret-
ability of the DL model, reliance on pre-processing
techniques, and limited applicability to three-dimensional
images.

Mustafa et al.19 proposed a method for classifying mel-
anoma using a hybrid color texture feature extraction tech-
nique and an artificial neural network (ANN) classifier. The
proposed method achieved a high classification accuracy on
a dermoscopic image dataset. However, the study has
several limitations, including an absence of a detailed
explanation of the feature selection procedure, reliance on
a single ANN classifier, and limited generalizability due
to evaluating a single dataset. In addition, the study did
not compare the proposed method to other cutting-edge
techniques for melanoma classification, and the dataset
used was relatively small, limiting the generalizability of
the results to more extensive and diverse datasets. In add-
ition, the authors needed to provide more information
regarding the interpretability of the ANN classifier, which
could have been essential for dermatologists and medical
practitioners to comprehend the classification decisions.
Lastly, the performance of the proposed method may be
impacted by variations in image quality and other factors
that affect the precision of texture and color feature extrac-
tion methods. On a dermoscopy image dataset, Jeyakumar
et al.27 analyzed the efficacy of different DL models for
classifying melanoma, which used CNNs and transfer
learning models. According to the study, DL models, par-
ticularly CNNs, outperform conventional machine learning
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techniques for melanoma classification. It did not, however,
shed any light on the potential limitations of DL models,
such as their sensitivity to variations in image quality or
other factors that can affect the models’ accuracy. In add-
ition, the investigation of the effects of data augmentation
on the performance of DL models is missing, which
could be a crucial factor in enhancing their accuracy on
more extensive and diverse datasets. Another work by
Bukhari et al.8 proposed a new framework for segmenting
melanoma lesions using multiple parallel depth-wise separ-
able and dilated convolutions with Swish activations. In
terms of accuracy and computational efficiency, the pro-
posed framework outperforms other state-of-the-art seg-
mentation techniques, according to the study. However,
the study is less generalized and lacks an in-depth analysis
of limitations or investigation of interpretability, which may
limit the generalizability of its findings. Similarly, Hosny
and Kassem,4 combined residual learning with deep
CNNs and transfer learning in their proposed method. It
used residual DCNN for skin lesion classification. The
study evaluates the proposed network on a public dataset
for classifying skin lesions and compares it to other
cutting-edge classification methods, demonstrating its
superior performance. The lack of a thorough analysis of
the limitations of the proposed method and an explanation
of the interpretability of the network may limit the general-
izability of the study’s findings.

Olayah et al.28 used fused CNN models to propose
hybrid systems. They used geometric active contour,
ANN, and Random Forest and gained high accuracy of
96.10% for analyzing the skin lesions. Similarly, Nunnari
et al.29 presented a CNN-based skin lesion images’ classifi-
cation using pixel and patient metadata with an accuracy of
up to 19.1%. Villa et al.30 presented three models for der-
moscopy image classification using CNN with 96% and
93% accuracy for two different datasets. To detect melan-
oma, Tryan et al.31 used ensemble learning based on two
CNN models with an accuracy of 96.7%. In addition,
Imran et al.32 used a DCNN model for image diagnostics
with an accuracy of 94%. In another study by Hoang
et al.,33 lesion segmentation was proposed using
EW-FCM and ShuffleNet methods with an accuracy of
84.66%. Table 1 provides a comparison among
state-of-the-art.

The comparison shows several machine and DL techni-
ques for melanoma detection and categorization of skin
lesions. Each technique shows good accuracy and encour-
aging results on the studied datasets. However, they also
have drawbacks and possible biases that limit their gener-
alizability and clinical usefulness. Small sample numbers,
reliance on a single dataset, lack of interpretability, vari-
ability in picture quality, and poor lighting conditions
are a few of these constraints. Future studies should look
at more thorough and understandable models for melan-
oma detection and skin lesion classification to solve

these shortcomings. In order to maximize these models’
performance for clinical usage, it is also critical to assess
the clinical value and cost-effectiveness of these models
in real-world situations and to consider the balance
between sensitivity and specificity. Overall, these con-
nected efforts increase the categorization of skin lesions
and melanoma detection and serve as a foundation for
further study in this area.

Background
In melanoma detection, precise image classification has
proven to be a life-changing tool. Image classification
accuracy is the key to unleashing early diagnosis and
treatment, thus transforming patient well-being. By utiliz-
ing cutting-edge techniques such as CNNs, the accuracy
of classifying complex skin lesions has surpassed that
of conventional methods. This development allows der-
matologists to quickly and precisely differentiate
between benign and malignant lesions, allowing them to
intervene at the earliest stages. The ramifications are sig-
nificant: a timely diagnosis enables medical professionals
to initiate precise treatment strategies promptly, halting
melanoma progression and ultimately improving patient
survival rates.

Traditional classification methods use simple or inter-
mediate features to characterize an image.34 Grayscale
density, form, shape, texture, color, and position data
(AKA handmade features) describe low-level features.35

Learning-based feature extraction and intermediate-level
feature extraction are typical applications of Bag-of-
Visual-Word36 methods, which have gained momentum
in image retrieval and classification in recent years.26,37

After collecting features, a classifier (SVM- or Soft-max-
based CNN) is often used to categorize different class
objects in computer vision. The illustration shows the
typical method of classifying images. Figure 1 represents
the traditional Learning method.

The two distinct steps of image classification are com-
bined into one by the DL method.38,39 The extraction of
features and classification are combined into an all-encom-
passing network. Compared to manually generated low-
and mid-level features, the high-level features of DL depic-
tion performed better in image recognition and classification.
This idea is based on the DLmodel, which consists of numer-
ous layers,40 including convolution, pooling, and fully linked
layers. While learning more complex features, these layers
transform raw data (like photos) into refined outcomes (like
classification scores). DL’s main advantages lie in its
ability to do two tasks (extraction of features and image clas-
sification) using a single network that has been trained from
beginning to the end and in its ability to be data-driven,
highly representative, task-specific, multitasked, and hier-
archical.41,42 A DL classification procedure is illustrated in
Figure 2.
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Deep learning for image classification

Image classification is one of the most fundamental pro-
blems in pattern recognition and computer vision. Some
examples of applications include image and video surveil-
lance, human-computer interface, video retrieval, and bio-
metrics. Numerous algorithms have been developed for
feature coding, which is a key constituent of image classifi-
cation that has been studied for many years. The extraction
of image features, followed by their classification, is what
image classification is all about.43 Therefore, learning to
extract and analyze image properties is crucial to image
classification. The convolution, fully connected (FC), and
pooling layers (PLs) that make up a CNN’s architecture
are improvements above those of a regular ANN. The
CNN, like the ANN, is essentially a hierarchical network.
Both the function and form of layers have evolved.
Convolution and PLs carry out feature extraction,
whereas fully linked layers carry out classification. The
classification process is, therefore, tri-layered.44

Convolution layer. The image may be considered a feature
extraction process (out of an image) using the convolution
layer. Differences between machine and human vision are
discussed before moving on to the convolution layer. For
instance, the dimensions, contrast, and shape of a grayscale
of an apple image are all used to determine what it is. For a
computer to learn a new image, it must first extract the
image’s attributes from the matrix; picture convolution is
one such technique. For example, a convolution kernel or a
filter of size 3 × 3 can iteratively smooth out 8 × 8 images
with an average step size = 1. When the filter is applied to
an image, its values are multiplied by its values, and then
the resulting products are combined. Consequently, the result-
ant value is a component of a feature matrix. After sending the
whole image, the feature matrix can be retrieved.25 Figure 3
depicts the DL architecture’s Convolution Layer.

Pooling layer. Between two convolution layers, a PL is
often employed in CNN. The last FC layers’ (FCL) param-
eter matrix and parameter set may benefit significantly
from the PL’s simplification. It may be used to reduce
over-fitting and expedite computation. When the learned
image is too massive for the number of training para-
meters, a PL is added between the convolution layers.
The depth of the image stays unchanged since pooling is
performed in all depth dimensions. Maximum pooling
occurs more often than any other kind of pooling. For
instance, for a 4 × 4 matrix, the steps for max-pooling
involve a filter with two broad squares and two squares
high, advancing in 2-square increments across the
matrix. The highest value in the filter zone is used as a
component of the pooling matrix at each stage. Repeat
until the filter has processed the whole matrix.24 Figure 4
represents a DL architecture PL.

Figure 1. Traditional learning method.

Figure 2. Deep learning method.
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Fully connected layer. It is the last layer of a CNN and is
often employed for classification tasks. The outputs from
the previous layers are sent into this layer and then inter-
preted in terms of the classification job. Given that the
formal pooling and convolution layers deliver five out-
comes, we may split them into three distinct classes.
These five outcomes are the most crucial features for deter-
mining the category to which the input image belongs. The
classification job’s objectives result from three types of
completely connected layers.45 To finish the classification
task, the bias, weights, and crucial features of the FCL
will carry out linear combinations resulting in three
classes. Figure 5 represents an FCL.

Loss function. Before a CNN-based model can be trained to
determine its loss function, the value of this function indi-
cates how accurate a model’s prediction will be after it
has been used for classification. The reliability of a model

may be determined from these predicted values. The
CNN-based model provides a predicted value at each pro-
cessing layer during the training phase. As a result of this
training, the loss function can now determine the discord-
ance between observed and predicted data. Minimizing
this loss across these two values is the primary goal of
the CNN model. Cross-entropy, mean-squared error, and
other loss functions are only a few examples. High values
of the loss function indicate poor model performance. The
loss function should have a minimum value.46

Deep convolutional neural network

DCNNs have emerged as a highly effective and widely used
category of DL models, exhibiting exceptional performance
in computer vision approaches, including the classification
of images, detection of objects, and segmentation. Its incep-
tion can be attributed to Fukushima’s pioneering research

Figure 3. Convolution layer.

Figure 4. Pooling layer.
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on the “Neocognitron,” which drew inspiration from the
hierarchical receptive field model of the visual cortex.47 It
comprises three distinct layers: convolutional, pooling,
and nonlinear. CLs may identify meaningful features by
convolving a weighted kernel or filter with the input
picture. These layers employ a learned set of filters to
process the input image, extracting features at various
scales and positions. Subsequently, the characteristics
above undergo a sequence of FC strata to generate the
ultimate forecast. Using nonlinear layers; the network
may simulate nonlinear functions by applying an activation
function on feature maps.48

In order to reduce the total number of model parameters,
PLs are used to swap out smaller feature map neighborhoods
with bigger ones. Its training entails optimizing specific para-
meters, commonly called weights, for defining the network’s
behavior. Commonly, a variant of stochastic gradient descent
is employed to update the weights by computing the discrep-
ancy between the network’s predictions and actual labels.
The selection of hyperparameters, such as the optimization
algorithm and learning rate, can substantially influence the
performance of a network. The units within layers exhibit
local connectivity, whereby a given unit is subjected to
weighted inputs from a limited neighborhood of units in
the preceding layer. This neighborhood is commonly referred
to as the receptive field. Higher-level layers can learn charac-
teristics from receptive fields that are progressively broader
via stacking layers, creating multi-resolution pyramids.49

Over the past few years, there has been a proliferation of
novel deep neural architectures, such as capsule networks,
transformers, spatial transformer networks, and gated

recurrent units. CNNs continue to be a prevalent and exten-
sively employed model in computer vision. It possesses a
notable computational edge over FC neural networks due
to weight sharing among all receptive fields in a layer,
which considerably reduces parameters.36 Training DL
models from the ground up for new applications or datasets
may be feasible in certain situations. However, frequently
there is an insufficient amount of labeled data to accomplish
this. Therefore, the latest developments in deep CNNs for
classification involve the application of transfer learning.
This technique involves refining pre-existing models on
limited datasets to enhance their efficacy. The pursuit of
creating more interpretable models has gained momentum,
intending to gain insights into the underlying features and
patterns utilized by the network to generate predictions.50

Transfer learning is often employed in such scenarios to
reuse a model trained for a particular task and adapt it for
deployment on another similar task. In image segmentation,
it is a common practice for individuals to utilize the encoder
component of a neural network pre-trained on a larger
dataset, such as ImageNet. Subsequently, the model is
retrained using the aforementioned starting weights.
According to Minaee et al.,51 pre-trained models can
capture the necessary semantic information of an image
for segmentation purposes. This feature enables the model
to have been trained with fewer labeled instances.
ResNet, AlexNet, GoogLeNet, VGGNet, DenseNet, and
MobileNet are among CNN’s most widely recognized
architectures. They have been used for various computer
vision applications, including picture segmentation, face
identification, and object detection. It has demonstrated

Figure 5. Fully connected layer.
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potential in medical imaging, specifically in identifying and
assessing melanoma.

In summary, deep CNNs are a potent and efficient mech-
anism for classifying melanoma, exhibiting cutting-edge
performance across various benchmarks. The progression
of the field necessitates the acquisition of more extensive
and varied datasets, more easily comprehensible models,
and a deeper comprehension of the fundamental biological
mechanisms that underlie the development and advance-
ment of melanoma. Through ongoing research and develop-
ment, deep CNNs can potentially transform the diagnosis
and treatment of melanoma and other skin cancers. The
architecture of the general CNN model is presented in
Figure 6.

AlexNet model
The AlexNet CNN model was created by Krizhevsky.52 It
was the 2012 ImageNet Large Scale Visual Recognition
Challenge winner, marking a significant advancement over
previous image classification methods.53 This model com-
prises many levels, each of which acts as an input for the
ones below it. Each layer completes a particular function.
The input picture was filtered using AlexNet’s first layer.
Height (H), width (W), and depth (D) are the three dimen-
sions that must be present in the input picture. These dimen-
sions’ values may be represented as 227×227×3 with D =
3. The D stands for the three colors red, green, and blue.
The addition of four pixels (s) layers a color picture with
multiple 96-pixel kernels (K) and an 11×11-pixel filter (F)
in the first convolutional network model. In the kernel
map, “stride” describes the separation between the receptive
field centers of neighboring neurons.54 A mathematical
formula (i.e., ((WF + 2P)/S)) is used to determine padded
pixels and the convolution layer output size equal to zero,
where P specifies the number of convolution layers. This
layer’s output may be calculated using the formula
((227 × 11+ 0)/4)+ 1 = 55. This layer’s output serves as
the following layer’s input. Since this initial layer’s job is
the most important, as was already indicated, two GPUs
are used to manage its workload.55 The PL comes next,
then the CL. The PL aims to decrease each function map’s
dimensionality while maintaining critical properties.
Examples of pooling include sum, max, and average.56

Max-pooling is a layer used by AlexNet. The number of
filters is 256, sent into this layer.57 Each filter is 55×256
pixels long with a 2-pixel stride. The task is split into two
halves by each GPU when two GPUs are employed. The
normalized and pooled output of the second CL is con-
nected to the third CL. There are 384 kernels stacked on
top of one another, each measuring 33% in size. The
fourth CL produces a GPU load of 3×3×192, which uses
384 kernels of size 33 distributed across two GPUs. Each
of the 256 kernels in the quarter CL has a diameter of 33
pixels and two layers will be created from them. As a

consequence, each GPU will be under 3 × 3 × 280 stress.
Notably, there are no pooling or normalizing layers in the
third (3rd), fourth (4th), or fifth (5th) CLs. These three (3)
CLs are provided as input into a total of two fully
coupled layers. Each layer has 4096 neurons in total,21 as
shown in Figure 7. In our case, images of skin lesions,
such as melanoma, and their associated clinical data were
found in the publicly accessible DermIS and DermQuest1

databases. The following steps are used to train an
AlexNet model for melanoma image classification using
these datasets:

1. Data preprocessing: To prepare the data for the AlexNet
model, the images in the dataset may be scaled to
227×227 pixels. To further standardize the images,
the mean pixel value of the dataset may be subtracted
from each pixel.

2. Model training: The AlexNet model may be trained
using a DL framework like TensorFlow, or PyTorch58

utilizing the DermIS and DermQuest datasets.
Stochastic gradient descent trains the model using a
0.001 learning rate and a 32-iteration training batch.
The model may be trained for a considerable amount
of time (epochs) before reaching a steady state of
accuracy.

3. Model evaluation: Testing the trained model with data
not utilized during training yields an evaluation of the
model’s performance. One may measure the model’s
efficacy by calculating its accuracy, precision, recall,
and F1 score.

A brief description of the AlexNet model layers is given
in the following sections.

Convolution network layer. The input data is processed by
a collection of learnable filters (AKA kernels or
weights) in a neural network’s CL (AKA a convolution
layer or simply conv layer). The filters are convolved
over the input image to create the output feature
maps. It is the most crucial layer in DL neural
network models for creating and refining feature
maps. We integrated the input at each point after per-
forming matrix multiplication.19

In order to obtain a single output value for each loca-
tion in the feature map, the convolution procedure
entails sliding each filter window across the input
picture, multiplying the filter values by the pixel values
in the corresponding window, and summing the results.
It is done for each filter, resulting in an array of feature
maps. The neural network’s output feature maps are fed
into the next layer.36

CLs excel in image processing because they can be
trained to identify features, such as corners, edges, and tex-
tures within the input data. The network can learn more

10 DIGITAL HEALTH



Figure 6. Architecture of general CNN model.
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sophisticated representations of the input data by layering
CLs on top of one another.59

CLs may be used to extract characteristics from the input
images (i.e., suggestive of melanoma) in melanoma image
classification using the DermIS and DermQuest datasets.
The network is trained to identify melanoma-specific pat-
terns and structures, such as non-uniform shapes and
colors and uneven or blurry boundaries, by applying a set
of learnable filters to the input images and convolving
over the image. Using these characteristics, the images
may be labeled as melanoma or benign.

Mathematical modeling

A linear transformation is applied by each layer in a hier-
archical DL model with subsequent non-linear preceding
layers.60 Let the input be represented as A ∈ ZP×Q. The
rows in matrix A represent data points with Q-dimensions,
such as Q-pixel grayscale images and the number of train-
ing instances is denoted as P. Assuming that the output of
layer m− 1, denoted as A(m−1) ∈ ZP×qm−1 , undergoes a
linear transformation to produce A(m−1)Y (m) ∈ ZP×qm (a
qm-dimensional representation) at layer m, where Y (m) ∈
Zqm−1×qm reflects this transformation. Each column of Y (m)

represents an operation like a linear classifier in FC net-
works or convolution with a filter in a CNN. Assuming a
non-linear activation function Ψ(m) :Z → Z, such as the
sigmoid Ψ(m)(a) = (1+ e−a)−1, the hyperbolic tangent
Ψ(m)(a) = tanh (a), or the Rectified Linear Unit (ReLU)
Ψ(m)(a) = max {0, a}, for each entry in A(m−1)Y (m), the
mth layer of the neural network is generated as
A(m) = Ψ(m)(A(m−1)Y (m)). Thus, the output of the network,
A(M), can be expressed as equation (1).

Φ(A, Y (1), . . . , Y (M))

= Ψ(M)(Ψ(M−1)( . . .Ψ(2)(Ψ(1)(AY (1))Y (2)) . . .Y (M−1))Y (M))

(1)

To clarify,Φ is a matrix of dimensions P × CL, where CL =
qM represents the number of classes in a classification task
and is the dimension of the network’s output. The mapping
Φ can be interpreted as a function of network weights
denoted by Y = Y (m)}Mm=1, with the input value A held con-
stant. Alternatively, Φ can be seen as a function of input
data with constant weights Y . The problem of learning the
parameters in a deep neural network involves P training
instances of the form (A, Y), where the learning problem
is expressed as Y = {Y (m)}Mm=1. In a classification setting,
the data points (A in ZP×Q) are represented by rows, and
the class membership is indicated by the rows of
Y ∈ {0, 1}P×CL , where Y j,cl = 1 if the jth row of A
belongs to class cl ∈ {1, . . . , CL}, and Y j,cl = 0 otherwise.
The rows of A serve as independent variables in a regression
context, while the rows of Y ∈ ZP×CL are dependent vari-
ables. To solve the network learning problem, the weights
Y can be derived as an optimization problem using equation
(2).

min
{Y (m)}Mm=1

L({Y (m)}Mm=1, Φ(A, Y (1), . . . , Y (M)))

+ λΘ({Y (m)}Mm=1) (2)

where the loss function L measures the agreement between
the actual (Y) and predicted outputs (Φ), and the regulariza-
tion term Θ is designed to prevent overfitting, for example,
through L2 regularization (Θ({Y (m)}Mm=1) =

∑M
m=1 ‖Y (m)‖2F)

and a balancing parameter λ > 0.

Rectified linear unit layer. CNNs often use the ReLU activa-
tion function for image identification applications.61 All the
negative pixel values in a picture are transformed to zero by
this non-linear function, while the positive values remain
unaltered. It improves the network’s ability to learn and
the speed of image classification. Non-linearities are
handled well by this layer. It is now applicable to the
feature map generated by the CL. In melanoma detection,

Figure 7. Architecture of Alexnet.
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this layer aids in identifying irregular borders, a significant
malignancy indicator. It enables features corresponding to
serrated or asymmetric edges of skin lesions when analyz-
ing dermoscopic images. This capability aids dermatolo-
gists in accurately locating potentially malignant
melanomas, resulting in timely treatment. The ReLU acti-
vation function may be expressed mathematically as
shown in equation (3) below:

f (i) = max(0, i) (3)

Where i is the layer’s input and f (i) is the layer’s output
after the ReLU activation function has been applied.
Whenever the input is a positive number, the function
returns that number; otherwise, it returns 0.

In a typical CNN architecture, the ReLU layer is
employed right after the CL. The ReLU layer takes the
output of the CL and applies the activation function to
each element of that output. It helps the network learn
more robust and discriminatory features by producing a
feature map with only positive values. In conclusion, the
ReLU layer is a non-linear activation function that aids in
introducing non-linearity in the CL’s output of a CNN.
Due to its ease of use, efficiency, and ability to significantly
boost neural network performance has quickly become the
DL method of choice.62

AlexNet, like many other CNNs, uses the ReLU layer as
an activation function. After each CL and FCL in AlexNet,
ReLU is employed as the activation function. To help the
network learn more nuanced characteristics and patterns,
the ReLU layer introduces some non-linearity. The ReLU
activation function is employed at the end of each CL and
the FCL in AlexNet for melanoma image classification
using the DermIS and DermQuest datasets. It aids in the
detection of picture characteristics that may point to the
existence of melanoma. Adding a ReLU layer, which intro-
duces non-linearity to the network, may help the model
acquire more sophisticated and abstract representations of
the pictures, leading to better melanoma classification
performance.63

The ReLU activation function is employed at the end of
each CL and the FCL in AlexNet for melanoma image clas-
sification using the DermIS and DermQuest datasets. It aids
in the detection of picture characteristics that may point to
the existence of melanoma. Adding a ReLU layer, which
introduces non-linearity to the network, may help the
model acquire more sophisticated and abstract representa-
tions of the pictures, leading to better melanoma classifica-
tion performance.64

Maximum pooling layer (MPL). The suggested architecture
incorporates a PL after the initial and subsequent convolu-
tion layers, as well as after the fifth convolution layer, to
lower the spatial size of each frame and, by extension, the
computing cost of the proposed model. For example,

diagnosing melanoma facilitates extracting high-level char-
acteristics, such as pigment variances and overall lesion
structure. It facilitates efficient analysis of dermoscopic
images by discarding irrelevant details while retaining
essential characteristics. In most cases, the pooling proced-
ure will average the values across all picture slices or
choose the highest. In the proposed study, we use pooling
by comparing the most significant value against each
slice. A MPL is a down-sampling process that preserves
the most salient features while decreasing the feature
map’s overall spatial size. This procedure aims to find the
most significant value in each non-overlapping rectangle
of the input feature map. In the end, a new feature map is
found that is smaller, having the same number of channels
as the original feature map.65

The MPL’s primary role is to make the feature map
translation invariant. It implies that the network can identify
the same feature in multiple picture regions, despite the
feature being rotated or translated. The network takes the
most significant value within a narrow rectangular section
of the feature map, which guarantees recognition even if
the feature is slightly shifted in the picture. After the CLs
of the AlexNet model, a MPL was employed to compress
the feature maps while keeping the most relevant features.66

After the first, second, and fifth CLs in AlexNet, a MPL was
employed with a 3x3 filter and a stride of 2. After the CLs,
the MPL may be utilized to minimize the spatial size of the
feature maps while maintaining the most relevant character-
istics for melanoma image classification using the DermIS
and DermQuest datasets.

The MPL’s size may be modified based on the input
picture size and the desired feature map output size.
Decreasing the impact of overfitting and enhancing the net-
work’s translational invariance may enhance the model’s
accuracy. For melanoma image classification, the MPL
may be employed to maintain essential information while
decreasing the dimensionality of feature maps produced
by CLs. Overfitting is avoided, and model performance is
enhanced. For example, a MPL may be used in a CNN
trained to classify melanoma images after the output of a
CL has identified relevant characteristics (such as edges,
forms, or patterns). This layer will take the maximum
value from each feature map’s non-overlapping rectangles
and output the set.67

The MPL may shrink the feature maps produced by the
CLs used in melanoma image classification without losing
valuable information. Better success in categorizing melan-
oma images may result from the model being better able to
generalize and prevent overfitting.

Response normalization layer and soft-max activation.
Another layer in CNN is the response normalization (RN)
layer, sometimes called local response normalization. It is
used on the ReLU layer’s output to standardize the findings
and boost the model’s generalization capacity. Testing
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errors for the proposed network are reduced by response
normalization after the initial two sessions. The input
layers of the network and the network as a whole are both
normalized by this layer. By highlighting the variations
across activation maps, RN helps to mitigate overfitting.68

Variable brightness and contrast conditions impact image
quality in real-world scenarios. This layer assures consistent
melanomas identification across a variety of environments.
This layer standardizes output activations, enabling accur-
ate diagnosis regardless of lighting variations, for instance,
when analyzing skin lesion images captured under varying
lighting conditions.

Soft-max activation. Soft-max works on top of the activated
functions. The probabilities for a given classification are
improved by feeding the results of the convolutional
network layer’s performance after five series into the
Soft-max layer enabling multi-class classification. For
example, it plays a crucial role in allocating probabilities
to each class, allowing the model to identify and classify
various skin conditions accurately. This capability enables
dermatologists to make informed decisions regarding treat-
ment plans based on accurate lesion-type identification. The
neural network output may be transformed into a probabil-
ity distribution across the expected output classes using the
Soft-max activation function.69 The last classification layer
sorts the images into different frames using these probabil-
ities. A vector of real-valued scores (such as the output of
the last FCL in a neural network) is accepted as input by
the Soft-max function. It returns a vector of the same
size, where each element reflects the likelihood of classify-
ing the input. To generate an N-dimensional vector of real
values between 0 and 1 that sum to 1, the Softmax function
SA(n) uses the formula provided in equation (4).

SAj(i) = eij∑
n = 1Nein

(4)

Where j is the output vector element index, and n is the
input vector element index, used to generate an
N-dimensional vector with real values ranging from 0 to
1. The exponential values of each input vector element
are added together to generate the denominator of the
formula. The Soft-max function is used for the problem
of melanoma classification to determine the likelihood
that an input picture belongs to each of many classifications,
such as benign and malignant. The prediction is then
assigned to the category with the greatest probability.70

Dropout layer. Overfitting in CNN models may be avoided
using the dropout layer. As the number of iterations grows
in this study, overfitting and depiction of neurons are
readily managed thanks to the dropout layer. Model aver-
aging using neural networks is a powerful method for nor-
malizing training data.71 Using CL kernel sizes, MPLs, and

skipping factors, the function maps at the output are down-
sampled to one pixel per map. The tightly linked layer also
limits the uppermost layers’ performance to a one-
dimensional function vector. High-level characteristics
retrieved from the training data may be used by the
higher layer, which is typically completely coupled to the
output device for class labeling. Dropout is a DL approach
intended to avoid overfitting, which happens when a model
becomes too specific to its training data and cannot accur-
ately predict new data.72 To train a smaller, simpler
network, the dropout layer eliminates (sets to zero) a
random number of neurons in a layer. It makes the
network more stable and less susceptible to overfitting by
lowering its dependency on any one neuron. The tightly
linked layer, where each neuron connects to every other
neuron, is often put before the dropout layer. Each FCL
neuron has a dropout probability of p during training. The
standard range for this probability is between 0.2 and 0.5.70

The dropout layer prevents overfitting when classifying
melanoma, for instance, by encouraging the network to
learn a broader range of features, thereby improving its
ability to diagnose various real-world skin lesions. This
phenomenon, during training, can be elaborated as choos-
ing a percentage pr of images at random to be discarded
from each training sample. To keep the anticipated value
of each neuron constant, multiply the remaining neurons
by 1/(1− pr). To the following layer, please provide the
resultant vector. While during trials, improvements in
neural network performance on tasks, such as image classi-
fication and natural language processing, have been attrib-
uted to using the dropout layer. It improves a neural
network’s ability to learn from new data and perform
better on unknown instances by lowering the likelihood
of overfitting.73

Similarly, during the training process, let Ot represent
the output of the layer that came before it, and let Bi

represent a binary vector of the same dimension as h,
with each element having a probability of 0 with the
dropout rate of dr and a probability of 1 with the dropout
rate of (1− dr), where dr is the dropout rate. The
Dropout layer’s masked output O′

t is thus defined as
shown in equation (5).

O′
t = Ot ∗ Bi/(1− dr) (5)

During the inference process, the Dropout layer is turned
off, and the output Ot is scaled by (1− dr) to account for
the missing dropout units and can be computed using equa-
tion (6).

O′
t = Ot ∗ (1− dr) (6)

Overfitting in DLmodels may be avoided with the regulariza-
tion method dropout. During training, some neurons are ran-
domly removed (or set to zero) to ensure the network learns
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redundant material representations. Decreasing neuronal
interdependence and blocking complicated co-adaptations
on training data enhances the network’s generalization cap-
ability. Dropout layers may be utilized to enhance the effect-
iveness of DL models for melanoma classification.
Introducing dropout layers may enhance the overall perform-
ance and generalization capacity of DL models for melanoma
classification.74

Proposed architecture and model
This section details the proposed fine-tuned CNN-based
model for melanoma identification and classification.

The proposed classification model

The proposed model’s objective is to identify and classify
melanoma images. Figure 8 illustrates the block diagram
of the proposed model. Initially, features are extracted by
pre-trained neural convolution networks (i.e., Alex Net
with Soft-max layer and the same with SVM classifier).
In the second step, transfer learning is applied using the pre-
trained Alex Net CNN for the classification. To get the best
classification performance, the outcomes of both method-
ologies are compared. The proposed model has many
phases, and the subsequent sections describe the steps
used in each phase.

The pre-processing phase

This phase is responsible for two tasks. First, each image is
scaled to fit the CNNmodel specifications. Further, the pictures
in grayscale are converted into color ones. For all of the images
in each dataset, data augmentation is used. Data augmentation

involves three tasks: Image enhancement, orientation (i.e., ran-
domly, horizontally, and vertically), and flipping.

The feature extraction phase

Two pre-trained convolution neural networks, MII-
SFMAX models and MI-SVM, are applied in this phase.
For extracting the features, Alex Net with SVM makes up
the MI-SVM model, while Alex Net with the Softamx
layer makes up the MII-SFMAX model is used.

The fine-tuning of hyperparameters

The accuracy and precision of DL models used for diagno-
sis may be significantly increased when they are fine-tuned
in the context of melanoma categorization. Fine-tuning is a
DL technique used to improve the performance of
DL-based models by making little adjustments. The
AlexNet model’s accuracy has increased when used for
melanoma classification. The AlexNet model has five
CLs, ReLU activation functions, and response normaliza-
tion layers to best extract input image features and trains
the dataset. The input dataset is divided into an 80:20
ratio, and then the images are scaled and converted from
grayscale to color channels, as mentioned before. The
network receives the pre-processed images and uses the
top five layers of the pre-trained model to extract the
most features possible. In order to fine-tune the network
for optimal accuracy, the last three levels are changed.
In-depth testing determines the training hyper-parameters,
including different batch sizes and stochastic gradient
descent with momentum (SGDM). Figure 9 illustrates the
fine-tuning procedure. The utilization of SGDM is
employed for minimizing the loss function. The SGDM
algorithm updates a network model’s bias and weights

Figure 8. Proposed architecture.
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hyper-parameters by iteratively adjusting them in a negative
loss gradient direction. This adjustment is carried out
through incremental movements. Mini-batch is a com-
monly employed technique in SGDM75 to facilitate incre-
mental steps toward minimizing the loss function. The
Mini-Batch Size refers to the magnitude of the mini-batch
employed during each training iteration. Its purpose is to
assess the modification of the hyper-parameters utilized
and the loss function gradient the supplementary momen-
tum results in a decrease in oscillations. The SGDM

employs a uniform learning rate for all hyper-parameters.
The learning rate can be either constant or variable.
Selecting a small value for the parameter may result in a
prolonged training process, while opting for an immense
value may lead to suboptimal outcomes or divergence.
The utilization of the maximum number of epochs is imple-
mented to ensure the brevity of the training process. A com-
prehensive testing process was conducted to ascertain the
optimal epoch size. The term “epoch” pertains to the final
iteration of the training procedure conducted on the

Figure 9. Fine-Tuning.
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complete training dataset. The FCLs’ dimensions
were adjusted to correspond with the number of categor-
ies in the dataset. The WeightLearnRateFactor and
BiasLearnRateFactor values were increased for FCLs
to expedite the learning process in newly added layers
relative to those transferred. The tuning of the hyper-
parameters as presented in Table 2:

Parameters fine-tuned

During the model development process, several parameters
were fine-tuned to optimize the performance of the pro-
posed melanoma detection architecture. The following
parameters were systematically explored to achieve the
best possible results:

• Number of layers and filters: The depth of the network
was adjusted by iteratively adding or removing layers.
Additionally, various configurations for the number of
filters in each CL were evaluated. These adjustments
aimed to balance model complexity and effective
feature extraction.

• Activation functions: Different activation functions,
including ReLU, Leaky ReLU, and exponential linear
units, were investigated for each layer. The selection
of appropriate activation functions was crucial in addres-
sing vanishing gradient problems and enhancing model
convergence.

• Batch size: The impact of batch size on training dynam-
ics and generalization was explored. Different batch
sizes were tested, focusing on balancing computational
efficiency and convergence speed. Smaller batch sizes
were also evaluated for potential improvements in
model generalization.

• Learning rate: The learning rate, a fundamental hyper-
parameter in gradient-based optimization, was fine-
tuned to achieve optimal convergence. Fixed and

adaptive learning rate scheduling techniques were inves-
tigated within the typical range of 0.001 to 0.1.

• Dropout rate: Dropout layers, employed to mitigate
overfitting, were optimized by fine-tuning the dropout
rate. Values ranging from 0.2 to 0.5 were tested, and
the impact of dropout regularization on model perform-
ance was carefully observed.

• Loss function: Choosing an appropriate loss function is
vital for the specific classification task. The suitability of
various loss functions, including binary cross-entropy,
was considered, and potential adaptations of loss func-
tions were explored to address challenges unique to mel-
anoma detection.

• Validation split: Various validation split ratios were
examined to allocate an appropriate proportion of
data for training and validation. Common splits,
such as 80-20 or 70-30 for training and validation,
were assessed for their influence on model
generalization.

• Data augmentation techniques: Various data augmenta-
tion techniques, including rotations, flips, and brightness
adjustments, were applied to the training dataset. These
techniques aimed to enhance the model’s robustness and
alleviate issues related to limited training data.

• Transfer learning strategy: Transfer learning from pre-
trained models was explored to leverage features
learned from similar tasks. The selection of a suitable
pre-trained model, layers frozen during transfer, and
additional fine-tuning of the architecture was considered.

• Regularization techniques: Regularization techniques
such as L2 regularization and weight decay were inves-
tigated to control model complexity and prevent overfit-
ting. Their influence on the balance between bias and
variance was carefully assessed.

• Hyperparameter grid search: A systematic grid search
approach was employed to fine-tune hyperpara-
meters. The ranges of values tested for each param-
eter were determined empirically, and trends
observed during the grid search were used to make
informed decisions.

• Early stopping: Early stopping, a technique to prevent
overfitting, was employed with a carefully chosen criter-
ion. This technique helped ensure the model converged
without excessively fitting the training data.

• Results of hyperparameter tuning: Throughout the fine-
tuning process, the impact of each parameter on valid-
ation performance was rigorously evaluated. Insights
were gained into the trade-offs between model complex-
ity, training time, and generalization.

The fine-tuning process was pivotal in achieving the
optimal architecture for melanoma classification, enab-
ling the model to effectively learn relevant features
from the input images and generalize to new, unseen
data.

Table 2. Details about AlexNet hyper-parameters.

Parameter Value

Epochs 60

Validation step 6

Optimizer Stochastic gradient descent momentum
(SGDM)

Learning rate 1 × 10−4

Decay Default

Momentum Default
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Image classification

Image classification has been carried out using the SVM
and CNN classifiers. Two pre-existing and fully developed
neural convolution networks, Alex-net with Soft-max layer
and Alex Net with SVM classifier were used to extract fea-
tures. A single classifier is utilized in both networks. The
SVM is a classification algorithm that can be utilized for
transfer learning purposes in conjunction with the pre-
existing Alex Net CNN and the associated Soft-max layer
classification task. The two CNN models were tested
using three distinct datasets, and the outcomes were
observed to be of considerable significance. Given their
demonstrated efficacy in addressing pattern recognition
and machine learning challenges, this study employs
SVM and Soft-max classifiers as image classifiers.

Algorithm 1 explains the mechanism of image classifica-
tion for melanoma detection. Each step is elaborated below:
The convolution operation is applied to the input image.

1. Apply convolution operation to the input image: In this
step, the datasets of melanoma images (i.e., DermIS and
DermQuest) are given as input. The input image, size

M × N, is convolved with a set of learnable filters to
produce feature maps. Each filter is a
C × K × K-dimensional tensor, where K is the size of
the filter, and C is the number of color channels.
Convolution computes the dot product of the filter
with every C × K × K subregion of the input image. It
produces a feature map: a (M − F + 1) × (N − F +
1) × P tensor, where P is the number of filters. This
operation is repeated for each filter in the set to
produce a stack of feature maps stored in a
feature maps list. To introduce nonlinearity into the
model, the proposed model uses a nonlinear activation
function (such as ReLU) for each element of the
feature maps following the convolution operation.
This step produces a list of feature maps with dimen-
sions (M − K + 1) × (N − K + 1).

2. Apply maximum pooling to each feature map: In
this step, we reduce the spatial size of each feature
map by applying a max pooling operation. Max
pooling divides the feature map into subregions of
size F × F that do not overlap and determines the
maximum value within each subregion. It generates
a pooled feature map, a two-dimensional tensor with
dimensions (M − K + 1)/Sx(N − K + 1)/S, where S
is the pooling operation’s stride. This operation is
repeated for each feature map in the feature maps
list to produce a new list of pooled feature maps
stored in the pooled feature maps list. After the
max pooling operation, the first and second steps
are repeated for multiple layers to form a deep
CNN architecture. The same operations are per-
formed in each successive layer using a new set of
learnable filters on the pooled feature maps gener-
ated by the previous layer.

3. Flatten the output of the final layer of pooling: In this
step, the output of the final PL is transformed into a
1-dimensional feature vector. It involves transforming
the (M − K + 1)/S × (N − K + 1)/S × P tensor into a
vector with the same dimensions.

4. Feed the fully-connected feature vector to a layer with
learnable weights and biases: This step feeds an FCL
with learnable weights and biases the feature vector.
This layer computes the dot product of the feature
vector and an (M − K + 1)/S × (N − K + 1)/S × P ×
D weight matrix, where D is the number of neurons in
the FCL. On the output of the dot product, we add a
bias term of length D and apply a nonlinear activation
function (such as ReLU). It yields a vector of length
D that we refer to as fully connected.

5. Apply a nonlinear activation function to the FCL’s
output: In this step, non-linearity is introduced into
the model by applying a nonlinear activation function
(such as ReLU) to the output of the FCL. It results in
a vector of probabilities for every class, which we
refer to as predictions. The final output of the algorithm

Algorithm 1 Melanoma image classification.

Require: d {Input melanoma image dataset of size M × N}

1: Begin

2: d.load()

3: d.preprocess()

4: while do

5: fp ← d.convolute[F, K, K]

6: tensor= generatetensor (M− K + 1) × (N− K+ 1) × P

7: fp.activation(relu)

8: d.split(train, test)

9: d.maxpooling( fp)

10: tensor=
generatetensor (M− K + 1)/S × (N− K+ 1)/S × P

11: end while

12: fpsingledim ← Flatten(d, fp)

13: I ← layer.add( fpsingledim , activation = relu)

14: pd ← layer.add(I, activation = softmax) Image classification
predictions
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is the predictions vector, which represents each class’s
predicted probability.

Formal description of CNN-based image classification model.
This section gives a formal, detailed description of the
CNN-based melanoma image classification model, includ-
ing the specific operations and calculations done at every
phase of the model.

Assumptions: Let the size of the input image X is
M × N × C, where M is the height, N is the width, and C
is the number of color channels. The model’s result is a
vector called Y hat with length K, where K is the number
of classes to be sorted. In our case, K = 10. The model is
made up of L layers. Each layer starts with a set of filters,
then a max pooling operation, and finally, a ReLU activa-
tion function. The last layer is a FCL with a ReLU activa-
tion function, followed by a softmax activation function.
Operation of Convolution: Let W 1 be a set of learnable
filters with the size F × F × C × P, where F is the size of
the filter, C is the number of input channels, and P is the
number of output channels. Let b 1 be a biased term with
P length. Let Z 1 be the result of applying convolution
to X with W 1 and b 1: Z 1 = ReLU(convolve
(X, W 1)+ b 1), where the convolution operation is con-
volved. Max Pooling Procedure: Let S be the max
pooling operation’s step size. Let Z 2 be the result of apply-
ing the max pooling operation to each feature map in Z 1:
Z 2 = max pool(Z 1, F, S), where max pool() is the max
pooling operation. Several levels: To make a deep CNN
architecture, repeat the convolution and max pooling
steps for L− 1 further layers. Flatten: Let Z L result from
the last layer of max pooling. Let Y be a vector of length
(M − F + 1)/S × (N − F + 1)/S × P that is made by flat-
tening Z L: Y = flatten(Z L). FCLs: Let W 2 be a weight
matrix with the size ((M − F + 1)/S) × ((N − F + 1)/S)×
P × D, where D is the number of neurons in the FCL. Let
b 2 be a biased term that is D long. Z 3 is the output of
the FCL: Z 3 = ReLU(Y ×W 2+ b 2). Layer Three: Let
W 3 be a D × K weight matrix, where K is the number of
classes that need to be sorted. Let b 3 be a biased term that
is K long. Let Y hat be the output of the output layer:
Y hat = softmax(Z 3 ×W 3+ b 3), where softmax() is the
softmax activation function. This model uses CLs and FCLs
to learn features from an image and put it into one of K pos-
sible classes. The FCLs do the final classification, while the
CLs pull out features from the image. The ReLU activation
function makes the model nonlinear, and the softmax activa-
tion function is used to turn the model’s output into a probabil-
ity distribution over the K classes.

Example: Let us say we have an image of size 224 × 224
× 3 (M = 224, N = 224, and C = 3) that we want to clas-
sify as either benign or malignant (K = 2). Operation of
Convolution: Let W 1 be a 3 × 3 × 3 × 64-size set of
filters that can be learned with F = 3, C = 3, and
P = 64. Let b 1 be a 64-letter bias term. Let Z 1 be the

result of applying convolution to X with W 1 and b 1:
Z 1 = ReLU(convolve(X, W 1)+ b 1), where the convo-
lution operation is convolved. Max Pooling Procedure:
Let S be the max pooling operation’s step size, and we
can choose S = 2. Let Z 2 be the result of applying the
max pooling operation to each feature map in Z 1:
Z 2 = max pool(Z 1, F = 2, S = 2), where max pool is
the max pooling operation. Several levels: We can keep
convolution and max pooling for several more layers to
make a CNN architecture with many layers. For example,
we could add another CL with 128 filters, then a MPL
with stride 2. Flatten: Let Z L be the output of the last
MPL. Its size will be 7 × 7 × 128 if we add the extra
layer we talked about above. Let Y be a 7 × 7 ×
128-element vector with the length 6272 that is made by
flattening Z L: Y = flatten(Z L). Layer That is FC: Let
W 2 be a 6272 × 256 weight matrix, where D = 256. Let
b 2 be a 256-bit biased term. Z 3 is the output of the FC
layer: Z 3 = ReLU(Y ×W 2+ b 2). Layer Three: Let
W 3 be a 256 × 2 weight matrix with K = 2. Let b 3 be
a 2-length biased term. Let Y hat be the output of the
output layer: Y hat = softmax(Z 3 ×W 3+ b 3), where
softmax() is the softmax activation function.

Note that the actual values for the weights and biases
would be learned during the training process in this
example. However, these are the shapes and sizes of the
variables used in the model.

Experimentation and results
This section details the experimentation setup and results.

Experimental setup

The proposed melanoma classification model is implemen-
ted for evaluation purposes. The model is implemented on a
system with CPU i7 eighth generation clock speed 2.5GHz.
Python 3.0 is installed on the system. The dataset was
loaded to Google drive. The Google drive was mounted

Table 3. Table of experimentation parameters.

Simulation parameters Value

System i7-8th generation

Storage 500GB

Programming Python

Online platform Google Colab

GPU NVIDIA Tesla K80

Framework Keras
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with CoLab. The Colab is an online platform for imple-
menting Python projects (Table 3).

Dataset description

This study used DermIS, DermQuest, their combination
DermIS&Quest, and ISIC2019 datasets. The number of
images in these datasets differs in their original form
and after augmentation. For example, the DermIS
dataset had 69 samples when first made; however, after
it was augmented, it had 621 samples. In the same
way, there were originally 137 sample images in
DermQuest; however, after augmentation, there were
1233. In DermIS&Quest, there were 206 original
samples and 1854 images that had been augmented. In
ISIC2019 dataset has 25,331 instances based on
HAM10000 and BCN 20000 datasets. It possesses high-
quality images of 10015 RGB images having 600 ×
450-pixel resolution, while the BCN 20000 has RGB
images having 1024 × 1024-pixel resolution.76 We
split each dataset into a training set and a testing set so
that we could train and test our classification model. A
ratio of 80:20% is used for both training and testing,
respectively. It ensures the model is trained on a large

enough dataset and can work well with samples it has
not seen before. Table 4 gives information about the
datasets.

Figure 10 represents some of the images from the
DermIS dataset. This dataset consists of images related to
melanoma and nevus diseases. These images are not aug-
mented or rotated but are in their original characteristics.

Figure 11 represents some of the images from the
DermQuest dataset. This dataset consists of images
related to melanoma and nevus diseases. These images
are not augmented; these are in their original characteristics.

Evaluation metrics

This part discusses the assessment criteria used and com-
prehensively analyzes the results. The most used metric
for determining classification effectiveness is the classifica-
tion’s accuracy (i.e., Acr). It is calculated by dividing the
number of images in the dataset by the number of occur-
rences (i.e., images) labeled correctly. In numerical form,
it reads as follows, in equation (7):

Accuracy(Acr) = Tps + Tng
Tps + Tng + Fps + Fng

(7)

“True Positive” (i.e., Tps) refers to the total number of veri-
fied melanoma images. False positive, abbreviated as Fps,
refers to an incorrect tally of supposed false images. The
percentage of melanoma images that were properly diag-
nosed as false negative (i.e., Fng) vs. true negative (i.e.,
Tng) is known as the “True negative” (Tng) count. It is the
number of times a melanoma image was wrongly labeled
as false. Precision (in our case Prc) and recall (in our case
Rcl) are standard metrics used to evaluate the effectiveness
of image categorization algorithms. The Prc level is

Table 4. Dataset name and number of images.

Datasets No. of images

DermIS 621

DermQuest 1233

ISIC2019 25000

Figure 10. Image samples from DermIS dataset.
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measured by how many images are correctly identified rela-
tive to the total number of images. Prc is expressed as a
formula in equation (8):

Prc = Tps

Tps + Fps
(8)

Prc is important; however, Rcl is equally crucial for asses-
sing performance. In our case, Rcl is the fraction of
images that have been appropriately labeled relative to the
total dataset images. Equation 9 represents the way to
compute Rcl value.

Rcl = Tps

Tps + Fng
(9)

The harmonic mean of Rcl and Prc is known as F-score
(Fsc); the greater the value, the superior is system’s predict-
ive ability. Therefore, it is not sufficient to evaluate the per-
formance of a system based solely on its Prc or Rcl.
Equation 10 presents the F-score calculation.

Fsc = 2 ∗ Prc ∗ Rcl

Prc + Rcl

( )
(10)

DermIS classification results

Accuracy. According to AlexNet, all experiments involv-
ing a color image from the necessary database should
have an image size of 227 × 227 × 3. As a result, the
needed image size is assumed to follow the required spe-
cifications. The ImageNet database classification is used
for the convolutional network parameter. This proposed
transfer learning model entirely automates feature extrac-
tion and classification processes. We optimized the
model by altering several parameters. We looked at

various training possibilities in order to get the best out-
comes. We determined the optimal learning rate by chan-
ging numbers from le-1 to le-4. Similarly, using this
optimal learning rate, we change the bias to achieve the
best results and weight learns. Table 5 and Figure 12
show the classification results of the DERMIS dataset.
When the proposed methodology is performed on the

Figure 11. Image samples form DermQuest dataset.

Table 5. Classification results comparison for DermIS.

model Classifier Accuracy
Error
rate

Proposed CNN with Alexnet 98.4% 1.6%

Proposed CNN with
Densenet

98.8% 1.2%

Khan et al.80 SVM 96% 4%

Shoieb et al.78 SVM 94% 6%

Amelard et al.79 SVM 94% 6%

Almansour and
Jaffar43

SVM 90% 10%

Hosny and Kassem4 CNN 93.5% 6.5%

Bukhari et al.8 CNN 97.4% 2.6%

Mustafa et al.19 CNN 95.5% 4.5%

Jeyakumar et al.27 CNN 97.6% 2.4%

CNN: convolutional neural network; SVM: support vector machine.
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DERMIS dataset, it achieves 98.4% accuracy with a 1.6%
error rate with Alexnet and 98.8% accuracy with a 1.2%
error rate when compared to other algorithms (i.e.,
Almansour and Jaffar,43 Amelard et al.,79 Bukhari
et al.,8 Hosny and Kassem,4 Jeyakumar et al.,27 Khan
et al.,77 Mustafa et al.,19 and Shoieb et al.,78), it shows
3%, 8%, 8%, 9%, 8%, 1%, 3%, and 1% more percentage
difference, respectively, it has The average accuracy of
5% more (in both the cases) than the state-of-the-art.

F1 score, precision, and recall. Table 6 and Figure 13 show
the proposed model’s F1 score, precision, and recall values
on the DermIS dataset. The efficacy of the proposed model
is assessed with Alexnet and Densenet CNN models.
Following fine-tuning, the model’s results for the selected
parameters have improved for both the models. For
instance, after tuning, the F1 score for Alexnet is 75.5, pre-
cision is 74, and recall is 77%. Whereas, Densenet shows
more improvement than the Alexnet with 79.9%, 78%,
and 82% more F1 Score, precision, and recall percentages.
It indicates that the model’s performance has significantly
improved after its optimized hyperparameters. In addition,

changes in other parameters indicate that fine-tuning posi-
tively affects the model’s overall performance.

DermQuest classification results

Accuracy. Similar to DermIS, we applied the same model to
the DermQuest dataset. The classification findings of the
DermQuest datasets are shown in Table 7. When the pro-
posed technique is performed on the DermQuest datasets,
it achieves 98.4% accuracy with a percentage of 1.6 error
rate with Densenet and 97.2% accuracy with a percentage
of 2.8 error rate with Alexnet. All other algorithms have
little accuracy rate. It is to be noted that all these algorithms
have used SVM and CNN-based classifiers.

Figure 14 compares our model’s accuracy with state-of-
the-art techniques. Compared to other algorithms (i.e., Arasi
et al.,41 Bukhari et al.,8 Hosny et al.,81 Hosny and Kassem,4

Jeyakumar et al.27, Khan et al.,83 Mustafa et al.,19 and
Naeem et al.,82) there is 3%, 8%, 7%, 9%, 7%, 2%, 5%, and
8% more percentage difference, respectively. Comparing the
proposed model to cutting-edge techniques reveals an
average 6% improvement in accuracy (in both the cases).

F1 score, precision, and recall. Table 8 and Figure 15 show
the measurements of our proposed model’s F1 score,
Precision, and Recall values on the DermQuest dataset.
Our proposed model is evaluated using both Alexnet
and Densenet models after fine-tuning. It is noted that
the proposed model has gained better results in these para-
meters after tuning hyperparameters. After tuning the
hyperparameters, the results obtained from the

Figure 12. Accuracy percentage on DermIS dataset.

Table 6. Classification results comparison for DermIS.

Proposed model F1 score Precision Recall

CNN with Alexnet 75.5 74 77

CNN with Densenet 79.9 78 82
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DermQuest dataset using our proposed model have sig-
nificantly improved.

After fine-tuning, the F1 score, which measures the
model’s accuracy in balancing precision and recall, is
80% for the Alexnet and it is 85% in case of Densenet. It
suggests our proposed model is more accurate at identifying
melanoma cases in the DermQuest dataset using Densenet.

Similarly, the model’s precision, which measures the
proportion of true positive results relative to all positive
results, is 81 for the Alexnet and it is 86% for the
Densenet after fine-tuning. It indicates a significant
improvement in the model’s ability to correctly identify
melanoma cases among all detected cases. In addition,
recall, which measures the proportion of true positive
results among all actual positive cases, is 79% for the
Alexnet and it is 83% in case of Densenet, showing afficacy
of Densenet over Alexnet.

Our model is better at overall classification accuracy and
finding a balanced trade-off between correctly identifying
malignant cases and minimizing false positives and nega-
tives. However, it is important to note that the specific
context of the dataset, its class distribution, and the potential
consequences of misclassifications should be considered
when interpreting these metrics and comparing models.
Notably, the model’s efficacy depends on the training
data’s quality, diversity, and representativeness. Imbalances
and biases within the training dataset could lead to subopti-
mal generalization and susceptibility to overfitting.
Augmentation strategies should be judiciously employed to
ensure an inclusive representation of melanoma manifesta-
tions across diverse patient populations. Moreover, the
model’s generalization to clinical scenarios necessitates val-
idation across heterogeneous and real-world datasets, encom-
passing variations in image quality, lighting conditions, and
patient profiles. The influence of transfer learning-induced
biases demands scrutiny to ascertain that predictions
remain equitable and unbiased across diverse populations.
While our model has demonstrated commendable accom-
plishments, it is important to acknowledge several limitations
that warrant attention for future research and development.

Figure 13. Precision, recall, F1-Score for DermIS dataset.

Table 7. Classification results comparison for DermQuest.

Models Classifier Accuracy
Error
rate

Proposed CNN with Alexnet 97.2% 2.8%

Proposed CNN with
Densenet

98.4% 1.6%

Hosny et al.81 CNN 97.7% 2.3%

Naeem et al.82 SVM 94.3% 5.7%

Khan et al.83 SVM 94% 6%

Arasi et al.41 CNN, DT 92.86% 7.14%

Hosny and
Kassem4

CNN 93.5% 6.5%

Bukhari et al.8 CNN 94.7% 5.3%

Mustafa et al.19 CNN 95.5% 4.5%

Jeyakumar et al.27 CNN 97% 3%

SVM: support vector machine; CNN: convolutional neural network.
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One notable limitation pertains to the choice of the backbone
architecture. In contrast, we know the advancements in
image classification technology, including the emergence
of image transformers. In light of this, we acknowledge the
need to transition to a more performant backbone architec-
ture in forthcoming contributions. Exploration of alternative
architectures and enhancing model interpretability are prom-
ising avenues for future research. Techniques such as the util-
ization of gradient-based class activation maps hold the
potential to offer transparency into model predictions, a
factor of utmost significance for building trust among
medical professionals.

ISIC2019 dataset classification results

To assess the performance of the proposed model on the
ISIC2019 dataset, we initially deployed it on AlexNet
and subsequently on DenseNet. We compared the
results with the reference model presented in Olayah
et al.28 The metrics used for the comparison are accur-
acy, F1 score, precision, and recall. They provide

significant insights into the effectiveness of each frame-
work with respect to our particular classification task. An
initial comparison between AlexNet and DenseNet indi-
cates that in every metric, both models surpass the per-
formance of the reference model. This discovery
emphasizes the progressions achieved in model architec-
tures, demonstrating their efficacy in the domain of clas-
sification. Table 9 represents the comparison of different
performance metrics for ISIC2019 dataset.

It is worth mentioning that DenseNet consistently
exhibits enhanced performance in comparison to
AlexNet, as depicted in Figure 16. In terms of accuracy,
F1 score, precision, and recall, DenseNet demonstrates
superior performance, suggesting an enhanced ability to
accurately classify instances while maintaining a more
favorable trade-off between precision and recall. The
obtained outcomes are consistent with the increasing rec-
ognition of DenseNet’s effectiveness in diverse image
classification tasks as a result of its dense connectivity
architecture. DenseNet, with an accuracy of 97%, demon-
strates a superior ability to correctly classify instances com-
pared to AlexNet, which achieved an accuracy of 96.8%.
Moreover, the performance of DenseNet exceeds that of the
reference model by 0.9%, affirming its efficacy in achieving
superior accuracy. With an F1 score of 98.7%, DenseNet
achieves a refined equilibrium between precision and recall
compared to AlexNet’s F1 score of 98.4%. It signifies
DenseNet’s superior performance in discerning intricate pat-
terns within the dataset, resulting in a more robust and
balanced classification model. Notably, DenseNet

Figure 14. Accuracy percentage on DermQuest dataset.

Table 8. Classification results comparison for DermIS.

Algorithms F1 Score Precision Recall

CNN with Alexnet 80 81 79

CNN with Densenet 85 86 83
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outperforms the reference model by 1.8%, affirming its effect-
iveness in achieving a precision of 90%.Whereas AlexNet has
slightly higher recall (i.e., 91%), both models significantly
surpass.28

The percentage differences underscore the gradual
enhancements achieved through the implementation of
DenseNet, which manifests in significant improvements to
accuracy, precision, and F1 score. Significantly, the per-
formance of our suggested model is enhanced when exe-
cuted on DenseNet in comparison to its execution on
AlexNet. The noticeable percentage enhancements in
accuracy, precision, and F1 score highlight the beneficial
effects of implementing DenseNet within our particular
framework. The results of this study indicate that the
dense connectivity and feature reuse functionalities that
are intrinsic to DenseNet make a substantial contribution
to the model’s capacity to identify complex patterns in
the dataset.

Conclusion and future work
Detecting melanoma is crucial for effective management,
given its severity as a health concern. The utilization of AI
and DL models, particularly CNN, has demonstrated encour-
aging outcomes in enhancing the Precision of melanoma cat-
egorization. We investigated refining a pre-existing AlexNet
and densenet model to improve the efficacy of melanoma
classification. The analysis shows that DenseNet outperforms
AlexNet in the proposed image classification model.
DenseNet’s accuracy and precision make it a more suitable
choice for this task. By manipulating hyperparameters of
the pre-existing model, we could attain an elevated level of
accuracy in the classification of melanoma on the given data-
sets. The application of DL and machine learning methods in
the classification of melanoma is an expanding area of
research that holds promise for enhancing the detection and
treatment of melanoma. The findings demonstrated that the

Figure 15. Precision, recall, F1-Score for DermQuest dataset.

Table 9. ISIC2019 dataset metrics comparison.

Metric AlexNet DenseNet Olayah et al.28 Percentage improvement in Percentage improvement in

DenseNet over Alexnet DenseNet over28

Accuracy 96.8% 97% 96.1% 0.73% 0.83%

F1 Score 98.4% 98.7% 96.9% 1.54% 0.65%

Precision 89.5% 90% 88.69% 0.91% 1.11%

Recall 91% 90.4% 89.5% -1.68% 1.34%
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fine-tuned model performed better than the pre-trained model,
reaching high accuracy, F1 Score, Precision, and Recall. The
model extracted the most critical characteristics from the
input images with the help of CLs, ReLU, and response nor-
malization layers. Optimizing DL models may significantly
improve the effectiveness of melanoma classification
systems. Nevertheless, additional investigation and verifica-
tion on more extensive datasets are required to guarantee
the Precision and dependability of these models. Future
work will involve applying our model to larger datasets and
incorporating more advanced DL techniques to enhance
further the classification accuracy and efficacy of melanoma
and other skin diseases. The availability of additional data
may facilitate the development of more precise and tailored
models for detecting and managing melanoma. Finally, it is
imperative to carry out comprehensive clinical investigations
to appraise the efficacy of these models in practical settings
and evaluate their influence on patient results.
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