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Abstract: The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in
cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates
(>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of
FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The
physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical
recombination. In parallel, the biological process explores the FLASH effect on the immune system
and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcu-
taneous tissue. This review investigated the selective targeting of cancer cells and the modulation
of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the
implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare
normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic
strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps,
emphasizing the need for further research to optimize its clinical applications. The synthesis of
physicochemical and biological insights serves as a comprehensive resource for cell biology, molec-
ular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in
cancer therapy.

Keywords: FLASH; normal cell sparing; cancer cell kill; cell function; radiotherapy; ultra-high dose
rate; preclinical model; oxygen depletion; biological process; physicochemical process

1. Introduction

Radiotherapy (RT), extensively utilized in cancer treatment, utilizes high-energy ioniz-
ing radiation such as X-rays, electrons or protons to specifically target and disrupt cancer
cell reproduction by inducing damage to its DNA. This approach inhibits the growth and
division of cancer cells effectively [1–3]. While RT is a powerful method for treating various
cancers, its drawback lies in potential damage to healthy cells, limiting the radiation dosage
administered to tumors [4,5]. This constraint often results in incomplete tumor eradication
and diminishes overall treatment efficacy [6]. To address these challenges, there is ongoing
research to optimize RT outcomes based on cell radiobiology. Current techniques, such as
stereotactic body RT [7] and intensity-modulated RT [8], aim to enhance targeted radiation
to tumors while minimizing exposure to surrounding healthy tissues or cells. Despite these
advancements, conventional radiotherapy (CONV-RT) still requires multiple sessions [9],
spanning weeks, and necessitates patient travel to cancer centers. This extended treatment
duration can pose an additional burden on patients and their families.
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FLASH radiotherapy (FLASH-RT) presents an innovative approach to traditional RT
by leveraging ultra-high dose rates (UHDR) to address the challenges associated with
radiation-induced toxicity [10]. While CONV-RT relies on ionizing radiation to damage and
eliminate cancer cells, the potential harm to surrounding healthy cells imposes limitations
on the administered dosage [11]. FLASH-RT, characterized by a delivery rate several
orders of magnitude higher than conventional clinical RT, introduces the FLASH effect,
involving UHDR of greater than 40 Gy/s [12–14]. This unique characteristic significantly
reduces damage to healthy cells while preserving the potent antitumor effectiveness of the
treatment. Although the concept of FLASH-RT was initially introduced by Dewey and Boag
in 1959 [15], it did not gain notable attention until after 2014 by Favaudon et al. [16] when
in vivo studies demonstrated its ability to minimize normal cell toxicity while achieving
comparable tumor control to CONV-RT [17–19].

Studies on FLASH-RT using ion beam RT are currently an area of active investigation,
holding promise for significant advancements in cancer treatment. Ion beam therapy,
known for its precise targeting of tumors while sparing surrounding healthy tissue, is being
explored in combination with FLASH techniques to further enhance treatment outcomes.
The application of UHDRs in ion beam FLASH-RT has the potential to exploit the unique
physical properties of charged particles, such as protons and carbon ions [20], to deliver
radiation with unprecedented speed and efficacy. Despite its nascent stage, preliminary
preclinical studies have demonstrated encouraging results, highlighting the feasibility
and potential benefits of FLASH-RT in ion beam therapy [21]. Nevertheless, additional
research is required to gain a thorough understanding of the FLASH effect from both
cell biology and biophysics perspectives and to refine treatment protocols for clinical
application. Consequently, ongoing studies on FLASH-RT for ion beam therapy stand
at the forefront of radiation oncology research, presenting promising opportunities for
enhanced cancer management [22].

The advantages of FLASH-RT are evident in its potential to overcome the limitations
posed by traditional RT. By minimizing radiation-induced injuries to healthy tissues, it
reduces the treatment time and internal organ motion during irradiation [19]. FLASH-RT
enables the delivery of higher radiation doses to tumors, enhancing treatment efficacy and
potentially leading to more comprehensive tumor eradication. This innovative approach
holds promise in transforming the RT, offering a solution to the challenges of conven-
tional treatments and providing new avenues for improving patient outcomes in cancer
care [20–22]. Table 1 provides a comprehensive comparison between FLASH-RT and CONV-
RT across various aspects. FLASH-RT exhibits ultra-fast treatment times in milliseconds
compared to the typical seconds to minutes seen in CONV-RT. Dose rates in FLASH-RT
are extremely high, surpassing 40 Gy/s, while CONV-RT typically ranges from 0.001 to
0.4 Gy/s. Moreover, FLASH-RT demonstrates enhanced normal cell sparing due to its
UHDR, contrasting with CONV-RT, which poses a greater risk to normal cells. The ther-
apeutic index increased in FLASH-RT, while CONV-RT follows standard radiobiological
principles. Moreover, FLASH-RT allows for single or few fractions, whereas CONV-RT
commonly involves multiple fractions. Patient comfort is improved with FLASH-RT due to
reduced overall treatment time, whereas CONV-RT often involves longer treatment ses-
sions. Furthermore, FLASH-RT potentially reduces machine wear and tear, integrates with
advanced imaging, and minimizes organ motion during treatment. It may also increase
patient throughput, although treatment duration may impact this aspect. While FLASH-RT
is investigational with ongoing research in clinical trials, CONV-RT is an established and
widely practiced treatment option. In terms of cost and accessibility, FLASH-RT may incur
higher costs but offers potential benefits in accessibility compared to CONV-RT.
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Table 1. Comparison of FLASH-RT and CONV-RT.

Aspect FLASH-RT CONV-RT

Treatment Time Ultra-fast (milliseconds) Typically seconds to minutes
Dose Rate Extremely high (>40 Gy/s) Moderate to high (0.001–0.4 Gy/s)
Normal Cell Sparing Enhanced due to UHDR Limited, increased risk to normal cells
Oxygen Effect Reduced due to ultra-short exposure Present, potential impact on tumor response
Radiobiological Effect Increased therapeutic index Standard radiobiological principles
Fractionation Single or few fractions possible Multiple fractions common
Patient Comfort Reduced overall treatment time Longer treatment sessions
Machine Wear and Tear Potentially reduced Standard wear and tear
Integration with Imaging Compatibility with advanced imaging Standard imaging requirements

Organ Motion during Treatment
Reduced impact due to faster delivery
if the tumor position is known
immediately prior to treatment

Continuous monitoring and adaptation

Patient Throughput Potentially increased Treatment duration may impact throughput
Clinical Trial Status Investigational, ongoing research Established, widely practiced
Cost and Accessibility Potential for higher costs Generally more accessible

It should be noted that FLASH-RT is an emerging technology and ongoing research,
in particular cell radiobiology, is vital to validate its clinical benefits and address challenges.
A key challenge in its clinical translation is understanding the intricate mechanisms of
cell function, response, and killing in FLASH-RT. Unraveling the molecular and cellular
processes that contribute to the unique FLASH effect is essential for optimizing treatment
protocols, enhancing therapeutic outcomes, and minimizing potential side effects [23].
However, the challenge lies in the difficulty of conducting experiments to comprehensively
understand the FLASH effect [24,25]. The UHDRs associated with FLASH-RT demand
specialized equipment and sophisticated techniques that are not readily available in stan-
dard experimental setups such as the UHDR radiation sources [19,26]. Moreover, the
rapid nature of FLASH radiation delivery poses challenges in capturing real-time cellular
responses, making it intricate to dissect the precise mechanisms involved [27]. Despite
these challenges, gaining a profound understanding of the cell-killing and cell-sparing
mechanisms associated with FLASH-RT is crucial for advancing its clinical application,
guiding treatment planning, and ultimately improving the overall efficacy and safety of
cancer radiotherapy. Collaborative efforts between researchers in cell biology and bio-
physics, clinicians, and technological advancements will be instrumental in overcoming
these experimental hurdles and unlocking the full potential of FLASH-RT in the pursuit of
more effective and targeted cancer treatments.

In the rapidly evolving realm of cancer treatment, FLASH-RT has emerged as a
promising avenue with the potential to revolutionize CONV-RT methods. However, despite
its growing popularity, our understanding of the underlying mechanisms driving its efficacy
remains incomplete [28–31]. This is where our comprehensive review is needed to fill a
crucial gap of incomplete understanding of the underlying mechanisms driving the efficacy
of FLASH-RT. By meticulously examining the physicochemical and biological processes
involved in FLASH-RT, we aim to provide a holistic understanding of its mechanism of
action based on cell biology and biophysics. Through this review, we not only synthesize
the latest research findings but also offer insights into the direction of future investigations.
This paper serves as an indispensable resource for researchers, clinicians, and stakeholders
invested in advancing FLASH-RT as a cutting-edge cancer treatment modality. This review
paper aims to examine the mechanisms of the FLASH effect in FLASH-RT focusing on
the impact of cell function and response. Our objectives include providing a concise
overview of the current understanding of the FLASH effect, identifying gaps in proposed
mechanisms, and suggesting a roadmap for future research.
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2. Mechanisms of the FLASH Effect in RT

FLASH-RT is an innovative approach in cancer treatment that delivers an ultra-high
dose of radiation in an extremely short duration, typically in milliseconds, as opposed to
the CONV-RT administered over several minutes. The unique aspect of FLASH-RT lies
in its ability to induce rapid cancer cell kill with reduced damage to surrounding healthy
cells compared to traditional radiotherapy. The mechanism of cell kill in FLASH-RT is
multifaceted and can be broadly categorized into physicochemistry and biology [32–34].
The physicochemical process is characterized by the rapid delivery of radiation, leading
to a phenomenon where biological tissues absorb energy at an accelerated pace. The
effect then involves the generation of reactive oxygen species (ROS) during radiation,
impacting cellular components. On the other hand, the biological process encompasses
the intricate interplay between the rapid radiation delivery and the cellular response,
affecting DNA repair mechanisms and signaling pathways. When comparing the timelines
of physicochemical processes in FLASH and CONV-RT, it is essential to note that FLASH
irradiation is about 1000 times faster than conventional irradiation, as shown in Figure 1.
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Figure 1. Schematic diagram showing the primary physicochemical and biological reactions subse-
quent to cellular and tissue exposure to radiation. CONV-RT disturbs both chemical and biological
reactions, whereas FLASH-RT circumvents engagement with biochemical pathways, allowing it to
bypass these reactions.

Understanding these interconnected aspects is important for optimizing FLASH-RT’s
therapeutic potential while minimizing adverse effects on normal cells.

When a tumor is excised prior to radiotherapy, the irradiated volume encompasses
an added margin around the tumor or surgical site. This expansion aims to target tumor
cells that may have infiltrated the surrounding healthy tissue. These infiltrated cancer
cells occupy a distinct environment from those within the primary tumor, as shown in
Figure 2. FLASH-RT offers the advantage of safeguarding healthy tissue while maintaining
efficacy comparable to CONV-RT in combating cancer cells. The hypothesis regarding
the effects of FLASH-RT suggests that the unique biological and physiological responses
to UHDR irradiation in FLASH-RT contribute to its ability to target infiltrated cancer
cells within normal tissues while minimizing damage to healthy surrounding tissue. One
potential explanation for the effectiveness of FLASH-RT on infiltrated cancer cells lies in
the differential response of normal tissue vasculature and tumor vasculature to UHDR
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irradiation. It is hypothesized that the rapid delivery of radiation may overwhelm the
repair mechanisms of tumor vasculature while sparing the normal tissue vasculature.
This could result in preferential damage to the tumor microenvironment while preserving
surrounding healthy tissue. Moreover, the oxygenation status of tissues during FLASH-RT
could play a role in its efficacy. Unlike CONV-RT, where temporary hypoxia in the tumor
microenvironment can reduce treatment effectiveness, the rapid delivery of FLASH-RT
may mitigate the impact of transient hypoxia. This could result in more consistent and
effective tumor cell killing, even in regions with poor oxygenation.
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2.1. Physicochemical Process on Cell Killing

The physicochemical process in FLASH-RT unfolds in distinct stages, primarily char-
acterized by the interaction of energetic particles with water within femtoseconds. The
distinction between UHDR and conventional dose rate lies in the duration of exposure,
which significantly influences the initial radiation chemistry, as shown in Figure 1 [14].
During the physical stage, water molecules undergo electronic excitation and ionization,
resulting in the formation of highly unstable ionized and excited molecules [35,36]. This
stage, occurring between 10−15 and 10−12 s, involves de-excitation events such as proton
transfer, dissociation, and electron thermalization. Proton transfer leads to the production
of hydroxyl radicals, crucial in subsequent reactions [37]. The emitted electrons either mi-
grate to form secondary ionizations or become thermalized, generating aqueous electrons.
The nonhomogeneous chemical stage follows between 10−12 and 10−6 s, where radical
species diffuse, react, and form new radical products [38]. In this intricate process, the
spatial distribution of ionizations, represented by linear energy transfer (LET), dictates
the competition between recombination and diffusion [39]. Notably, in FLASH-RT, the
ultra-high dose is delivered in milliseconds, potentially altering the competition dynam-
ics between radical recombination and diffusion in the cell, providing insights into the
distinctive radiobiological effects observed in FLASH effect.

However, the mechanism behind FLASH-RT and its effects on cellular function and
response remain inadequately understood. Ongoing investigations are delving into factors
such as oxygen depletion, free radical recombination, and the metabolism of peroxidized
compounds to elucidate these complexities [13]. Hypotheses surrounding the oxygen
depletion effect and reactive oxygen species (ROS)-mediated cell damage have been pro-
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posed. Figure 3 presents a summary of the physicochemical and biological processes within
FLASH-RT across various time scales post-irradiation.
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2.1.1. Oxygen Depletion Effect

The oxygen depletion effect involves the rapid consumption of oxygen within cells
during ultra-high-dose, short-duration radiation. This quick oxygen depletion induces
transient radiation-induced hypoxia, influencing the differential responses observed be-
tween healthy and tumor cells in FLASH-RT [40]. The differential responses observed
between healthy and tumor cells in vivo following FLASH-RT can be attributed to multiple
hypotheses. One hypothesis suggests that the distinct types of DNA damage induced by
FLASH-RT and conventional dose-rate irradiation contribute to the disparate responses
of healthy and tumor cells [14]. Another perspective posits that solid tumors, often char-
acterized by hypoxia, are less shielded from the transient hypoxia caused by FLASH-RT
compared to healthy tissues, resulting in varied effects [41]. Furthermore, differences in
the ability of cancer cells and normal cells to scavenge hydrogen peroxide products may
contribute to the observed variations [42]. FLASH-RT rapidly depletes local oxygen in cells,
generating hydrogen peroxide products. Healthy cells, with lower oxidant loads and higher
catalase reduction reserves, may efficiently eliminate these products compared to tumor
cells. Despite these theories, the precise mechanism underlying the differential responses
remains unclear, necessitating further experimental validation of the various hypotheses.

Research indicates that, under low physiological oxygen conditions, many normal
tissues can maintain cell populations for renewal and regeneration. UHDR radiation in
FLASH-RT leads to rapid oxygen depletion, mimicking hypoxia and increasing normal
cell radiation resistance [43,44]. This effect is particularly significant in oxygenated normal
cells surrounding hypoxic tumors, as observed in CONV-RT. Water molecules in cells break
down during UHDR radiation, generating ROS that indirectly damage DNA.

Recent studies challenge the widely accepted oxygen consumption mechanism of
FLASH-RT. Growing evidence refutes the idea that oxygen depletion alone explains the
protective effects of FLASH-RT on normal cells. Jansen et al. [45] found that, despite con-
suming more oxygen than CONV-RT, FLASH-RT did not deplete all oxygen in pure water,
even at a 10 Gy total dose. This challenges the belief that complete oxygen consumption
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is the basis for the neural function preservation seen in mice. Epp et al. [46] and Adrian
et al. [47] observed FLASH-RT’s protective effects only under very low oxygen concen-
trations, questioning the assumption of complete oxygen consumption. Adrian et al. [48]
observed protective effects of FLASH-RT in normoxic conditions and oxygen-rich tissues
like the lung. Furthermore, the oxygen depletion hypothesis fails to explain the similar anti-
tumor effects of FLASH-RT and CONV-RT, as FLASH-RT may induce tumor cell resistance
due to the inherently hypoxic nature of tumor tissues [49]. It is seen that the relationship
between FLASH irradiation, oxygen consumption, and its impact on radiosensitivity is a
subject of ongoing investigation, challenging traditional hypotheses on oxygen’s role in
FLASH effect [12,43].

2.1.2. ROS and Free Radical Effect

The UHDR delivered from FLASH-RT induces the generation of ROS and free radicals,
crucial in elucidating the observed benefits. ROS, including superoxide anion (O2•−),
hydrogen peroxide (H2O2), and hydroxyl radical (•OH), arise from the radiolysis of water
molecules by the ionizing radiation used in FLASH irradiation [50]. These ROS engage
in reactions with cellular components, such as DNA and proteins, causing oxidative
stress and cellular damage [51]. Concurrently, the rapid release of high-energy radiation
during FLASH-RT generates free radicals, like oxygen-centered (e.g., hydroxyl radicals)
and carbon-centered radicals. These free radicals initiate chain reactions, contributing to
oxidative damage in cellular components [52]. This mechanism may explain the advantages
of FLASH-RT, such as the differential response between normal and cancerous cells to
UHDRs. Normal cells, equipped with robust antioxidant systems, may better manage the
increased oxidative stress induced by FLASH irradiation, while the rapid radiation delivery
limits ROS and free radical diffusion, confining effects and sparing surrounding healthy
cells [53].

Several recent studies have delved into the interplay of ROS and free radicals in
FLASH-RT, regarding the underlying mechanisms and potential implications. One study
involving zebrafish embryos exposed to conventional and FLASH-RT revealed minimal
morphological effects, linking the enhanced radiation resistance of normal cells to decreased
ROS levels [54]. Molecular dynamics simulations by Abolfath et al. [44] explored ROS
generation near DNA, highlighting the formation of stable molecular states with limited
diffusivity and lower potential for biological damage. Favaudon et al. [16] introduced
the Transient Oxygen Depletion hypothesis, suggesting that preservation of FLASH-RT
of normal cells is due to transient hypoxic radiation protection. However, conflicting
findings on oxygen consumption during FLASH irradiation challenge this hypothesis.
Montay-Gruel et al. [55] demonstrated that UHDR radiation inhibits ROS production
through oxygen consumption, contributing to normal cell protection. Spitz et al. [56]
emphasized differences in redox chemistry and iron content between normal and tumor
cells, influencing the reaction of ROS and reducing cellular damage during FLASH-RT.
Moreover, studies by Abolfath et al. [44], Labarbe et al. [32], and Lai et al. [57] explored
the correlation between FLASH effect and oxygen concentration, ROS production rates,
and the potential role of free radical recombination in cell protection. Blain et al. [52]
observed a significant reduction in H2O2 production in FLASH-RT compared to CONV-RT
in vitro. However, further investigations are needed to compare the differences in other
ROS between FLASH-RT and CONV-RT. Overall, these findings collectively contribute
to our understanding of the complex relationship between ROS, free radicals, and the
observed effects of FLASH-RT on cells.

2.1.3. Other Physicochemical Processes

Apart from the main oxygen and free radical recombination effect, there is another
hypothesis regarding the Fenton-type reaction and peroxidized compounds in FLASH-RT
suggested by Spitz et al. [56,58]. They found that the distinctive effect in FLASH-RT can
be attributed to several interconnected factors. The UHDR characteristic of FLASH led
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to the rapid consumption of local tissue oxygen, resulting in the formation of reactive
organic hydroperoxides. Importantly, Fenton-type reactions, which involve iron and
contribute to cellular damage, are anticipated to be limited in normal cells compared to
cancer cells due to lower levels of labile iron [59]. Given this, normal cells are expected to
exhibit a more efficient removal of organic hydroperoxides compared to tumor cells. The
differential ability to eliminate these reactive compounds becomes crucial, as tumor cells
may struggle to remove hydroperoxides effectively [60]. Consequently, both FLASH and
conventional dose rate irradiation are more isoefficient at killing tumor cells compared to
normal cells, highlighting the potential of FLASH RT to selectively target cancerous cells
while minimizing damage to normal surrounding structures.

2.2. Biological Process on Cell Killing

The biological process followed by the physicochemical process included the immune
and inflammatory response, reduction in stem cell senescence, and vascular injury. They
are demonstrated in various cell and preclinical experiments regarding different sites such
as the brain, lung, gastrointestinal tract, and skin.

The immune and inflammatory hypothesis in FLASH effect proposed that the unique
characteristics of FLASH, such as UHDR and the absence of an inflammatory response, can
modulate immune and inflammatory processes in the tumor microenvironment, potentially
enhancing antitumor effects [61–63]. Transforming growth factor-beta (TGF-β), a crucial
proinflammatory cytokine, plays a specific role in the modulation of FLASH-RT effects
compared to CONV-RT [64,65]. Studies have linked downregulated TGF-β signaling to
radiation resistance in tumor-infiltrating T cells [66,67]. FLASH irradiation, characterized
by reduced treatment time, allows more circulating immune cells to survive than CONV-RT,
although this reduction in time may compromise the efficacy of fractionated irradiation [68].
FLASH radiation has been observed to induce a 1.8-fold increase in TGF-β levels 24 h
post-irradiation, significantly lower than the 6.5-fold increase observed with conventional
dose rates. This reduction in TGF-β levels suggests that FLASH radiation has the potential
to minimize radiation-induced chronic inflammation [23,61]. Clinical studies support the
idea that differences in high dose rate and total treatment time in FLASH-RT can preserve
the immune system [69,70]. However, further research is needed to confirm the specific
effects of FLASH exposure on chromosomal aberrations in circulating lymphocytes and
proinflammatory cytokine levels in different cells compared to conventional dose-rate
irradiation [69].

The protective effect of FLASH-RT in reducing stem cell senescence is pivotal, as
senescent cells can release proinflammatory cytokines, potentially leading to pulmonary
fibrosis and hindering cell regeneration post-radiation injury [13]. In a preclinical study
by Fouillade et al. [71], mice irradiated under FLASH-RT demonstrated less lung injury
and a comparable antitumor effect compared to conventional dose-rate irradiation. This
protection may be linked to the preservation of stem cell replication ability, as the FLASH-
RT group exhibited a 50% reduction in senescent stem cells. Notably, when stem cell
senescence was induced in mice, the lung protection effect of FLASH-RT disappeared.
Additionally, a study by Yang et al. [72] found that both tumor stem cells and normal
tumor cells undergo apoptosis, scorch, and necrosis under FLASH-RT, with cancer stem
cells showing stronger radiation resistance. However, further investigation is required
to understand the impact of FLASH-RT on tumor stem cells compared to conventional
dose-rate irradiation and its implications for the retention of antitumor effects. While
the maintenance of stem cell division ability offers partial insights into the protective
mechanism of FLASH-RT on normal cells, additional studies are essential to validate and
explore other potential mechanisms, as well as to confirm experimental results [73].

RT-induced vascular injury is a significant component of radiation damage. Favaudon
et al. [16] discovered that FLASH-RT reduces acute apoptosis of bronchial vessels compared
to conventional dose-rate irradiation. In brain injury studies, FLASH-RT demonstrated
superiority over conventional methods in preserving micro-vessel integrity, potentially
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benefiting cognitive function [55]. Nevertheless, existing evidence only establishes that
FLASH-RT induces less vascular damage than conventional approaches, and the specific
impact on the upstream gene regulatory pathway remains unclear. More detailed results of
the above biological processes are explored in various cell and preclinical models.

2.2.1. Cell and Preclinical Models in Brain and Lung

Extensive investigations into the biological processes of FLASH have focused on the
brain, a late responding organ. Studies using 10 Gy whole brain irradiation revealed a
dose-rate threshold of 100 Gy/s to trigger the FLASH effect, preserving neurogenesis and
neuronal morphology while minimizing neuroinflammation [55,74]. Carbogen breathing
during UHDR irradiation reversed the neuroprotection, demonstrating the influence of
oxygen levels [41,44]. Further validations at lower dose rates and with a single fraction
of 30 Gy confirmed neuroprotection, reducing reactive astrogliosis, microglial, and C3
complement activation. Moreover, vascular integrity and the blood–brain barrier were
preserved following UHDR irradiation [75]. Evaluations in juvenile mice demonstrated
spared memory loss and anxiety-like behaviors after whole brain irradiation at 8 Gy using
UHDR [14]. Notably, UHDR spared normal brain tissue toxicity and reduced neuroinflam-
mation, but its antitumor efficacy on glioblastoma was similar to conventional dose-rate
irradiation [76]. These findings suggest that the antitumor efficacy of radiotherapy may
be independent of dose rate, impacting neurocognitive decline in glioblastoma-bearing
mice during fractionated regimens. On the other hand, Almeida et al. [77] investigated the
antitumor immunological memory response in mice exposed to ablative doses of electron
and proton beams, comparing conventional and FLASH dose rates. Their findings revealed
that tumor responses remained largely independent of dose rate across various immuno-
competent and immunodeficient mouse models. This observation challenges the notion of
the immune response playing a significant role in the antitumor efficacy of FLASH-RT.

For preclinical experiment on lung, Favaudon et al. [16] pioneered the demonstration
of the FLASH effect in the lung. Exposure to 17 Gy electron FLASH irradiation reduced
delayed pulmonary fibrosis, contrasting with conventionally irradiated mice that developed
extensive fibrotic lesions. This sparing effect correlated with reduced apoptosis in blood
vessels and bronchi. At the tumor level, 15 Gy UHDR irradiation effectively controlled the
growth of orthotopic TC-1 tumor cells in the lung, allowing feasible dose escalation up to
28 Gy for enhanced tumor control [14,78]. In the normal lung, studying cell repopulation
after 17 Gy electron FLASH irradiation revealed minimized DNA damage and senescence in
situ [79]. Further investigations in human fibroblast cell lines demonstrated reduced 53BP1
foci after 5.2 Gy FLASH irradiation compared to conventional, with RNA sequencing
indicating attenuated fibrogenic and proinflammatory gene expression [71,80]. These
findings suggest a genomic-level impact of FLASH-RT, influencing responses in both
normal and tumor cells.

2.2.2. Cell and Preclinical Models in Gastrointestinal Tract, Skin, and Subcutaneous Tissue

Preclinical results showed that FLASH irradiation offers advantages in acute respond-
ing organs, including the gastrointestinal tract and the hematopoietic system. In a FLASH
electron irradiation with exposure equal to 14 Gy and dose rate equal to 216 Gy/s, intestinal
function, epithelial integrity, and regenerating crypts are preserved while reducing DNA
damage and apoptosis [81]. In a preclinical ovarian cancer model (ID8), FLASH irradia-
tion demonstrates comparable antitumor efficacy to CONV-RT (0.08 Gy/s) [82]. Studies
using spread-out Bragg peak irradiation [83,84] and pulsed synchrocyclotron [85] confirm
enhanced survival with FLASH in pancreatic and gastrointestinal models. Importantly,
UHDR reduces toxicity and improves crypt survival, making it a promising approach for
minimizing gastrointestinal toxicity. These findings highlight the potential of FLASH-RT
across different radiation modalities and emphasize its efficacy in controlling tumors while
reducing normal tissue damage [86].
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In a preclinical subcutaneous Lewis lung carcinoma model, exposure to 15 Gy electron
at UHDR of 352 Gy/s preserved normal vasculature, while critical vascular collapse
occurred with dose rate of 0.06 Gy/s in conventional irradiation [87]. The preservation
of vasculature in FLASH irradiation was linked to reduced phosphorylation of myosin
light chain (p-MLC), influencing endothelial cell contraction and immune cell infiltration.
Studies using MLC kinase inhibitor (ML-7) in combination with CONV-RT replicated
FLASH results, identifying the MLC pathway as a potential molecular target [87,88]. Dose
escalation studies revealed reduced skin ulceration at 30 and 40 Gy in FLASH electron
irradiation at a dose rate of 180 Gy/s compared to 0.07 Gy/s in CONV-RT. Proton beam
studies confirmed similar results with 35 Gy delivered through FLASH scanning proton
pencil beam and transmission proton beam [89]. These studies demonstrated decreased
skin toxicity and leg contraction after FLASH irradiation, with comparable tumor control
to CONV-RT in immunocompetent mice. In addition, FLASH proton RT with dose rate
of 69–124 Gy/s spared skin, leg, and mesenchymal tissues from severe toxicities, while
conventional proton RT (dose rate = 0.39–0.65 Gy/s) increased TGF-b1 levels in murine and
canine skin. Both FLASH and conventional proton RT equally controlled subcutaneous and
intramuscular sarcoma tumors [90]. Rudigkeit et al. [91] studied the proton-FLASH effect
using an in vivo mouse ear model. They found that, in the 23 Gy group, no inflammation
differences were noted. In the 33 Gy group, a dose rate of 9.3 Gy/s reduced ear swelling
and inflammation scores by (57 ± 12)% and (67 ± 17)% and a dose rate of 930 Gy/s by
(40 ± 13)% and (50 ± 17)% compared to conventional dose rate (0.06 Gy/s). Blood cytokines
remained unchanged but estimated irradiated blood volume was 100 times higher with
conventional than with FLASH, suggesting a role of blood in FLASH effect.

2.2.3. Biological Models in Big Animal and Human

For big animal study, Vozenin et al. [92] identified 34 Gy as a tolerated and effective
dose in FLASH-RT for cat-cancer patients. Phase III validation is underway. Dog patients
with superficial solid tumors underwent dose escalation trials, with minimal follow-up,
while a feasibility study in dogs with osteosarcoma showed minimal TGF-b production
after 12 Gy FLASH protons [93,94]. Human clinical trials are limited at present [95,96], but a
study on T-acute lymphoblastic leukemia patient-derived xenografts revealed sensitivity to
UHDR [97], suggesting a gene-related susceptibility profile. Positive and negative FLASH
effect studies are summarized [90], highlighting that UHDR and conventional dose rate
irradiation are similarly effective in tumor control, emphasizing tumor sensitivity indepen-
dence of dose rate. A hypothesis from Spitz et al. [56] suggests that differential distribution
of organic hydroperoxides after FLASH vs. conventional irradiation contributes to the
therapeutic index, with antioxidants effectively removing hydroperoxides in normal cells
but not in tumors.

3. Future Prospective

FLASH-RT as an innovative tumor treatment has captivated the attention of the
radiation oncology community. This review delves into current hypotheses explaining the
underlying physicochemical and biological processes, encompassing both theoretical and
experimental aspects of the FLASH effect. Despite recent advancements, significant hurdles
hinder the clinical translation of FLASH-RT, partially due to the inadequate understanding
of cell killing under the UHDR radiation beams. Enhancing cell and preclinical experiments
requires crucial technical advancements, including the development of a delivery system
capable of simultaneously administering multiple FLASH irradiation beams [98,99]. Real-
time adaptation and understanding the intricate mechanisms of the FLASH effect pose
additional challenges [100,101].

While studies have illuminated early effects of FLASH-RT, its late and overall effects
remain unknown [96,102]. Verification of scientific findings and controlled FLASH-RT vs.
CONV-RT studies are vital for future research. Moreover, the lack of a comprehensive
simulation platform for FLASH irradiation necessitates the development of advanced tools
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to accelerate understanding [103]. The future focus of the radiation oncology community is
decoding the FLASH effect’s mechanism and clinical feasibility.

Further animal experiments are essential to demonstrate the FLASH protective effect
on healthy cells. Standardization of experimental conditions, including radiation sources
and field shapes, is crucial for accurate comparisons. Various modified irradiation systems,
such as electron linear accelerators, synchrotron light sources, and proton accelerators, offer
promise but require refinement for broader clinical application [104,105].

To progress, clinical confirmation of the FLASH effect in cancer patients, redefinition
of irradiation doses, and addressing urgent challenges in clinical transformation are im-
perative [95]. Lack of clinical data, uncertainty about tumor metastasis, unclear long-term
effects, limited equipment, and questions regarding treatment planning systems must
be addressed for the successful integration of FLASH-RT into mainstream radiotherapy
practices [20,25,106]. The potential benefits of FLASH-RT based on expectations and cur-
rent knowledge [107] make it a promising avenue for the future of cancer treatment [10].
However, extensive research, clinical trials, and technological advancements are essential
to overcome current limitations and ensure its safe and effective application.

4. Conclusions

In conclusion, our review illuminates the intricate mechanisms that unlock the cell-
killing potential of FLASH-RT. The combined impact of physicochemical and biological
factors is pivotal to FLASH-RT in eliminating cancer cells while protecting the normal cells.
The physicochemical process, including the role of reactive ROS and radiolysis, have been
postulated as key contributors to the enhanced cell-killing effect in FLASH-RT. However, a
deeper understanding of these processes is imperative for a comprehensive grasp of the
underlying biological responses. The emerging insights into FLASH-RT-related radiobiolog-
ical processes open avenues for future research aimed at elucidating the intricate interplay
between radiation and cellular responses. Biological processes, particularly the protective
effect observed in healthy cells, pose challenges and opportunities for clinical translation.
The need to distinguish between the effects induced by FLASH and conventional irradiation
underscores the importance of unraveling the long-term and overall impacts of FLASH-RT
on biological systems. Collaboration across disciplines and sustained efforts in research and
clinical applications will be pivotal. The ongoing pursuit of understanding the mechanisms
involved in the cell-killing efficacy of FLASH-RT paves the way for transformative advance-
ments in the field of radiation oncology. As FLASH-RT continues to advance at top speed
due to clinical needs as a promising cancer treatment modality, our review underscores the
ongoing necessity for further research to elucidate its mechanisms comprehensively. There
are current limitations in clinical experimentation due to incomplete understanding. So,
this review showing the growing body of supportive evidence from cell and preclinical
studies suggests promising prospects for the safe implementation of FLASH-RT in human
patients. Moving forward, bridging the gap between preclinical validation and clinical
application will be pivotal in realizing the full potential of FLASH-RT as an effective and
safe treatment option for cancer patients.
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