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Abstract

Individuals of admixed ancestries (for example, African Americans) inherit a mosaic of ancestry 

segments (local ancestry) originating from multiple continental ancestral populations. This offers 

the unique opportunity of investigating the similarity of genetic effects on traits across ancestries 

within the same population. Here we introduce an approach to estimate correlation of causal 

genetic effects (radmix) across local ancestries and analyze 38 complex traits in African-European 
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admixed individuals (N = 53,001) to observe very high correlations (meta-analysis radmix = 0.95, 

95% credible interval 0.93–0.97), much higher than correlation of causal effects across continental 

ancestries. We replicate our results using regression-based methods from marginal genome-wide 

association study summary statistics. We also report realistic scenarios where regression-based 

methods yield inflated heterogeneity-by-ancestry due to ancestry-specific tagging of causal effects, 

and/or polygenicity. Our results motivate genetic analyses that assume minimal heterogeneity in 

causal effects by ancestry, with implications for the inclusion of ancestry-diverse individuals in 

studies.

Large-scale genotype–phenotype studies are increasingly analyzing diverse sets of 

individuals of various continental and subcontinental ancestries1-4. A fundamental open 

question in these studies is to what extent the genetic basis of common human diseases 

and traits are shared/distinct across different ancestry populations and its impact to genetic 

discovery and prediction5-9. For example, it is unclear how much of the low polygenic score 

portability can be attributed to differences in genetic causal effects across ancestries5,10,11. 

Hence, understanding the role of ancestry in variability of causal effect sizes has tremendous 

implications for understanding the genetic basis of disease and portability of genetic risk 

scores in personalized and equitable genomic medicine1,10-13.

The standard approach to estimating similarity in causal effects across ancestries has focused 

on cross-population analyses (typically at continental level) in which effect sizes estimated 

by large-scale genome-wide association studies (GWAS) are compared across continental-

level ancestry groups5-8,14,15. Such studies have found significant differences, albeit with 

modest magnitude, of causal effects in cross-continental comparisons. However, a main 

drawback of such studies is the differences in definition of environment/phenotype across 

such broad units of ancestry that can reduce the observed similarity; for example, the low 

estimated similarity in causal genetic effects for major depressive disorder across Europeans 

and East Asians may be attributed to different diagnostic criteria in the two populations8,16.

As an alternative to studying populations across different continents, causal effects similarity 

by ancestry can also be studied within recently admixed populations. Recently admixed 

individuals have the unique feature of having their genomes as mosaic of ancestry 

segments (local ancestry) originating from the ancestral populations within the past few 

dozen generations; for example, African American genomes are composed of segments of 

African and European ancestries within the past 5–15 generations17. Unfortunately, admixed 

populations are vastly underrepresented in genomic studies18, partly because of the lack 

of understanding of how the genetic causal effects vary across ancestries10,17,19-22. For 

example, heterogeneity of marginal effects (which is estimated in GWAS single variant scan 

and can tag effects from nearby variants due to linkage disequilibrium (LD)) for a few traits 

and loci has been reported23-26, but it remains unknown whether this reflects true difference 

in causal genetic effects or confounding due to different allele frequencies and/or LD by 

ancestry. Recent work15 has reported evidence of causal effect heterogeneity for single 

nucleotide polymorphisms (SNPs) in regions of European ancestries comparing individuals 

of European versus African American ancestries; however, these studies focused on cross-

population comparisons instead of comparing effects across local ancestries within admixed 
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populations. Estimating the magnitude of similarity in causal effects across ancestries is 

important for all genotype–phenotype studies in admixed populations from mapping to 

polygenic prediction, particularly within methods that allow for effects to vary across local 

ancestry segments19-22.

In this Article, we quantify the similarity in the causal effects (that is, change in phenotype 

per allele substitution) across local ancestries within admixed populations; such similarity 

can be defined as the correlation of ancestral causal genetic effects radmix = Cor[βafr, βeur] across 

African (βafr) and European (βeur) local ancestries. We develop a method that leverages the 

polygenic architecture of complex traits to model all variants (GWAS-significant and non-

significant); this approach is accurate and robust across a wide range of realistic simulated 

genetic architectures. We also investigate regression-based approaches that use marginal 

effects of SNPs prioritized in GWAS risk regions. Through simulation studies, we find 

that regression-based methods can yield deflated estimates of similarity (that is, inflated 

heterogeneity) especially for highly polygenic traits.

We analyze complex traits in African-European admixed individuals in Population 

Architecture using Genomics and Epidemiology (PAGE)1 (24 traits, average N = 9,296), 

UK Biobank (UKBB)2 (26 traits, average N = 3,808), and All of Us (AoU)3 (10 traits, 

average N = 20,496); there are 38 unique traits in total. We find causal effects are largely 

consistent across local ancestries within admixed individuals (through meta-analysis across 

38 traits, estimated correlation of radmix = 0.95, 95% credible interval 0.93–0.97). In addition, 

we find that the heterogeneity in marginal effects exhibited at several trait–locus pairs 

can be explained by multiple nearby causal variants within a region, consistent with our 

simulation studies. Our results suggest that the causal effects are largely consistent across 

local ancestries within African-European admixed individuals, and this motivates future 

genetic analysis in admixed populations that assume similar effects across ancestries for 

improved power.

Results

Overview

We start by describing the statistical model we use to relate genotype to phenotypes in 

two-way admixed individuals; we focus on two-way African-European admixture because 

their local ancestries can be accurately inferred (Methods; for extension to other admixed 

populations, see Discussion). For a given individual, at each SNP s, we denote number of 

minor alleles from maternal and paternal haplotypes as xs, M, xs, P ∈ {0, 1} and local ancestries 

as γs, M, γs, P ∈ {afr, eur}. Denoting I( ⋅ ) as the indicator function, we define the local ancestry 

dosage as allele counts from each of ancestries; for example, ℓs = I(γs, M = afr) + I(γs, P = afr)
for African (similarly for European). For modeling convenience, we use variables that 

encode the genotypes conditional on local ancestries gs, afr, gs, eur as the allele counts specific 

to each of local ancestries: gs, afr ≔ xs, MI(γs, M = afr) + xs, PI(γs, P = afr) (similarly for gs, eur). The 

phenotype of an admixed individual is modeled as a function of allelic effect sizes that are 

allowed to vary across ancestries:
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y = ∑
s = 1

S
(gs, afrβs, afr + gs, eurβs, eur) + cTα + ϵ,

(1)

where βs, afr, βs, eur are the causal effects at SNP s, S is the total number of causal SNPs in the 

genome, c and α are other covariates (for example, age, sex and genome-wide ancestries) 

and their effects, and ϵ is the environmental noise. βs, afr, βs, eur are usually referred as allelic 

effects: change in phenotype with each additional allele. This is in contrast with standardized 

effects defined as change in phenotype per standard deviation increase of genotype where 

genotypes at each SNP s are standardized to have unit variance5,27. We refrain from using 

standardized effects in this work due to complexities arising from different ancestries 

yielding different ancestry-specific frequencies for the same SNP5 (Methods).

Our goal is to estimate the similarity in the causal effects across local ancestries in admixed 

populations (Fig. 1); the similarity can be evaluated across all genome-wide causal SNPs 

that are common across ancestries in a form of cross-ancestry genetic correlation5,8 (for 

consistency with previous works we use ‘genetic correlation’ to refer to correlation of 

genetic effects across ancestries): βs, afr, βs, eur are modeled as random variables following a 

bivariate Gaussian distribution parametrized by σg
2, ρg, denoting the variance and covariance 

of the effects:

βs, afr

βs, eur
∼ N 0

0 , τs
2 ⋅

σg
2

S
ρg
S

ρg
S

σg
2

S

, s = 1, …, S,

(2)

where τs are variant-specific parameters determined by the genetic architecture assumption 

(Methods). Under this model, the genome-wide causal effects correlation is defined as 

radmix ≔ ρg

σg
2 ; radmix = 1 indicates same causal effects across local ancestries, while radmix < 1

indicates differences across ancestries. To estimate radmix, given the genotype and phenotype 

data for a trait, we calculate the profile likelihood curve of radmix, obtained by maximizing 

the likelihood of model defined by equations (1) and (2) with regard to parameters σg
2 and 

environmental variance for each fixed radmix ∈ [0, 1]. We assume radmix > 0 a priori both because 

causal effects are unlikely to be negatively correlated across ancestries and to reduce radmix

search space for reducing computational cost; we have also performed real data analyses 

to verify this assumption (see below). We obtain the point estimate, credible interval and 

perform hypothesis testing H0 :radmix = 1 either for each individual trait using the trait-specific 

profile likelihood curve, or for meta-analysis across multiple traits using the multiplication 

of the likelihood curves across multiple traits (analogous to inverse variance weighted 

meta-analysis; Methods).
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We organize next sections as follows. First, we show that our proposed approach provides 

accurate estimation of radmix in extensive simulations. Second, we show radmix is very close to 1 

in real data of African-European admixed individuals from PAGE, UKBB and AoU. Third, 

we replicate our findings using methods that use GWAS summary data (marginal SNP 

effects at GWAS significant loci). Finally, we investigate pitfalls of methods4,14,15,28 that 

use marginal SNP effects showing inflated heterogeneity; we find that Deming regression is 

the only approach robust enough to quantify radmix from marginal GWAS effects in admixed 

individuals.

Polygenic method for radmix is accurate in simulations

We performed simulations to evaluate our proposed polygenic method using real genome-

wide genotypes. We simulated phenotypes using genotypes and inferred local ancestries 

with N = 17,299 individuals and S = 6.9 million SNPs (with MAF >0.5% in both 

ancestries in PAGE dataset; we omitted population-specific rare SNPs to reduce estimation 

variance; Methods). Phenotypes were simulated under a range of genetic architectures with 

a frequency-dependent causal effects distribution29,30, and varying proportion of causal 

variants Pcausal, heritability ℎg
2 and true radmix (Methods). We used Pcausal = 0.1 % in our main 

simulations (to simulate a typical polygenic complex trait31). When estimating radmix, we 

either used all SNPs in the imputed genotypes that were used to simulate phenotypes, or 

restricted to HapMap3 (HM3) SNPs32 to simulate scenarios where causal variants are not 

perfectly typed in the data (Methods).

Our method produced accurate point estimates and well-calibrated credible intervals of radmix

across a range of simulation settings (Fig. 2a and Supplementary Tables 1 and 2). We 

first evaluated our method in simulations with a realistic range of ℎg
2 = 0.1, 0.25 and 0.5 

and radmix = 0.9, 0.95 and 1.0. When using the imputed SNPs for estimation, results were 

approximately unbiased (average and maximal relative biases across simulation settings 

were −0.42% and −1.8% respectively). Credible intervals of radmix meta-analyzed across 

simulations approximately cover true radmix: for the most biased setting (ℎg
2 = 0.1, Pcausal = 0.1 %, 

radmix = 0.95), 95% credible interval 0.915–0.948. When using the HM3 SNPs for estimation, 

there was a consistent but small downward bias (Fig. 2a; average and maximal relative 

biases were −1.0% and −2.0%, respectively). This small downward bias was due to 

imperfect tagging that some of the causal SNPs were not included in the HM3 SNPs. 

Nonetheless, the magnitude of bias using either imputed or HM3 SNPs was small, indicating 

our method was accurate and robust to imperfect tagging. We next performed simulations 

to investigate the potential bias in estimating radmix due to omitting population-specific rare 

variants. We re-applied our methods using SNPs with MAF >1% and MAF >5% in both 

populations (in addition to the default MAF >0.5%) to the same simulated data. We 

observed downward bias in estimated radmix as more stringent MAF threshold was used 

and more SNPs were filtered out in estimation procedure. For example, the mode of 

the estimation was 0.966 when methods were applied with MAF >5% in simulation of 

radmix = 1.0 (Fig. 2b and Supplementary Table 3). This indicates omitting population-specific 

rare variants can lead to downward bias (Discussion). We also investigated the impact of 

prior assumption of radmix: we applied a revised methodology that allows for −1 ≤ radmix ≤ 1
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and we found that estimated radmix were highly consistent when assuming 0 ≤ radmix ≤ 1 (default 

method) versus when assuming −1 ≤ radmix ≤ 1 (Fig. 2c).

We performed several secondary analyses. We determined our method remained accurate 

at other simulated Pcausal (Supplementary Table 2; Pcausal ranging from 0.001% to 1%) 

and broader range of simulated radmix (Supplementary Table 4; radmix ranging from −0.5 

to 1). In null simulations (radmix = 1), we determined the false positive rate of hypothesis 

test H0 :radmix = 1 was properly controlled for most simulation settings, and was only 

slightly inflated when HM3 SNPs were used, and/or extremely low Pcausal was simulated. 

In simulations with radmix < 1, power to detect radmix < 1 increased with increasing ℎg
2 and 

decreasing radmix (Supplementary Tables 1 and 2). In addition, we found heritability can be 

accurately estimated in these simulations (Supplementary Tables 5 and 6, and Methods). In 

summary, our method can be reliably used to estimate radmix.

Causal effects are similar across local ancestries

We applied our polygenic method to estimate radmix within African-European admixed 

individuals in PAGE1 (24 traits, average N = 9,296, average fraction of African ancestries 

78%), UKBB2 (26 traits, average N = 3,808, average fraction of African ancestries 59%) 

and AoU3 (10 traits, average N = 20,496, average fraction of African ancestries 74%) 

(Methods). Meta-analyzing across 38 traits from PAGE, UKBB and AoU (60 study–trait 

pairs), we observed a high similarity in causal effects across ancestries (r admix = 0.95, 95% 

credible interval 0.93–0.97). Results were highly consistent across datasets despite different 

ancestry compositions (PAGE: r admix = 0.90, 0.85–0.94; UKBB: r admix = 0.98, 0.91–1; AoU: 

r admix = 0.97, 0.94–1) as well as across traits (Fig. 3a, Table 1 and Supplementary Table 7). 

Height was the only trait that had significant r admix < 1 (after Bonferroni correction; nominal 

P = 4.3 × 10−4 < 0.05 ∕ 38 ; meta-analyzed across three datasets; Table 1) albeit with high 

estimated r admix = 0.936, 0.89–0.97. Estimates of the same traits across datasets were only 

weakly correlated (Extended Data Fig. 1), suggesting similar causal effects by ancestry 

consistently across traits (true radmix ≈ 1 for all traits).

We performed several secondary analyses. Similar to previous simulation studies, we 

determined prior assumption of radmix had minimal impact to results: estimated radmix of 24 

traits in PAGE were highly consistent when assuming 0 ≤ radmix ≤ 1(default method) versus 

when assuming −1 ≤ radmix ≤ 1 (Extended Data Fig. 2). Such consistency between the two 

methods again indicates similar genetic causal effects across local ancestries (radmix ≈ 1) and 

that estimation is robust to choices of statistical prior on radmix. Our results were robust to 

different assumption of effects distribution (Extended Data Fig. 3 and Supplementary Table 

8), consistent with previous work33. Results were also robust to the SNP set used in the 

estimation (Extended Data Fig. 3 and Supplementary Table 8), and criterion of the included 

admixed individuals (Extended Data Fig. 4). Additionally, an alternative formulation 

of method assuming different variance component by ancestry did not outperform our 

default method assuming same variance component by ancestry (Extended Data Fig. 5, 

Supplementary Table 9 and Supplementary Note).
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Next, we contrasted radmix to transcontinental genetic correlations of (1) European versus 

African and (2) European versus East Asian (Fig. 3b and Methods). We determine a 

much higher similarity across local ancestries within admixed populations (r admix = 0.95, 

95% credible interval 0.93–0.97) as compared with transcontinental correlations of 

African versus European within UKBB (r eur−afr = 0.50, meta-analysis across 26 traits, 

95% confidence interval 0.43–0.56) and East Asian (Biobank Japan) versus European 

(UKBB)8 (r eur−eas = 0.85, meta-analysis across 31 traits, 95% confidence interval 0.83–0.87) 

(Supplementary Table 10). Overall, our results are consistent with radmix being less susceptible 

to heterogeneity due to differences in phenotyping/environment in transcontinental 

comparisons.

We sought to replicate high radmix using regression-based methods that leverage estimated 

ancestry-specific marginal effects at GWAS loci (Methods). Specifically, we used the 

following marginal regression equation (restricting equation (1) to each GWAS SNP s): 

y = gs, eurβs, eur
(m) + gs, afrβs, afr

(m) + cTα + ϵ (we distinguish marginal effects β(m) from causal effects 

β; Methods). Across 60 study–trait pairs, we detected 217 GWAS significant clumped 

trait–SNP pairs and we estimated the ancestry-specific marginal effects for each SNP 

(Fig. 3c and Supplementary Table 11). We determined the estimated marginal effects are 

largely consistent by local ancestry at these GWAS clumped SNPs via Deming regression 

slope34 of 0.82 (standard error 0.06) (applied to βs, eur
(m) ∼ βs, afr

(m) ; Deming regression properly 

accounts for uncertainty in both dependent and independent variables; Methods). Mean 

corpuscular hemoglobin (MCH)-associated SNPs at 16p13.3 drove most of the differences 

by ancestry: Deming regression slope was 0.93 (standard error 0.04) on the rest of 193 SNPs 

after excluding 24 MCH-associated SNPs; MCH-associated SNPs also have the strongest 

heterogeneity in marginal effects by ancestry (using heterogeneity score test (HET) for 

testing effects heterogeneity at each SNP35; Supplementary Table 11 and Methods). By 

performing statistical fine-mapping analysis, we found there are multiple conditionally 

independent association signals at MCH-associated and other loci with heterogeneity by 

ancestry (Extended Data Fig. 6 and Supplementary Note). In fact, the MCH-associated loci 

locate at a region harboring alpha-globin gene cluster (HBZ–HBM–HBA2–HBA1–HBQ1) 

known to contain multiple causal variants36. These results suggest that, similar to causal 

effects, marginal effects at GWAS loci are also largely consistent by local ancestry across 

multiple traits, with the exception of 16p13.3 loci for MCH in our study, where multiple 

large-effect causal variants drive some extent of heterogeneity by ancestry in marginal 

effects.

Pitfalls of using marginal effects to estimate heterogeneity

Next, we focused on thoroughly evaluating methods that use marginal effects at GWAS 

significant variants to estimate heterogeneity. Marginal effects are frequently used to 

compare effect sizes across populations or across studies4,14,15,28 and enjoy popularity for 

their simplicity and requirement of only GWAS summary statistics (estimated effect sizes 

and standard errors).
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We first note that heterogeneities in marginal effects can be induced due to different LD 

patterns across ancestries even when the underlying causal effects are identical, especially 

when multiple causal variants are nearby in the same LD block (Fig. 4). We investigate the 

extent of heterogeneity by ancestry that can be induced in simulations with identical causal 

effects across ancestries, due to (1) local ancestry adjustment; (2) unknown causal variants 

coupled with ancestry-specific LD patterns; (3) highly polygenic genetic architectures with 

multiple causal SNPs within the same LD block; (4) standard errors in estimated marginal 

effects across ancestries. Our following simulations were based on real imputed genotypes 

from African-European individuals in PAGE data (17,299 individuals, average fraction of 

African ancestries 78%).

Regressing out local ancestry can deflate the observed similarity in causal 
effects across ancestries.—We first discuss the use of local ancestry in the 

heterogeneity estimation, which is a unique and important component to consider when 

studying admixed populations. We used simulations to investigate the role of local ancestry 

adjustment using three main approaches: (1) ignoring local ancestry altogether (‘w/o’); 

(2) including local ancestry as covariate in the model (‘lanc-included’); (3) regressing 

out the local ancestry from phenotype followed by heterogeneity estimation on residuals 

(‘lanc-regressed’) (Methods). First, in null simulations with identical causal effects (ratio 

of βeur :βafr = 1), we observed that ignoring local ancestry or including local ancestry as 

covariate yielded well-calibrated HET tests; in contrast, regressing out the local ancestry 

effect induced inflated HET test statistics (Fig. 5 and Supplementary Table 12). Next, 

in power simulations with varying amount of heterogeneity (defined as ratio of βeur :βafr), 

including local ancestry in the covariate significantly reduced the power of HET test of up 

to 50% at high magnitude of heterogeneity (Fig. 5 and Supplementary Table 12) (see more 

details in Supplementary Note). Thus, with respect to local ancestry, we recommend either 

not using it or including it as a covariate in the model and not regressing out its effect before 

heterogeneity estimation as that will bias heterogeneity estimation.

Having investigated the role of local ancestry adjustment, we next turn to heterogeneity 

estimation for GWAS SNPs. We focused on investigating properties of HET test and 

Deming regression in null simulations with identical causal effects across ancestries 

βeur :βafr = 1. Since the true causal variants are usually uncertain, we investigated each method 

either at the true simulated causal variants or at the LD-clumped variants (Methods).

Uncertainty in which variants are causal can deflate the observed similarity 
in effects by ancestry.—We first performed simulations with single causal variant: 

we randomly selected one SNP as causal in each simulation. Evaluated at the causal 

SNPs (Methods), we found that HET test and Deming slope were well-calibrated (Fig. 

6a-c, Extended Data Fig. 7 and Supplementary Table 13). However, evaluated at the 

clumped variants, as a more realistic setting (because causal variants need to be inferred), 

we found HET test became increasingly miscalibrated with increased ℎg
2, while Deming 

slope remained relatively robust (with an upward but not statistically significant trend with 

increasing ℎg
2). Ordinary least squares (OLS) slope had bias even when evaluated at causal 
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variants because of its ignorance of the standard errors in the estimated effects (Methods and 

Supplementary Note); such bias became smaller with increased ℎg
2.

High polygenicity can deflate the observed similarity in effects by ancestry.
—Next, we performed simulations where multiple causal variants locate nearby within 

the same LD block (typical for polygenic complex traits37,38; Methods). In this scenario, 

marginal GWAS effects could tag multiple causal effects, thus potentially inflating the 

observed heterogeneity (Fig. 4c). In simulations, we varied the number of causal SNPs 

from 0.25 to 4.0 per Mb to span most polygenic architectures. In contrast to simulations 

with a single causal variant, all three methods (HET test, Deming slope and OLS slope) 

were biased in the presence of multiple nearby causal variants; the miscalibration/bias 

increased with number of causal variants per region, and LD clumping did not alleviate 

the miscalibration/bias (Fig. 6d-f). Such miscalibrations occurred irrespective of sample size 

(Extended Data Fig. 8), or simulated heritability ℎg
2 (Supplementary Table 14).

In summary, we find that methods for heterogeneity-by-ancestry estimation based on 

marginal GWAS SNP effects are susceptible to inflated estimates of heterogeneity. HET 

test is susceptible to false positives when causal variants are unknown. Deming regression 

was robust in scenarios with low polygenicity, but was still susceptible to inflated estimates 

of heterogeneity for highly polygenic traits; the inflated estimates can be explained by 

differential tagging of causal effects across ancestries among causal SNPs. OLS slope had 

bias because it did not account for uncertainty in estimated effects. We also performed 

additional simulations with less than identical causal effects βeur :βafr ≠ 1 and broader range of 

per-SNP ℎg
2 and we determined Deming regression was robust to quantify the heterogeneity 

level at the marginal effects in simulations of different βeur :βafr, ℎg
2 (Extended Data Fig. 9 and 

Supplementary Table 15).

Discussion

In this work, we developed a polygenic method that model genome-wide causal effects 

to complex traits of admixed individuals. We determined causal effects are largely similar 

across local ancestries in analysis of 53,001 African-European admixed individuals across 

38 complex traits in PAGE, UKBB and AoU. In addition to causal effects, we also replicated 

such consistency-by-ancestry for marginal effects at GWAS loci. We highlighted realistic 

simulation scenarios where regression-based methods using marginal effects can report false 

heterogeneity when causal effects are identical across ancestries.

Our study has several implications for future genetic study of admixed populations, and 

more broadly of ancestrally diverse individuals. First, reduced accuracy of polygenic score 

has been observed in African-European admixed populations with increasing proportion 

of non-European ancestries21; our results suggest the causal effects difference has limited 

contribution to such reduced accuracy. Second, there has been recent work on incorporating 

local ancestry in statistical modeling of admixed populations, for example, in association 

testing19 and polygenic score21,22, based on the hypothesis that effects may differ across 

ancestries. Our results indicate the largely consistent causal effects across local ancestries 

(and also marginal effects at most GWAS loci). The robustness of our results to imperfect 
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tagging also suggests that imperfect tagging induce limited effects heterogeneity across local 

ancestries, once SNPs are properly modeled in a polygenic model. The small heterogeneity-

by-ancestry at causal effects or marginal effects suggest that association tests that do 

not model heterogeneity-by-ancestry should be preferred in most cases19,20 for improved 

statistical power for association. On the other hand, including local ancestry in association 

models could be useful in correcting for LD induced by admixture39 and lead to improved 

causal effect estimation. Full consideration of incorporating local ancestry in statistical 

models should also take into account the extent of confounding and heterogeneity in the 

data40. Third, our study further motivates studies of ancestrally diverse individuals to 

identify population-specific risk variants that cannot be investigated due to being rare in 

European individuals; for example, inclusion of individuals with diverse populations could 

further disentangle causal from tagging effects, thus increasing the power of heterogeneity-

by-ancestry estimation. More importantly, larger and robust trans-ancestry studies may allow 

for the examination of differential causal effects on a locus-by-locus basis, in addition to the 

genome-wide approach as presented in this work.

Our results add to the existing literature to further delineate sources of causal effects 

differences. Previous works have shown moderate causal effects differences across 

transcontinental populations5,6,8,28, with part of differences being induced by heterogeneity 

in the definition of environment/phenotype across continental ancestries. Similarly, a recent 

work15 concluded differences between causal effects in European local ancestries within 

African American admixed individuals and that in European American individuals. Our 

results showcase that, if environments are well controlled (as is the case for genetic variants 

across local ancestries within admixed populations), causal effects are highly similar across 

genetic ancestries, agreeing with a recent study finding similar effects across ancestries at 

level of gene expression in controlled environments41. Moreover, our results suggest that 

local epistatic interaction, if any, does not lead to large causal effects differences across 

genetic ancestries. By contrasting the high genetic correlation within admixed populations 

and the low genetic correlation across continental populations, our results support the 

hypothesis that different environments modify the genetic effects to complex traits (gene-by-

environment interaction) across populations.

We note several limitations and future directions of our work. First, we have analyzed 

SNPs with MAF ≥0.5% in both ancestries. We excluded population-specific SNPs (with 

MAF <0.5% in one of the ancestries) because these SNPs provide little information 

for estimating radmix, since effects for these SNPs are estimated with large noises. We 

used simulations to show that omitting these rare variants could lead to downward 

bias in radmix estimation because of population-specific tagging of shared causal variants 

(Supplementary Note). However, it remains possible that causal variants themselves are 

rare and population-specific, and upward bias in the estimation of radmix may be present. 

While in this work we focused on estimating radmix for common variants, future work 

with larger sample sizes is needed to further investigate the impact of population-specific 

causal SNPs to radmix estimation. Second, we have considered two-way African-European 

admixed individuals. Several practical considerations remain before applying this method 

to other admixed populations such as three-way admixture: local ancestries are typically 

Hou et al. Page 11

Nat Genet. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inferred with larger errors42, and this should be accounted for in statistical modeling 

(it may be possible to incorporate posterior probabilities in estimated local ancestries to 

obtain calibrated estimates); additional parameters need to be estimated (for example, three 

pairwise correlation parameters across ancestries for three-way admixture populations). We 

note that our methods can be readily applied to these populations when reliable local 

ancestry calls can be obtained. Third, our modeling can be extended to estimate correlations 

in causal effects stratified by functional annotation categories and we leave that as future 

work. Fourth, our polygenic method requires individual-level genotype and phenotype; if 

not available, we found Deming regression may be applied to evaluate heterogeneity with 

caution: in our simulation, Deming regression was the only method robust to most scenarios 

except for high polygenicity. In our analysis of marginal effects, we found LD clumping 

can produce cluster of SNPs that were nearby and probably dependent with each other, as a 

combined result of multiple causal variants within a region and long-range LD in admixed 

populations. Such dependence may induce bias for methods like Deming regression, 

highlighting the need for improved methods of identifying conditionally independent SNPs 

in admixed populations. Fifth, we have meta-analyzed three publicly available studies of 

PAGE, UKBB and AoU with large cohort of African-European admixed individuals. Such 

meta-analysis with greatly increased total sample size enabled us to derive the conclusion of 

the high similarity in causal effects by local ancestry across a broad range of traits. However, 

our estimates for each individual trait were still associated with large standard errors and can 

be further improved by analyzing more individuals. Additional limitations are discussed in 

Supplementary Note. Despite these limitations, our study has shown that causal effects to 

complex traits are highly similar across local ancestries, and this knowledge can be used to 

guide future genetic studies of ancestrally diverse populations.

Methods

Ethical approval

This research complies with all relevant ethical regulations. Ethics committee/institutional 

review board (IRB) of PAGE gave ethical approval for collection of PAGE data. 

Ethics committee/IRB of UKBB gave ethical approval for collection of UKBB data 

(https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). Approval to 

use UKBB individual level in this work was obtained under application 33297 at http://

www.ukbiobank.ac.uk. Ethics committee/IRB of AoU gave ethical approval for collection 

of AoU data (https://allofus.nih.gov/about/who-we-are/institutional-review-board-irb-of-all-

of-us-research-program). Approval to use AoU controlled tier data in this work was obtained 

through application at https://www.researchallofus.org.

Statistical model of phenotype for admixed individuals

For individual i = 1, …, N and SNP s = 1, …, S, we denote xi, s, M, xi, s, P as number of minor 

alleles at maternal and paternal haplotypes, respectively. We denote corresponding local 

ancestries as γi, s, M, γi, s, P ∈ {1, 2} (we focus on two-way admixture here, for example, ‘1’ and 

‘2’ denote African and European ancestries for African-European admixture). Then we use 

gi, s, 1, gi, s, 2 to encode allele counts that are specific to each local ancestry:
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gi, s, 1 ≔ xi, s, MI γi, s, M = 1 + xi, s, PI γi, s, P = 1 ;
gi, s, 2 ≔ xi, s, MI γi, s, M = 2 + xi, s, PI γi, s, P = 2 ,

where I( ⋅ ) denotes the indicator function. Denoting causal allelic effects as β1, β2 ∈ ℝS for 

two ancestries, we model the phenotype of each individual yi as

yi = ci
Tα + ∑

s = 1

S
(gi, s, 1βs, 1 + gi, s, 2βs, 2) + ϵi, i = 1, …, N

where ci ∈ ℝC, α ∈ ℝC denote C covariates (including all ‘1’ intercepts) and their 

effects. ϵi denotes environmental noise. By further aggregating gi, s, 1, gi, s, 2 into matrices 

G1 ∈ {0, 1, 2}N × S and G2 ∈ {0, 1, 2}N × S for ancestry 1 and 2, and ci into C ∈ ℝN × C, 

equation (1) becomes

y = Cα + G1β1 + G2β2 + ϵ

(3)

We pose the following distribution assumptions β1, β2 and ϵ

βs, 1

βs, 2
∼ N 0

0 , τs
2 ⋅

σg
2 ∕ S ρg ∕ S

ρg ∕ S σg
2 ∕ S

, s = 1, …, S, ϵi ∼ N(0, σe
2) , i = 1, …, N

(4)

where σg
2 denotes variance of effects for both populations, ρg denotes covariance for similarity 

of effect sizes by ancestry, and σe
2 denotes the variance for environments. τs denote SNP-

specific parameters (fixed a priori) for effect sizes distribution (see ‘Specifying τs under 

different heritability models‘ below). We define correlation of causal genetic effects as 

radmix = ρg

σg
2 . radmix = 1 indicates βs, 1 = βs, 2 for all variants s = 1, …, S, that is, causal effects are the 

same across ancestries; radmix < 1 indicates differences in causal effects across ancestries.

Calculating and filtering by ancestry-specific allele frequencies.—For each SNP 

s, we calculated MAF as fs ≔ ∑i = 1
N (gi, s, 1 + gi, s, 2)

2N . We also calculated ancestry-specific MAF 

as 
∑i = 1

N (gi, s, 1)
∑i = 1

N [I(γi, s, M = 1) + I(γi, s, P = 1)]
, ∑i = 1

N (gi, s, 2)
∑i = 1

N [I(γi, s, M = 2) + I(γi, s, P = 2)]
 for ancestry 1 and 2. For a SNP 

s with close-to-zero frequency for either of the ancestry, its effect βs will be estimated with 

very large noise. Therefore, we used SNPs with MAF >0.5% in both ancestries in analyses.

Specifying τs under different heritability models.—τs parameters model the coupling 

of SNP effects variance with MAF, local LD or other functional annotations. Commonly 

used heritability models include GCTA43, frequency-dependent29,30, LDAK44 and S-

LDSC45 models. While heritability model is important to estimate heritability and functional 
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enrichment of heritability33,46,47, genetic correlation estimation, the main focus of this 

study, has shown to be robust to different heritability models33. In this work, we mainly 

used the frequency-dependent model for both simulations and real data analyses (where 

τs
2 ∝ [fs(1 − fs)]α; fs is the MAF of the SNP s and α = − 0.38 is estimated in a meta-analysis 

across 25 UKBB complex traits30). For real data analysis, we additionally used GCTA 

model for estimation and found results are robust to heritability models (Extended Data Fig. 

3).

Alternative choice of genotype normalization by ancestry.—We discuss an 

alternative choice of normalization by ancestry, in which we have two parameters τs, 1 and τs, 2

separately for two ancestries for each SNP. For example, τs, 1
2 ∝ 1

fs, 1(1 − fs, 1) , τs, 2
2 ∝ 1

fs, 2(1 − fs, 2)
parametrizing effects distribution

βs, 1

βs, 2
∼ N 0

0 ,
τs, 1

2 ⋅ σg
2 ∕ S τs, 1τs, 2 ⋅ ρg ∕ S

τs, 1τs, 2 ⋅ ρg ∕ S τs, 2
2 ⋅ σg

2 ∕ S
, s = 1, …, S

This implies that effects per genotype standard deviation is being modeled (ref.5 termed this 

as correlation of allelic impact). While genetic correlation estimation is robust to genotype 

standardization (Supplementary Table 8; refs. 5,33), we recommend modeling allelic effects 

via same τs across ancestries (as used in our default Methods).

Evaluation of genome-wide genetic effects consistency

We discuss parameter estimation and hypothesis testing in equations (3) and (4). 

Marginalizing over random effects β1 and β2 in equation (3), the distribution of y is

y ∼ N Cα, σg
2 G1TG1

T + G2TG2
T

S + ρg
G1TG2

T + G2TG1
T

S + σe
2I .

where T is a diagonal matrix with (T)ss = τs
2. By denoting K1 = G1TG1

⊺ + G2TG2
⊺

S , 

K2 = G1TG2
⊺ + G2TG1

⊺

S , and ρg = σg
2 ⋅ radmix, the distribution of y is simplified as

y ∼ N Cα, σg
2(K1 + radmixK2) + σe

2I .

(5)

The maximum likelihood estimates of (α, σg
2, radmix, σe

2) can be found by directly maximizing 

the corresponding likelihood function L(α, σg
2, radmix, σe

2). However, the constraint that the 

correlation parameter radmix should be small than 1 cannot be easily incorporated here. 

Instead, we use the profile likelihood Lp(radmix) ≔ max
(α, σg

2, σe
2)

L(α, σg
2, radmix, σe

2) and perform grid 

search of radmix to maximize profile likelihood (similar to ref.30): for each candidate radmix, we 

compute K1 + radmixK2, and solve (α, σg
2, σe

2)for the single variance component model in equation 

(5) using GCTA27 (v1.94.0beta). In practice, we calculate profile likelihood Lp(radmix) for 
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a predefined set of radmix = 0.00, 0.05, …, 1.00(radmix ∈ [0, 1] is a reasonable prior assumption 

here; we alternatively used an extended range of radmix = − 1, − 0.95, …, 0.95, 1.0 in simulation 

studies (Supplementary Table 4) and real data analyses (Extended Data Fig. 2)). We use 

natural cubic spline to interpolate pairs of (radmix, Lp(radmix)) to get a likelihood curve of 

radmix. Then we obtain the estimated r admix using the value that maximize the likelihood 

curve, and credible interval by combining the likelihood curve with a uniform prior of 

radmix ∼ Uniform[0, 1] and calculating the highest posterior density interval as credible interval. 

To perform the meta-analysis across independent estimates, we obtain the joint likelihood 

by calculating the product of likelihood curves across estimates (or equivalently, the sum of 

log-likelihood curves), and similarly calculate the estimate and credible interval.

Evaluation of genetic effects consistency at individual variant with marginal effects

Parameter estimation and hypothesis testing.—We use a model between individual 

SNP and phenotype by restricting equation (1) to the SNP of interest s, as

yi = ci
Tα + gi, s, 1βs, 1

(m) + gi, s, 2βs, 2
(m) + ϵi, i = 1, …, N,

or in vector form,

y = Cα + gs, 1βs, 1
(m) + gs, 2βs, 2

(m) + ϵ

(6)

where C, gs, 1, gs, 2, ϵ contain ci, gi, s, 1, gi, s, 2, ϵi for all individuals i = 1, …, N, respectively. We 

distinguish marginal effects βs, 1
(m), βs, 2

(m) in equation (6) from causal effects βs, 1, βs, 2 in Eq. (1): 

marginal effects tag effects from nearby causal SNPs with taggability as a function of 

ancestry-specific correlation between the focal SNP and nearby causal SNPs. Therefore, 

heterogeneity in marginal effects by local ancestry can be induced even if causal effects are 

the same (see extensive simulations in Results and more details in Supplementary Note). We 

estimate βs, 1
(m), βs, 2

(m) using least squares (jointly for βs, 1
(m), βs, 2

(m)) and perform hypothesis testing of 

H0 :βs, 1
(m) = βs, 2

(m) with a likelihood ratio test by comparing Eq. (6) to a restricted model where the 

allelic effects are the same βs
(m) = βs, 1

(m) = βs, 2
(m):

y = Cα + (gs, 1 + gs, 2)βs
(m) + ϵ

(7)

Marginal effects-based methods for estimating heterogeneity.—We describe 

details of marginal effects-based methods to estimate heterogeneity with input from a set 

of estimated effect sizes βs, 1
(m), βs, 2

(m) and corresponding estimated standard errors se(βs, 1
(m)), se(βs, 2

(m))
for a set of SNPs.

• Pearson correlation: by calculating the Pearson correlation of βs, 1
(m), βs, 2

(m) across 

SNPs. Pearson correlation does not model errors in estimated effects, therefore is 

expected be smaller than 1 and decreases with increasing error magnitude.
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• OLS regression slope: by regressing βs, 1
(m) ∼ βs, 2

(m) (βs, 1
(m) as dependent variable, βs, 2

(m)

as independent variable) or βs, 2
(m) ∼ βs, 1

(m). It does not model errors in independent 

variable. Moreover, it assumes homogeneous errors in dependent variable across 

SNPs. Therefore, it is susceptible to these error terms and notably results can 

vary when one exchange the regression orders48 (βs, 1
(m) ∼ βs, 2

(m) versus βs, 2
(m) ∼ βs, 1

(m); for 

example, βs, 1
(m) and βs, 2

(m) are associated with different standard errors when being 

estimated in an admixed population with different ancestry proportion).

• Deming regression slope: obtained with Deming regression34 of βs, 1
(m), 

βs, 2
(m) and estimated standard errors se(βs, 1

(m)), se(βs, 2
(m)). Deming regression 

models heterogeneous error terms in both independent and dependent 

variables, therefore is more robust than Pearson correlation and OLS 

regression. Specifically, given a set of data and estimated standard errors 

(xi, yi, σx, i, σy, i), i = 1, …, n (we use a different set of notations for simplicity), 

Deming regression optimizes the following objective function to obtain 

estimated intercept α and slope β:

min
α, β

δ1, …, δn

ϵi, …, ϵn

∑
i = 1

n ϵi
2

σy, i
2 + δi

2

σx, i
2 ,

subject to :yi + ϵi = α + β(xi + δi), i = 1, …, n .

Standard errors of α, β can be obtained with bootstrapping.—Notably, Deming 

regression slope produce symmetric results with different regression orders (the obtained 

slope β will be reciprocal to each other). However, Deming regression can still produce 

biased results when the standard errors σx, i, σy, i are misspecified48.

• False positive rate of the HET test, as described above in ‘Parameter estimation 

and hypothesis testing’. It is expected to be well calibrated under the null, 

because its derivation as a likelihood ratio test. Similar to Deming regression, 

HET test properly models heterogeneous standard errors.

Genotype data processing

PAGE genotype.—We analyzed 17,299 genotyped individuals self-identified as African 

American in PAGE study1. These individuals were from three studies: Women’s Health 

Initiative (N = 6,820), Multi-ethnic Cohort (N = 5,325) and the Icahn School of Medicine 

at Mount Sinai BioMe biobank in New York City (BioMe) (N = 5,154). See more details 

in ref.1. The genotypes were imputed to the TOPMed reference panel and we retained 

well-imputed SNPs with imputation R2 > 0.8 and MAF >0.5%. We further retained variants 

with ancestry-specific MAF > 0.5% in both ancestries. This resulted in ~6.9 million variants 

and 17,299 individuals in our analysis.
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UKBB genotype.—We analyzed individuals with African-European admixed ancestries in 

UKBB. We first inferred the proportion of ancestries for each individual in UKBB using 

SCOPE49 (https://github.com/sriramlab/SCOPE; version 6 December 2021) supervised 

using 1,000 Genomes Phase 3 allele frequencies (AFR, EUR, EAS and SAS). We retained 

4,327 African-European admixed individuals with more than 5% of both AFR and EUR 

ancestries, and with less than 5% of both EAS and SAS ancestries. We retained well-

imputed SNPs with imputation R2 > 0.8 and MAF >0.5%. We further retained variants with 

ancestry-specific MAF >0.5% in both ancestries. This resulted in ~6.6 million variants and 

4,327 individuals in our analysis.

AoU genotype.—We analyzed individuals with African-European admixed ancestries 

in AoU. We first performed principal component analysis of all 165,208 individuals in 

AoU microarray data (release v5) joint with 1,000 Genomes Phase 3 reference panel. 

Then we identified 31,375 individuals with African-European admixed ancestries (with 

at least both 10% European ancestries and 10% African ancestries, and who was within 

2× normalized distance from the line connecting individuals of European ancestries and 

African ancestries in 1,000 Genomes reference panel; Supplementary Note). For these 

individuals, we performed quality control using PLINK2 (ref.50) (v2.0a3) with --geno 

0.05 --max-alleles 2 --maf 0.001, and statistical phasing using Eagle2 (ref.51) 

(v2.4.1) with default settings. We retained variants with ancestry-specific MAF >0.5% 

in both ancestries. This resulted in ~0.65 million variants and 31,375 individuals in our 

analysis. For AoU, we chose to use microarray data instead of whole genome sequencing 

data because microarray data of AoU contained more individuals and analyzing microarray 

data reduced the computational cost.

Local ancestry inference.—We performed local ancestry inference using RFMix52 

(https://github.com/slowkoni/rfmix; v2) with default parameters (eight generations since 

admixture). We used 99 CEU individuals (Utah residents with Northern and Western 

European ancestry) and 108 YRI individuals (individuals from Yoruba in Ibadan, Nigeria) 

from unrelated individuals in 1,000 Genome Project Phase 3 (ref.53) as our reference 

populations, similar to previous works52,54. We used HapMap3 SNPs32 in inference, and 

then interpolated the inferred local ancestry results to other variants in both PAGE and 

UKBB data sets. The accuracy of RFMix for local ancestry inference has been validated 

for African-European admixed individuals19 (for example, ~98% accuracy for simulations 

with a realistic demographic model for African American individuals). We performed 

additional analyses using PAGE African American individuals to assess the robustness of 

local ancestry inference using an alternative set of reference data. We used all European and 

African individuals in 1,000 Genomes project (excluding African Caribbean in Barbados 

and African Ancestry in SW USA because they were admixed). We determined a high 

consistency of 98.9% for the inferred local ancestry using reference data of CEU/YRI or all 

European/African individuals. We used the inferred local ancestry for both simulation study 

and real data analysis described below.

Simulation study

We describe methods for simulations that corresponds to each section of Results.
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Pitfalls of including local ancestry in estimating heterogeneity.—We first 

describe strategies of including local ancestry in estimating heterogeneity.

• For ‘lanc included’, we follow common practices17,19,39,55 to use a local ancestry 

term ℓs (defined above) in equation (1):

y = ℓsβs, lanc
(m) + gs, 1βs, 1

(m) + gs, 2βs, 2
(m) + cTα + ϵ,

where βs, lanc
(m)  denotes the effect of local ancestry.

• For ‘lanc regressed’, we use y = ℓsβs, lanc
(m) + gs, 1βs, 1

(m) + gs, 2βs, 2
(m) + ϵ. We first estimate 

βs, lanc
(m)  in the regression of y ∼ ℓsβs, lanc

(m) , and then estimate βs, 1
(m), βs, 2

(m) in regression of 

y − ℓsβs, lanc
(m) ∼ gs, 1βs, 1

(m) + gs, 2βs, 2
(m).

To assess the impact of including local ancestry term when applying HET test, we randomly 

selected 1,000 SNPs on chromosome 1 from PAGE genotype. We simulated traits with 

single causal SNP. For each SNP, we simulated quantitative trait with the given single causal 

SNP with varying βeur :βafr = 1.0, 1.05, 1.1, 1.15, 1.2. We scaled βeur, βafr such that the causal SNP 

explained the given amount of ℎg
2. For each SNP, simulations of βeur, βafr and environmental 

noises were repeated 30 times. We then applied different strategies of including local 

ancestry to these simulations and obtained p-value of HET testing H0 :βeur = βafr. We 

additionally included the top principal component as a covariate throughout. We evaluated 

the distribution of FPR or power of HET test by subsampling without replacement: we drew 

100 random samples, each sample consisted of 500 SNPs, randomly drawn from the pool 

of 1,000 SNPs and 30 simulations; such sampling accounts for the randomness from both 

the environmental noises and SNP MAF. We calculated FPR or power for each sample 

of 500 SNPs, obtained empirical distributions of FPR or power (100 points each), and 

then calculated the mean and SE (using empirical standard deviation) from the empirical 

distribution.

Simulations with single causal variant.—We performed simulations with single 

causal variant to assess the properties of methods based on estimated marginal effects. 

We randomly selected 100 regions each spanning 20 Mb on chromosome 1 (approximately 

120,000 SNPs per region on average, standard deviation 6,000). For each region, the causal 

variant located at the middle of the region; it had same causal effects across local ancestries 

and was expected to explain a fixed amount of heritability (0.2%, 0.6% and 1.0%); the 

sign of the causal effect and environmental noises were randomly drawn 100 times. We 

evaluated four metrics at both causal variants and clumped variants; clumped variants were 

obtained with regular LD clumping (index P < 5 × 10−8, r2 = 0.1, window size 10 Mb) using 

PLINK (v1.90b6.24): --clump --clump-p1 5e-8 --clump-p2 1e-4 --clump-r2 

0.1 --clump-kb 10000. We used a 10 Mb clumping window to account for the larger 

LD window within admixed individuals; other parameters were adopted from ref.56. We 

found that, when the simulated ℎg
2 was large, LD clumping can result in multiple SNPs 

because the secondary SNPs can reach P < 5 × 10−8 when we applied a commonly-used 
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r2 = 0.1 threshold. Therefore, for each region, we either retained only the SNP with strongest 

association (matching the simulation setup of a single simulated causal variant), or retained 

all the SNPs from clumping results. Similar as above, we evaluated the distribution of four 

metrics by subsampling without replacement: we drew 100 random samples, each sample 

consisted of 500 regions (each region has one causal SNP), randomly drawn from the pool 

of 100 regions and 100 simulations; such sampling accounted for the randomness from both 

the environmental noises and SNP MAF. We then calculated the mean and SE from the 100 

random samples.

Simulation with multiple causal variants.—We performed simulations with multiple 

causal variants. We simulated multiple causal variants randomly distributed on chromosome 

1 (515,087 SNPs). We drew ncausal = 62, 125, 250, 500 and 1,000 causal variants to simulate 

different levels of polygenicity, such that on average there were approximately 0.25, 0.5, 

1.0, 2.0 and 4.0 causal variants per Mb. We fixed the heritability explained by all variants 

on chromosome 1 as ℎg
2 = 2.5 % , 5 % , 10 % and 20%. We performed subsampling without 

replacement to estimate the average and standard errors of four metrics (each sample 

consisted of 1,000 SNPs, randomly drawn from SNPs across 500 simulations). We found 

that when the simulated ℎg
2 was small ℎg

2 = 2.5 % , 5 %, because of the limited sample size in 

our data (n = 17,299) for PAGE data, very few SNPs reach P < 5 × 10−8 in these simulations 

and consequently standard errors are very large and results cannot be reliably reported. 

Therefore, we chose to report results only from ℎg
2 = 10 % and 20% in Supplementary Table 

14.

Genome-wide simulation for evaluating our polygenic method.—We performed 

simulations to evaluate our polygenic method in terms of parameter estimation of radmix

and hypothesis testing H0 :radmix = 1 using real genome-wide genotypes. We simulated 

quantitative phenotypes using genotypes and inferred local ancestries from PAGE dataset. 

The phenotypes were simulated under a wide range of genetic architectures varying 

proportion of causal variants Pcausal, heritability ℎg
2 and true correlation radmix, and a frequency-

dependent effects distribution for causal variants: in each simulation, we randomly drew 

Pcausal proportion of causal variants. Given the set of causal variants, we simulated 

quantitative phenotypes on the basis of equations (3) and (4). The environmental noises 

were then simulated according to the desired heritability ℎg
2.

Real data analysis

Phenotype processing.—For PAGE, we analyzed 24 heritable traits in PAGE based 

on ref.1. For UKBB, we analyzed 26 heritable traits based on heritability and number of 

individuals with non-missing phenotype values, following ref.57. For AoU, we analyzed 

ten heritable traits, including physical measurement and lipid phenotypes, which were 

straightforward to phenotype and have large sample sizes. Physical measurement phenotypes 

were extracted from Participant Provided Information in AoU dataset. Lipid phenotypes 

(including LDL, HDL, TC and TG) were extracted following https://github.com/all-of-

us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses, including 

extracting most recent measurements per person, and correcting value with statin usage. 
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These traits included both quantitative and binary traits and it was previously shown that 

genetic correlation methodology can be directly applied to binary traits58. For each trait, 

we quantile normalized phenotype values. We included age, sex, age*sex and top ten 

in-sample principal components (and ‘study center’ for PAGE) as covariates. We quantile 

normalized each covariate and used the average of each covariate to imputed missing values 

in covariates.

Genome-wide genetic correlation estimation.—We calculated K1, K2 matrices in 

equation (5) using either imputed SNPs and HapMap3 SNPs (for PAGE and UKBB), or 

microarray SNPs (for AoU). We used either frequency-dependent or GCTA heritability 

models via specifying τs
2. K1, K2 matrices were separately calculated for individuals within 

PAGE, UKBB and AoU studies. For each given radmix, we used GCTA27 (v1.94.0beta) to 

fit a single variance component model with the calculated K1 + radmixK2 using gcta64 --

reml --reml-no-constrain. We additionally included the causal signals at Duffy SNP 

(rs2814778) in 1q23.2 as covariates for analysis of white blood cell count and C-reactive 

protein because of the known strong admixture peak59,60. Specifically, we used the local 

ancestries of SNP closest to Duffy SNP in our data as proxies for Duffy SNP (Duffy SNP 

itself is not typed or imputed in our data). The local ancestries are valid proxies of Duffy 

SNP because Duffy SNP is known to be highly differentiated across ancestries (alternate 

allele frequency is 0.006 versus 0.964 in ref.53) and therefore local ancestries are highly 

correlated with the Duffy SNP. We excluded closely related individuals in the analysis 

(<3rd-degree relatives; using ref.61 with plink2 --king-cutoff 0.0884). We note that 

our meta-analysis credible interval across traits can be anti-conservative (that is, the actual 

coverage probability is less than the nominal coverage probability) because we did not 

account for the genetic correlation across traits.

Individual trait-SNP analysis.—We evaluated effects consistency at individual SNPs 

that were significantly associated with each trait. First, we performed GWAS and LD 

clumping with the same parameters described above. Even though LD clumping was 

performed using stringent parameters, we found cluster of clumped SNPs that were probably 

dependent with each other as a combined result of multiple causal variants within a region 

the long-range LD in admixed populations (Supplementary Table 11 and Discussion). For 

each clumped trait–SNP pair, we estimated ancestry-specific effects and standard errors.

Statistical fine-mapping analysis.—We performed fine-mapping analysis to each trait–

SNP pair with significant heterogeneity by ancestry using SuSiE62 (v0.12) (for PAGE and 

UKBB, for which we used genotype data with high SNP density). For each trait–SNP, we 

included all imputed SNPs in a 3 Mb window. We ran SuSiE with individual-level genotype 

and phenotype (covariates were regressed out of genotype and phenotype), using default 

settings with maximum number of ten non-zero effects. We obtained posterior inclusion 

probability and credible sets.

Statistics and reproducibility

We analyzed three publicly available datasets of PAGE, UKBB and AoU, and sample sizes 

were determined in these studies. We did not use randomization or blinding. We focused 
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on analyzing individuals with admixed African-European ancestries, and individuals with 

other genetic ancestries were not included in analyses of this work. We replicate our findings 

across these three independent datasets.

Extended Data

Extended Data Fig. 1 ∣. Consistency of radmix for shared traits across studies.

We compared estimated radmix for shared traits across studies. We compared both r admix (a–

c) and −log10(p) (for one-sided test of H0 :radmix = 1; Methods) (d-f). Three traits (Height, 

Triglycerides, Total cholesterol) with the most significant p-values for H0 :radmix = 1 were 

annotated. Number of common traits shared across studies (ncommon) and Spearman correlation 

p-value were shown in the title for each panel. Overall, there were weak consistency of 

estimated r admix for shared traits across studies (although p-values for H0 :radmix = 1 were 

consistent significantly). Numerical results are reported in Supplementary Table 7.

Extended Data Fig. 2 ∣. radmix estimation is robust to the assumption of radmix > 0.
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We performed radmix estimation using alternative assumption of −1 ≤ radmix ≤ 1 in real trait 

analysis in PAGE in light of potential scenarios of effect sizes in opposite directions36,63. We 

compared estimated radmix when assuming 0 ≤ radmix ≤ 1 (default Methods) and when assuming 

−1 ≤ radmix ≤ 1. Left: comparing point estimates of radmix across 24 traits in PAGE. Right: 

comparing the meta-analyzed log-likelihood. Results obtained from two methods are highly 

consistent.

Extended Data Fig. 3 ∣. radmix estimation is robust to genetic architecture and SNP set.

We performed radmix estimation under the assumption of alternative genetic architecture and 

SNP set on real trait analysis across PAGE and UKBB. We compared p-values (for one-sided 

test of H0 :radmix = 1) of our default setting (using frequency-dependent genetic architecture 

and imputed SNPs; Table 1) to those obtained using GCTA genetic architecture and imputed 

SNPs (a), and to those obtained using frequency-dependent genetic architecture and HM3 

SNPs (b). Numerical results are reported in Supplementary Table 8.
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Extended Data Fig. 4 ∣. radmix estimation is robust to subsetting PAGE African American 
individuals based on genotype PCs.
We subsetted PAGE individuals with self-identified race/ethnicity label of ‘African 

American’ (total N = 17,327) based on genotype PCs and retained N = 17,167 individuals 

(a). We found that the estimated radmix were highly consistent between using all PAGE 

African American individuals (default) and using subset of PAGE African American 

individuals based on genotype PCs. (b) comparing point estimates of radmix across 24 traits in 

PAGE. (Dot on the bottom left of the figure corresponds to MCHC trait, with a small sample 

size of 3,650.) (c) comparing the meta-analyzed log-likelihood. Results obtained from two 

sets of individuals are highly consistent.
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Extended Data Fig. 5 ∣. Comparing estimated radmix between alternative method formulations 
and default method.
Each dot corresponds to a trait. (a) Comparing results of default method and of directly 

optimizing and estimating σg
2, ρg. (b) Comparing results of default method and of directly 

optimizing and estimating σg, 1
2 , σg, 2

2  (different variance components per ancestry) and ρg. See 

Supplementary Table 9 and Supplementary Note for details.
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Extended Data Fig. 6 ∣. Multiple conditionally independent association signals for loci with 
heterogeneity by ancestry.
Upper panel corresponds to the two-sided association p-values and lower panel corresponds 

to the fine-mapping PIP. Different colors in the PIP plot corresponds to different credible 

sets. (a) MCH at 16p13.3 for UK Biobank European-African admixed individuals. (b) RBC 

at 16p13.3 for UK Biobank European-African admixed individuals. (c) CRP at 1q23.2 for 

PAGE European-African admixed individuals.
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Extended Data Fig. 7 ∣. Simulations with single causal variant.
Simulations were based on 100 regions each spanning 20 Mb on chromosome 1 and 17,299 

PAGE individuals. In each simulation, we randomly selected single causal variant and 

simulated quantitative phenotypes where these causal variants had same causal effects across 

ancestries and each causal variant was expected to explain a fixed amount of heritability 

(0.2%, 0.6%, 1.0%). Each panel corresponds to one metric for both causal and clumped 

variants. (a) False positive rate (FPR) of HET test. (b) Deming regression slope with 

βafr ∼ βeur. (c) Deming regression slope with βeur ∼ βafr. (d) Pearson correlation. (e) OLS 

regression slope with βafr ∼ βeur. (f) OLS regression slope with βeur ∼ βafr. 95% confidence 

intervals were based on 100 random sub-samplings with each sample consisted of 500 SNPs 

(Methods). Numerical results are reported in Supplementary Table 13.
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Extended Data Fig. 8 ∣. Simulation with multiple causal variants at other sample sizes (Fig. 6d-f).
Simulations were based on chromosome 1 (515,087 SNPs) and 17,299 PAGE individuals. 

We drew 62,125, 250, 500, 1000 causal variants to simulate different level of polygenicity, 

such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal variants per Mb. 

The heritability explained by all causal variants was fixed at ℎg
2 = 10 %. (a-c) False positive 

rate of HET test for the causal variants and clumped variants. (d-f) Deming regression slope 

of estimated ancestry-specific effects (βeur βaf) for the causal variants and clumped variants. 

95% confidence intervals were based on 100 random sub-samplings with each sub-sample 

consisted of n = 50, 100, 500 SNPs (instead of n = 1,000 SNPs in Fig. 6c, d) (Methods).

Hou et al. Page 27

Nat Genet. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 9 ∣. Additional results for simulations with single causal variant with varying 
βeur:βafr and ℎg

2
.

Simulations were based on 100 regions each spanning 20 Mb on chromosome 1 from 

17299 PAGE individuals. In each simulation, we randomly selected single causal variant 

and simulated quantitative phenotypes where these causal variants had varying causal 

effects across ancestries and each causal variant was expected to explain a fixed amount 

of heritability (0.2%, 0.6%, 1.0%, 2.0%, 5.0%). We provide results for both causal variants 

and LD-clumped variants. We separate results into two rows for better visualization: upper 

row (a-c): βeur:βafr = 0.9, 1.0, 1.1; lower row (d-f): βeur:βafr = 0.0. We show results for False 

positive rate (FPR) of HET test, Deming regression slope with βeur βafr, and OLS regression 

slope with βeur βafr. 95% confidence intervals were based on 100 random sub-samplings with 

each sample consisted of 500 SNPs (Methods). Numerical results and further discussions are 

provided in Supplementary Table 15.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Concepts of estimating similarity in the causal effects across local ancestries.
a, For a given trait, with phased genotype (paternal haplotype at the top and maternal 

haplotype at the bottom) and inferred local ancestry (denoted by color), we investigate 

whether βs, afr ≈ βs, eur across each causal SNPs. b, We focus on estimating the genome-wide 

correlation of genetic effects across ancestries radmix = Cor[βafr, βeur], which is the regression 

slope (orange line) of ancestry-specific causal effects. For reference, the gray dashed line 

corresponds βafr = βeur.
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Fig. 2 ∣. Results of genetic correlation radmix estimation in genome-wide simulations.

Simulations were based on 17,299 PAGE individuals and 6.9 million genome-wide imputed 

variants with MAF > 0.5% in both ancestries. We fixed the proportion of causal variants 

Pcausal as 0.1% and varied genetic correlation radmix = 0.90, 0.95 and 1.0. a, Impact of using 

HapMap3 or imputed variants in estimation. We varied simulated genome-wide heritability 

ℎg
2 = 0.1, 0.25 and 0.5. b, Impact of selecting common variants at different MAF thresholds in 

estimation. ℎg
2 was fixed to 0.25, and imputed variants at different MAF thresholds were used 

in estimation. c, Impact of prior assumption in estimation. ℎg
2 was fixed to 0.25, and imputed 

variants were used in estimation. For each simulated genetic architecture, we plot the mode 

and 95% credible interval based on the meta-analysis across 100 simulations (Methods). 

Numerical results are reported in Supplementary Tables 1-4 (including results for other Pcausal, 

radmix).
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Fig. 3 ∣. Similarity of causal effects and marginal effects across local ancestries meta-analyzed 
across PAGE, UKBB and AoU.
a, We plot the trait-specific estimated radmix for 16 traits. For each trait, dots denote the 

estimation modes; bold lines and thin lines denote 50%/95% highest density credible 

intervals, respectively. Traits are ordered according to total number of individuals included 

in the estimation (shown in parentheses). These traits are selected to be displayed either 

because they have the largest total sample sizes, or because the associated SNPs of these 

traits exhibit heterogeneity in marginal effects (see the panel on the right). We also display 

the meta-analysis results across 60 study–trait pairs (38 unique traits). Numerical results are 

provided in Table 1. b, Comparison of radmix (n = 38 traits) to meta-analysis results from 

transcontinental genetic correlation of African versus European (n = 26 traits) and East 

Asian versus European (n = 31 traits). Point estimates and 95% confidence intervals are 

denoted using triangles and lines. c, We plot the ancestry-specific marginal effects for 217 

GWAS significant clumped trait–SNP pairs across 60 study–trait pairs. Trait–SNP pairs with 

significant heterogeneity in marginal effects by ancestry (pHET < 0.05 ∕ 217 via HET test) are 

denoted in color (non-significant trait–SNP pairs denoted as black dots; some black dots 

with large differences across ancestries were not significant because of the large standard 

errors in estimated effects). Numerical results are reported in Supplementary Table 11. Point 

estimates and 95% confidence intervals for Deming regression slopes of βs, eur
(m) ∼ βs, afr

(m)  are 

provided either for all 217 SNPs (red), or for 193 SNPs after excluding 24 MCH-associated 

SNPs (blue). RBC, red blood cell; CRP, C-reactive protein; LDL, low-density lipoprotein 

cholesterol; HDL, high-density lipoprotein cholesterol; TC, total cholesterol; BMI, body 

mass index; WHR, waist-to-hip ratio.
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Fig. 4 ∣. Induced heterogeneities in marginal effects across local ancestries.
a, Illustrations that different LD patterns across local ancestries can induce differential 

tagging between a causal SNP and a tag SNP in b or another causal SNP in c. LD strengths 

between the two SNPs are indicated both in the thickness of arrows and in the color shades 

of ‘*’ elements in LD matrices. b, Example of single causal SNP with no heterogeneity. 

Causal effects are the same across local ancestries, and the estimated marginal effects at 

causal SNP will be also very similar with sufficient sample size. However, because of 

differential tagging across local ancestries, the estimated marginal effects evaluated at the 

tag SNP are difference. c, Example of multiple causal SNPs with no heterogeneity. Causal 

effects for both SNPs are the same across local ancestries. In this example, the correlation 

between the two causal variants is higher for genotypes in African local ancestries than 

those in European local ancestries. Therefore, African ancestry-specific genotypes tag more 

effects, creating different ancestry-specific marginal effects at each causal SNP.
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Fig. 5 ∣. Pitfalls of including local ancestry in estimating heterogeneity.
In each simulation, we selected a single causal variant and simulated quantitative phenotypes 

where these causal variants explain heritability ℎg
2 = 0.6 %; we also varied ratios of effects 

across ancestries βeur :βafr. a, False positive rate in null simulation βeur :βafr = 1.0. b, Power to 

detect βeur ≠ βafr in power simulations with βeur :βafr > 1. We did not include ‘lanc regressed’ 

because it is not well-calibrated in null simulations. We plot the mean and 95% confidence 

intervals, calculated via 100 random subsamplings with each sample consisting of 500 SNPs 

(Methods). Numerical results are reported in Supplementary Table 12.
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Fig. 6 ∣. Miscalibration of HET test/Deming regression/OLS regression in simulations with 
radmix = 1.

a–c, Simulations with single causal variant. Each causal variant had the same causal effects 

across local ancestries and each causal variant explained a fixed amount of heritability 

(0.2%, 0.6% and 1.0%): false positive rate (FPR) of HET test (a); Deming regression 

slope (b) and of OLS regression slope (c) of βeur
(m) ∼ βafr

(m). Numerical results are reported in 

Supplementary Table 13. d–f, Simulation with multiple causal variants, where we simulated 

different levels of polygenicity, such that on average there were approximately 0.25, 0.5, 

1.0, 2.0 and 4.0 causal variants per Mb; causal variants had the same causal effects 

across local ancestries, and the heritability explained by all causal variants was fixed at 

ℎg
2 = 10 %: FPR of HET test (d); Deming regression slope (e) and OLS regression slope 

(f) of βeur
(m) ∼ βafr

(m). The 95% confidence intervals were based on 100 random subsamplings 

with each sample consisting of 1,000 SNPs (Methods). Results for other number of SNPs 

used for subsampling are shown in Extended Data Fig. 8. Numerical results are reported in 

Supplementary Table 14.
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