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Abstract: Viral strains, age, and host factors are associated with variable immune responses against
SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African,
and Native American. We hypothesized that unique host proteins/pathways are associated with
COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men
and women aged 21–71 years old were recruited in Puerto Rico from 2020–2021. Plasma samples
were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56)
during acute disease. COVID-19-positive individuals were stratified based on symptomatology as
follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed
in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to
LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15),
and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human
cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed
58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was down-
regulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α
levels decreased with disease severity. This study uncovers potential host predictors of COVID-19
severity and new avenues for treatment in Puerto Ricans.

Keywords: COVID-19; SARS-CoV-2; cadherin-13; H-cadherin; T-cadherin; TNF-α; proteomics;
Puerto Rico

1. Introduction

Severe acute respiratory syndrome virus-2 (SARS-CoV-2) causes coronavirus disease 2019
(COVID-19), ranging from asymptomatic to severe disease. As of 17 March 2024, there were
over 774 million confirmed COVID-19 cases and over 7 million deaths worldwide [1]. The
development of coronavirus disease depends on interactions of viral and host responses
and ranges from asymptomatic to severe disease and death. Patients with severe disease
present a cytokine storm in the blood that may include elevation of TNF-α, CCL2, CXCL10
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(IP-10), MCP-1, MIP-1α, GCSF, IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10, and IL-17 [2–9]. A re-
cent study using machine learning/artificial intelligence approaches in plasma proteomics
datasets of COVID-19 patients linked severe disease with B cell dysfunction, increased
inflammation, activation of Toll-like receptors, and decreased activation of developmen-
tal and immune mechanisms such as SCF/c-Kit signaling [10]. The proteins identified
by artificial intelligence with the highest predictive values for COVID-19 disease sever-
ity were the following: CRK-like proto-oncogene, adaptor protein (CRKL), interleukin 1
receptor-associated kinase 1 (IRAK1), NF-kappa-B essential modulator/inhibitor of nuclear
factor kappa-B kinase subunit gamma (NEMO/IKBKG), axis inhibition protein 1 (AXIN1),
serine/arginine-rich protein-specific kinase 2 (SRPK2), and the cytoplasmic histidine–
TRNA ligase (HARS1) [10]. Increased growth differentiation factor 15 (GDF-15) levels
were positively associated with COVID-19 severity in a relatively large proteomic study
in Canada [11]. In a recent study in the United States, increased expression of mesothelin
(MSLN) in severe patients was identified by proteomics [12]. This protein has not been
reported in previous studies of COVID-19 severity. People over 55 years old with comor-
bidities were more likely to have a severe COVID-19 disease outcome [6,13–15]. In a recent
study in Estonia, the two factors that mostly correlated with disease severity were age and
male gender [16]. However, a Mendelian randomization study using epigenetic clocks and
telomere length found that aging is not a risk factor for COVID-19 disease severity and
susceptibility [17].

Population-specific immune responses to SARS-CoV-2 have been recently identi-
fied [16]. The factors associated with disease severity are heterogeneous, and therefore,
more population-based studies are needed [18]. New findings indicate that unvaccinated
patients are at increased risk of disease severity [19]. Today, the COVID-19 pandemic has
not ended because of the emergence of many new variants that started with Alpha, Beta,
Gamma, Delta, and now, with additional variants of Omicron [1]. Given the increased
number of COVID-19 cases, it remains to be understood which are the unique factors
that protect the different populations in the world against disease severity. Quantitative
proteomics is a powerful method to uncover novel proteins associated with different con-
ditions. For COVID-19 disease, initial studies of plasma proteomics were developed in
2020 in Korea by comparing severe patients to mild ones and controls, which revealed
important proteins associated with disease severity [20]. Similar studies were performed
in China [21] and the United States [22]. This last study stratified patients according to
their IL-6 levels. Most plasma and serum proteomics studies performed worldwide are
summarized in Table S1.

The purpose of this study is to perform proteomics analysis to identify the host factors
that are associated with COVID-19 disease severity in Puerto Ricans. We hypothesized
that unique proteins/pathways are associated with COVID-19 disease severity in Puerto
Ricans. In summary, through proteomics analyses, we found cadherin-13 downregulated
in severe patients, and these results were validated by ELISA. Cytokine analyses showed
decreased TNF-α in severe patients. In addition to vaccination, these proteins represent
unique targets for COVID-19 prevention and treatment of our population.

2. Results
2.1. Demographics

A total of 95 unvaccinated participants (n = 95) living in Puerto Rico were recruited
in the study. Both men (41.1%) and women (58.9%) were included in the study in the
21–71 y/o age range. Participants with acute COVID-19 (n = 39; 41.1%) were included and
compared to COVID-19-negative controls (n = 56; 58.9%). The COVID-19 questionnaire that
was administered to all participants included the clinical information collected regarding
the history of COVID-19 disease with 20 signs and symptoms; eight of these were described
in this cohort. Results revealed that 18/39 (46.2%) of the participants, including both
genders, had mild COVID-19; 13/39 (33.3%) had moderate, and 8/39 (20.5%) severe
COVID-19 (Table 1). The most common comorbid conditions in this cohort were high
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blood pressure, autoimmune diseases, diabetes, and cardiovascular diseases. Only 3.2% of
the participants reported being HIV positive and were excluded from the TMT analyses.
There was a significant proportion of patients with cardiovascular disease in the severe
COVID-19-positive group compared to the rest of the groups (p = 0.0005).

Table 1. Demographics, comorbidities, and clinical symptoms of participants by COVID-19 severity.
N/A = Does not apply.

COVID-19
Negative Controls

COVID-19 (+)
Mild

COVID-19 (+)
Moderate

COVID-19 (+)
Severe Total (%) p-Value

Number of
participants 56 18 13 8 95 N/A

Mean age (range) 45
(21–71)

44
(28–56)

34
(23–53)

51
(28–67)

43
(21–71) 0.0584

Women 33 11 8 4 56 (58.9%) 0.9532

Men 23 7 5 4 39 (41.1%) 0.9532

Hispanics 51 18 13 8 90 (94.7%) 0.2987

Non-Hispanics 5 0 0 0 5 (2.6%) 0.2987

Autoimmune
diseases 7 3 2 2 14 (14.7%) 0.8130

Cancer 2 1 0 0 3 (3.2%) 0.7881

Diabetes 4 2 0 1 7 (7.4%) 0.6333

Cardiovascular
diseases 0 2 1 3 6 (6.3%) 0.0005

High blood
pressure 8 5 1 2 16 (16.8%) 0.3985

HIV/AIDS 1 1 1 0 3 (3.2%) 0.6110

Lung disease 1 0 1 0 2 (2.1%) 0.4653

Kidney disease 1 2 1 0 4 (4.2%) 0.2997

Loss of smell 0 6 10 4 20 (21.1%) N/A

Loss of taste 0 5 9 4 18 (18.9%) N/A

Muscle aches 0 9 11 5 25 (26.3%) N/A

Cough 0 14 8 6 28 (29.5%) N/A

Shortness of
breath 0 2 4 5 15 (30%) N/A

Fever 0 6 9 6 21 (22.1%) N/A

Headache 0 12 9 6 27 (28.4%) N/A

Chest pain 0 0 4 3 7 (7.4%) N/A

2.2. Proteomic Profile of Puerto Rican COVID-19 Patients

TMT quantitative analyses were performed with 30 patients stratified by mild, moderate,
and severe, as described (Figure 1A,B). A human cytokine array, including twenty-three an-
alytes, was performed to identify cytokines, chemokines, and growth factors associated
with COVID-19 severity (Figure 1C). Proteomics analyses revealed unchanged and differ-
entially expressed proteins, as shown in volcano plots for Mild vs. COVID-19 negative
(Figure 2A), Moderate vs. COVID-19 negative (Figure 2B), and Severe vs. COVID-19
negative (Figure 2C). In mild COVID-19 patients, there were 6 upregulated and 3 downreg-
ulated proteins when compared to COVID-19-negative controls (Figure 2D); in moderate
COVID-19 patients, there were 3 upregulated and 8 downregulated proteins (Figure 2D);
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and in severe COVID-19 patients, there were 2 upregulated and 54 downregulated pro-
teins (Figure 2D). In total, there were 64 different proteins identified in COVID-19 patients
across all severities compared to COVID-19-negative controls (Figure 2E). Most of these
proteins were downregulated by COVID-19, especially in the severe group (Figure 2E). The
alpha-2-HS-glycoprotein (AHSG) and the hepatocyte growth factor activator (HGFAC) were
the only two proteins downregulated by COVID-19 across all severity groups (Figure 2E);
the rest of the proteins were differentially expressed in a severity-dependent manner. The
lists of differentially expressed proteins per severity group, including their accession ID,
fold-change, and p-value, are shown in Table S2 (Mild vs. COVID-19 negative), Table S3
(Moderate vs. COVID-19 negative), and Table S4 (Severe vs. COVID-19 negative).
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Figure 1. Study design. This protocol was approved by the UPR-MSC IRB (#0720120) and Biosafety
Committees. (A) Ninety-five (95) unvaccinated men and women between the ages of 21 and 71 were
recruited in Puerto Rico. Plasma samples were collected from thirty-nine unvaccinated COVID-19
positive (n = 39) and fifty-six negative controls (n = 56). COVID-19 patients were stratified based on
symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). (B) Quantitative
proteomics studies were performed in plasma samples from thirty (n = 30) participants using tandem
mass tag (TMT). These included twenty-two (22) randomly selected COVID-19-positive patients with
mild (n = 8), moderate (n = 10), and severe COVID-19 disease (n = 4) that were matched to COVID-
19-negative controls (n = 8). Proteins were isolated, denatured, reduced, alkylated, digested, and
labeled using TMT at the Translational Proteomics Center. Labeled peptides were subjected to mass
spectrometry and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15),
and Ingenuity Pathways Analysis (IPA, version 22.0.2). Most relevant proteins associated with
COVID-19 severity were interrogated by ELISA. (C) Twenty-three pro-inflammatory cytokines,
chemokines, and growth factors associated with a severe COVID-19 outcome were identified and
quantified from all subjects (n = 95) using a human cytokine array.

The list of differentially expressed proteins in mild, moderate, and severe COVID-19
positive compared with COVID-19-negative patients are included in Table S2, Table S3, and
Table S4, respectively. For mild COVID-19 patients, the six upregulated proteins were related to
the oxygen carrier hemoglobin and acute phase immune responses, while three downregulated
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proteins were related to stress responses and metabolism. For moderate COVID-19 patients,
the three upregulated proteins were hemoglobin, while the eight downregulated proteins
were related to cell organization, stress responses, and metabolism. For severe COVID-19
patients, the only two upregulated proteins were acute phase proteins and hemoglobin, like
mild COVID-19-positive patients, while the 54 significant downregulated proteins included
proteins involved in cell adhesion, stress responses, and metabolic processes.
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Figure 2. Differentially expressed proteins according to COVID-19 severity. (A) Volcano plot compar-
ing between Mild COVID-19 positive (+) vs. COVID-19 negative (−) controls; (B) Volcano plot for
comparison between Moderate COVID-19 positive (+) vs. COVID-19 negative (−) controls. (C) Vol-
cano plot for comparison between Severe COVID-19 positive (+) vs. COVID-19 negative (−). All
Volcano plots depict differentially abundant proteins identified per group comparison. (D) Stacked
bar plot depicting dysregulated proteins (differentially more abundant or differentially less abun-
dant) per each group comparison using a one-factor analysis between cases vs. controls (COVID-19
negative). (E) Heatmap showing FC of dysregulated proteins with a significance of p-value < 0.05.
Blue color indicates downregulated proteins. Red color indicates upregulated proteins. Grey color
indicates proteins that were not dysregulated in that comparison. All dysregulated proteins de-
picted in this panel complied with a threshold of (FC) ≥ |1.5| (Log2 FC |0.5|) and p-value ≤ 0.05
(−log10 p-Value ≥ 1.30) and are represented by their gene symbol.
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After performing a canonical pathway enrichment analysis on proteins associated with
severe COVID-19, we found that the top 10 significantly enriched pathways were the fol-
lowing: LXR/RXR activation, FXR/RXR activation, acute phase response signaling, coagula-
tion system, intrinsic prothrombin activation pathway, iron homeostasis signaling pathway,
atherosclerosis signaling, neuroprotective role of THOP1 in Alzheimer’s Disease, MSP-RON
signaling in cancer cells pathway, and leukocyte extravasation signaling (Figure 3).

In the activity prediction analyses, results showed that for the Mild and Moderate
COVID-19 groups, neither a positive nor negative z-score was found for the significantly
enriched canonical pathways (Figure 4A,B). For the severe COVID-19 group, based on their
negative z-scores, the following pathways are predicted to be inhibited ordered by the
magnitude of the z-core (higher blue intensity): LXR/RXR activation (z-score: −2.714), pro-
duction of nitric oxide and reactive oxygen species in macrophages (z-score: −2.000), synap-
togenesis signaling pathway (z-score: −2.000), and coagulation system (z-score: −0.447)
(Figure 4C).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 20 
 

 

proteins and hemoglobin, like mild COVID-19-positive patients, while the 54 significant 
downregulated proteins included proteins involved in cell adhesion, stress responses, and 
metabolic processes. 

After performing a canonical pathway enrichment analysis on proteins associated 
with severe COVID-19, we found that the top 10 significantly enriched pathways were the 
following: LXR/RXR activation, FXR/RXR activation, acute phase response signaling, co-
agulation system, intrinsic prothrombin activation pathway, iron homeostasis signaling 
pathway, atherosclerosis signaling, neuroprotective role of THOP1 in Alzheimer’s Dis-
ease, MSP-RON signaling in cancer cells pathway, and leukocyte extravasation signaling 
(Figure 3). 

In the activity prediction analyses, results showed that for the Mild and Moderate 
COVID-19 groups, neither a positive nor negative z-score was found for the significantly 
enriched canonical pathways (Figure 4A,B). For the severe COVID-19 group, based on 
their negative z-scores, the following pathways are predicted to be inhibited ordered by 
the magnitude of the z-core (higher blue intensity): LXR/RXR activation (z-score: −2.714), 
production of nitric oxide and reactive oxygen species in macrophages (z-score: −2.000), 
synaptogenesis signaling pathway (z-score: −2.000), and coagulation system (z-score: 
−0.447) (Figure 4C). 

 
Figure 3. Top 32 canonical pathways differentially deregulated by COVID-19 disease severity. Heat
map for enriched canonical pathways with a gradient-based IPA −log10 (p-value) for the significantly
different proteins found in mild, moderate, and severe COVID-19 positive compared with COVID-19
negative groups.



Int. J. Mol. Sci. 2024, 25, 5426 7 of 19

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Top 32 canonical pathways differentially deregulated by COVID-19 disease severity. Heat 
map for enriched canonical pathways with a gradient-based IPA −log10 (p-value) for the significantly 
different proteins found in mild, moderate, and severe COVID-19 positive compared with COVID-
19 negative groups. 

 
Figure 4. Predicted activity of canonical pathways in COVID-19 patients. Z-scores were computed 
by IPA for significantly enriched canonical pathways for Mild (A), Moderate (B), and Severe (C) 
COVID-19 groups. Blue bars indicate predicted inhibited pathways. Gray bars indicate pathways 
for which an activity prediction could not be made. White bars indicate pathways with a z-score 
close to or equal to 0. The intensity of the bar color correlates with the z-score prediction value. 
Pathways with a significant enrichment −log10 (p-value) ≥ 1.5 (p-value = 0.05) are shown. This image 
was obtained from IPA. 

2.3. Validation of Cadherin-13 as Potential Biomarker of Severe COVID-19 in Puerto Ricans 
For validation, we established our principal selection parameters in the following or-

der: (1) Top three canonical pathways ordered by the higher absolute value of z-score in 
severe disease (Figure 4C; LXR/RXR activation: z-score: −2.714, production of nitric oxide 

Figure 4. Predicted activity of canonical pathways in COVID-19 patients. Z-scores were computed
by IPA for significantly enriched canonical pathways for Mild (A), Moderate (B), and Severe (C)
COVID-19 groups. Blue bars indicate predicted inhibited pathways. Gray bars indicate pathways for
which an activity prediction could not be made. White bars indicate pathways with a z-score close to
or equal to 0. The intensity of the bar color correlates with the z-score prediction value. Pathways
with a significant enrichment −log10 (p-value) ≥ 1.5 (p-value = 0.05) are shown. This image was
obtained from IPA.

2.3. Validation of Cadherin-13 as Potential Biomarker of Severe COVID-19 in Puerto Ricans

For validation, we established our principal selection parameters in the following
order: (1) Top three canonical pathways ordered by the higher absolute value of z-score in
severe disease (Figure 4C; LXR/RXR activation: z-score: −2.714, production of nitric oxide
and reactive oxygen species in macrophages: z-score: −2.000, and synaptogenesis signaling
pathway: z-score: z-score: −2.000). (2) Literature search of the top three dysregulated
proteins ordered from higher to lower fold change value, which participate in each of the
top three canonical pathways and their association with severe COVID-19 (Tables S5–S7).
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(3) From this group, we selected proteins not previously reported to be associated with
severe COVID-19 in other cohorts (Tables S5–S7). Using these parameters, we identified
cadherin-13 as a candidate for validation using ELISA (Tables S5–S7). Results confirmed
that cadherin-13 was significantly decreased (p < 0.05) in the plasma of severe COVID-19
patients compared to healthy controls in our cohort (Figure 5A). As an additional validation
parameter, we randomly selected other significant proteins from the list of 56 deregulated
proteins in severe disease, which included the following: PON1, KNG1, hemoglobin, SAPC,
APOA2, ICAM-1, and L-selectin (Figure 5). We ended up with eight proteins selected
for validation using ELISA (Table S8). There was a significant decrease in PON1 levels
in Moderate patients compared to healthy controls (p ≤ 0.05) (Figure 5B). There was a
tendency towards a decrease in plasma PON1 levels in severe patients compared to healthy
controls (p = 0.0575) and Mild patients (p = 0.0734). Similarly, for KNG1, there was a
significant decrease in moderate patients compared to healthy controls (p < 0.01). There
was a tendency towards a significant decrease in KNG1 levels in mild (p = 0.0979) and severe
(p = 0.0971) patients compared to healthy controls (Figure 5C). In contrast, for hemoglobin,
there was a tendency towards a significant increase in moderate patients compared to healthy
controls (p = 0.0663; Figure 5D). For SAPC (Figure 5E), APOA2 (Figure 5F), ICAM-1 (Figure 5G),
and sL-selectin (Figure 5H), there were no significant differences among the groups.
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Figure 5. Validation of relevant proteins associated with COVID-19 disease severity. Plasma samples
from unvaccinated healthy controls (n = 8) and COVID-19-positive patients stratified by severity
(Mild: n = 12, Moderate: n = 12, and Severe: n = 8) were randomly selected for validation using
ELISA of the following 8 proteins: cadherin-13 (A), PON1 (B), KNG1 (C), hemoglobin (D), SAPC (E),
APOA2 (F), ICAM-1 (G), and sL-selectin (H). The mean ± SEM is shown. * p < 0.05, ** p < 0.01.
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2.4. Cytokine Profile of Puerto Rican COVID-19 Patients

COVID-19-positive patients presented a significant elevation of three (n = 3) of the
following cytokines in plasma compared to negative controls: IL-1Ra, IP-10, and TNF-α
(Figure 6A). On the other hand, a significant reduction in PDGFb was observed in these
patients (Figure 6A). When stratified by severity, no significant differences were observed
for PDGFb between the groups. However, a significant decrease in PDGFb was observed in
mild patients compared to negative controls (Figure 6B). For TNF-α, we found that severe
patients had decreased levels of this cytokine in plasma compared to mild patients, whereas
an increase was observed for mild patients compared to negative controls (Figure 6B).
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3. Discussion

In this study, we performed proteomics and cytokine analyses to identify host factors
associated with COVID-19 severity in Puerto Rico. Using proteomics studies and further
validation through ELISA, we identified cadherin-13 as a potential biomarker of severe
COVID-19 disease in Puerto Ricans. To our knowledge, this is the first study to demonstrate
an association of decreased cadherin-13 levels with COVID-19 disease severity.

Quantitative proteomics analyses identified 64 differentially expressed proteins be-
tween COVID-19-positive individuals compared to negative controls. These included
two proteins upregulated in Severe COVID-19 cases, while the great majority (54/56) were
downregulated compared to negative controls. Among the upregulated proteins, serum
amyloid P component (SAPC or APCS) or related proteins (SAA) have been found in
proteomics studies from countries like Italy [23,24], India [25], China [21], Germany [26],
Spain [27], and Saudi Arabia [28]. SAPC is an acute response protein linked to amyloid
plaque accumulation that contributes to neuropathology, one of the manifestations of
long-COVID-19. However, SAPC was also found to be upregulated in mild COVID-19.
Among the 54 downregulated proteins found in this study, APOA and APOF were com-
mon to other studies in the world that include apolipoproteins (APOC1, APO2, APO3,
APOD, APOM) [20,26–28]. Lipid metabolism proteins have been reported to contribute to
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COVID-19 disease severity [29]. Additional decreased proteins found in this study that are
common to other studies include peptidase inhibitor 16 [30]. This protein is protective for
the heart, one of the affected organs in COVID-19 disease. Gelsolin, a modulator of inflam-
matory responses, was another protein found to be downregulated in this study that has
been associated with disease severity in other studies [22,24,27,28,31–33]. These proteins
were not dysregulated in mild or moderate COVID-19-infected patients in our study.

In terms of canonical pathways associated with disease severity in our population, our
results showed that the top four deregulated mechanisms based on the p-value were the
following: LXR/RXR signaling, FXR/RXR signaling, the acute phase response signaling,
and the coagulation system. However, based on z-scores or predicted activity, our results
showed that the following pathways were inhibited in severe patients: LXR/RXR signaling,
production of nitric oxide and ROS from macrophages, synaptogenesis signaling, and the
coagulation system. Inhibition of the LXR/RXR signaling was recently reported in serum
from COVID-19 patients in a longitudinal multi-omics study [34]. Oxidative stress is a
mechanism that has been associated with the pathogenesis and severity of COVID-19,
and antioxidants have been proposed as potential therapy [35,36]. The synaptogenesis
signaling pathway was found to be inhibited in a meta-transcriptomics pathway enrichment
analysis from bronchoalveolar lavage fluid collected from COVID-19 patients in hospitals
in Wuhan in January 2020 [37]. However, cadherin-13 was not identified as deregulated
in their cohort. Other studies have demonstrated that SARS-CoV-2 entry into neurons
impairs synaptogenesis [38].

For validation studies, we established the following criteria: (1) top three canonical
pathways ordered by higher absolute value of z-score in severe disease, (2) literature search
of top three deregulated proteins based on higher fold change that participate in each of the
top three canonical pathways and their association with severe COVID-19; and (3) selection
of proteins not previously reported to be associated with severe COVID-19 in other co-
horts. Following these parameters, we identified cadherin-13, also known as T-cadherin or
H-cadherin. Cadherin-13 is a receptor for LDL and adiponectin and participates as a guid-
ance receptor for the regulation of axons and blood vessel growth [39]. This receptor affects
lipid and insulin metabolism and insulin sensitivity and plays a role in disorders such as in
dyslipidemia, diabetes, obesity, insulin resistance, and atherosclerosis [39]. Cadherin-13 is
an important regulator of GABAergic synapses [40]. In vitro cadherin-13 participates in the
formation of excitatory and inhibitory synapses of hippocampal neurons [41]. Decreased
levels of cadherin-13 in plasma are associated with increased severity of coronary artery
disease and a higher risk of acute coronary syndrome [42]. Our validation results showed
that COVID-19 patients had lower plasma levels of cadherin-13 in a severity-dependent
manner and reached statistical significance in the severe group. Our results are in line
with a recent genome-wide association study performed in a multi-center of European
COVID-19 patients, which identified nine single nucleotide polymorphisms (SNPs) in the
CDH13 locus on chromosome 16, associated with COVID-19 risk of death [43]. These SNPs
were associated with lung function and repair [43]. However, they could not control their
data for the patients’ comorbidities due to the unavailability of data and a relatively small
number of participants. Our cohort is controlled for comorbidities, except for cardiovas-
cular disease, which was present in a significantly greater proportion in the severe group
(3 out of 8 patients). Due to our small number of severe COVID-19 patients, we could not
control for this comorbidity either. However, none of these three patients with cardio-
vascular disease were included in the TMT Labeling proteomic studies (Table S9), and
cardiovascular disease did not impact cadherin-13 levels in plasma (Figure S1A). Similarly,
despite the tendency towards a significant difference in age between the groups in our
cohort (Table 1 and Table S9), cadherin-13 levels did not correlate with age (Figure S1B).
Therefore, the decreased levels of cadherin-13 found in the severe COVID-19 patients by
proteomics and ELISA cannot be attributed to cardiovascular disease but to an increased
severity of COVID-19. In addition, our results suggest that COVID-19 patients with car-
diovascular disease in our population may be more likely to develop severe disease due
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to COVID-19-induced depletion of cadherin-13 levels. The decrease of cadherin-13 in
COVID-19 patients has not been reported before, suggesting that it could be a Puerto Rican-
specific immune response to SARS-CoV-2. However, future studies evaluating cadherin-13
in a higher number of Puerto Rican participants are warranted to confirm these results.
Variants on the CDH13 gene associated with COVID-19 risk of death were recently reported
in a European population [43]. It remains to be tested if catherin-13 protein levels are also
decreased in Europeans. As Puerto Ricans from Puerto Rico have a high proportion of
European (Spanish) ancestry (72%), mixed with ~15% African and ~13% Native Ameri-
can [44], we could expect that future studies evaluating single-nucleotide polymorphisms
(SNPs) in our cohort could reveal unique variants on the CDH13 gene that may affect its
expression in response to SARS-CoV-2.

As a secondary validation approach, we randomly selected proteins from the list
of significantly deregulated proteins in severe COVID-19 vs. healthy controls. These
were the following: PON1, KNG1, hemoglobin, SAPC, APOA2, ICAM-1, and L-selectin.
PON1 and KNG1 levels significantly decreased in moderate patients compared to controls
and showed a tendency towards a significant decrease in our severe COVID-19 patients
compared to healthy controls. PON1 findings are consistent with previous studies that have
demonstrated that decreased PON1 levels are associated with disease severity [26,33,45,46].
A tendency towards a significant increase in hemoglobin levels for the moderate group
was observed. This finding is consistent with the elevation of hemoglobin in proteomics
data at all severity groups. In addition, abnormal hemoglobin levels are associated with
the severity and death associated with COVID-19 [47].

In our study, we found a dysregulation of cytokines such as IL-1RA, TNF-α, IP-10, and
PDGFb, which are elevated in combination in the plasma of COVID-19 patients in other
studies and correlate with disease severity [6,48]. However, in our cohort, we found de-
creased PDGFb, especially in mild patients compared to controls. This is consistent with a
previous study that found decreased serum PDGFb levels in COVID-19 patients compared
to controls [49]. A recent study found that lower levels of PDGFb in the serum of COVID-19
patients compared to healthy controls within the first 24 h of hospitalization predict mortal-
ity [50]. However, other studies have found increased plasma levels of PDGFb in COVID-19
patients [51]. As PDGFb participates in tissue repair and angiogenesis, our results may
indicate that COVID-19 might be inducing vascular tissue damage in our patients. In our
cohort, TNF-α was elevated in mild COVID-19 and decreased with severity. This finding
is supported by other studies that found decreased TNF-α levels with severity [52,53].
However, other studies have found elevated TNF-α levels in severe COVID-19 [54]. Finally,
non-significant differences between disease severities were observed for IP-10 and IL-1Ra.
IP-10 has also been found to be elevated in severe COVID-19 in other studies [54,55]. Our
findings support previous findings about the heterogeneity of host factors associated with
COVID-19 severity in different populations. This study was limited by a small number
of patients recruited during the initial COVID-19 pandemic. Larger studies, including
vaccinated participants and comparisons with other populations, are warranted to identify
and validate risk factors for severity that are specific to our Puerto Rican population. In
conclusion, although this cohort that started in 2021 as a pilot project was relatively small,
the combination of proteomics and cytokine studies revealed important things about the
factors that influence disease severity in our population. This study does not consider the
role of viral strains as it was not its purpose but is an important determinant in the host
response to the virus. The patients were recruited before Omicron variants emerged, and
therefore, additional studies could reveal additional differences.

4. Materials and Methods
4.1. Study Participants, Ethics, and Sample Collection

This study includes individuals (n = 95), thirty-nine unvaccinated COVID-19 positive
(n = 39), and fifty-six negative controls (n = 56) (Figure 1). Informed consent was obtained
from each study subject before sample collection (IRB Protocol #0720120). Exclusion criteria
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were applied to subjects less than 21 years of age and participants who were unwilling
or incapable of giving informed consent. Each patient completed an abbreviated form
of the Columbia COVID-19 Questionnaire that was translated to Spanish–Patient Case
Proband Version 2.3 (https://www.columbiamedicine.org/divisions/kiryluk/COVID19/
Columbia_COVID19_questionnaire_V2.3_ENGLISH.pdf, accessed on 1 September 2020),
to collect clinical information, assess history of COVID-19 disease (symptoms, disease pro-
gression and treatment), risk factors (such as comorbid conditions), and outcomes. Subjects
were stratified into four categories: negative controls and three observation conditions
dependent on COVID-19 disease severity. The observation conditions were mild, moderate,
and severe. Mild cases were defined as the individuals that tested positive for SARS-CoV-2
by PCR but had none or less than 6 symptoms associated with COVID-19 (loss of taste and
smell, sore throat, fever, cough, malaise, headache, muscle pain, nausea, vomiting, diarrhea,
shortness of breath). Moderate cases were defined as patients who had 6 to 12 symptoms
of COVID-19 or those requiring an oxygen mask without the need for hospitalization.
Severe cases were defined as adults who had 6 or more symptoms and were hospitalized,
requiring invasive mechanical ventilation. This criterion is in accordance with CDC criteria,
which defines severe outcomes of COVID-19 as hospitalization, admission to the intensive
care unit (ICU), intubation or mechanical ventilation, or death [56]. As mild to moderate
cases did not require hospitalization, we decided to differentiate these two groups based
on the number of symptoms as described above. Those with mild and moderate disease
were accrued from the University of Puerto Rico Laboratory of Parasite Immunology and
Pathology (LPIP) after COVID-19 testing. Patients with severe disease were accrued from
Auxilio Mutuo Hospital in collaboration with the Infectious Disease Physician, Dr. Jorge
Bertran. Samples were transported to LPIP for processing and storage of saliva, plasma,
and PBMC obtained from two 10 mL EDTA-blood tubes. Cells and saliva were saved for
future genomics studies, and the plasma fractions were used for cytokines, chemokines,
and proteomics studies. Study data were collected and managed using REDCap® electronic
data capture tools hosted at the University of Puerto Rico, Medical Sciences Campus [57,58].

4.2. Proteomics
4.2.1. Depletion of Most Abundant Proteins

Plasma aliquoted samples from 22 (n = 22) unvaccinated COVID-19 patients stratified
by disease severity and negative controls were randomly selected for quantitative pro-
teomics studies (Tables S9 and S10). These included: COVID-19 patients with mild (n = 8),
moderate (n = 10), and severe (n = 4) disease compared to eight (n = 8) COVID-19-negative
controls. Briefly, the most abundant proteins, i.e., albumin and Immunoglobulin G (IgG),
were removed from the samples using the Pierce Albumin/IgG removal kit (Thermo Fisher
Scientific, Mount Prospect, IL, USA). Protein concentrations were determined using the
bicinchoninic acid assay (BCA) (DC Protein Assay, Bio-Rad, Hercules, CA, USA), and 100 µg
were aliquoted for the next step. Samples were then subjected to acetone precipitation
overnight at −20 ◦C, centrifuged at 10,000× g for 10 min, and the supernatants discarded.
Protein pellets were resuspended in 95% Laemli with 5% β-mercaptoethanol sample buffer
and loaded into Mini-PROTEAN TGX precast gels. The gels were run for 15 min at 150 V
and Coomassie Blue-stained. Gels’ images are shown In Figure S2. Thereafter, the gel
lanes were diced manually into 1 mm3 cubes. The cubes were then de-stained using a
solution of acetonitrile (50%) and ammonium bicarbonate (50 mM). Then, the samples were
alkylated with iodoacetamide (10 mM) in ammonium bicarbonate (50 mM) and reduced
using dithiothreitol (25 mM) in ammonium bicarbonate (50 mM). Samples were digested at
37 ◦C overnight with Trypsin, and peptides were gel-extracted using 150 µL of a mixture of
acetonitrile (50%) and formic acid (2.5%) in water followed by 150 µL of acetonitrile (100%).

4.2.2. TMT Labeling, Fractionation, and Mass Spectrometry Analyses

TMT labeling, fractionation, and mass spectrometry analyses were performed accord-
ing to our previous studies [59,60]. Dried peptides were reconstituted in triethylammonium
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bicarbonate (100 mM) buffer and subsequently labeled with the TMT11-plex, followed by
one hour of incubation. After 15 min of a quenching step, equal amounts of each sample
per kit were mixed to generate a final pool that was later submitted to fractionation. The
fractionation was performed using the Pierce High pH Reversed-Phase Peptide Fractiona-
tion Kit (Thermo Fisher Scientific, Mount Prospect, IL, USA) and following manufacturer’s
instructions. Briefly, the column was conditioned twice using 300 µL of acetonitrile, cen-
trifuged at 5000× g for 2 min, and the steps were repeated using 0.1% Trifluoroacetic acid
(TFA). Each TMT labeled pool was reconstituted in 300 µL of 0.1% TFA and loaded onto the
column. The bounded sample was washed and then eluted 8 times into 8 different vials us-
ing a series of elution solutions with different acetonitrile/0.1% triethylamine percentages
indicated by the manufacturer. Then, each fraction was submitted to mass spectrometric
analysis. Peptide separation was performed using high-performance liquid chromatogra-
phy (Easy nLC 1200) (Thermo Fisher Scientific, Mount Prospect, IL, USA). Peptides were
loaded onto a Pico Chip H354 REPROSIL-Pur C18-AQ 3 µM 120 A (75 µm × 105 mm)
chromatographic column. The separation was obtained using a gradient of 7–25% of 0.1%
of formic acid in acetonitrile (Buffer B) for 102 min, 25–60% of Buffer B for 20 min, and
60–95% Buffer B for 6 min. Making a total gradient time of 128 min at a flow rate of
300 nL/min. Separated peptides were analyzed using a Q-Exactive Plus mass spectrometer
(Thermo Fisher Scientific, Mount Prospect, IL, USA). The instrument was operated in
positive polarity mode and data-dependent mode. The MS1 (full scan) was measured over
the range of 375 to 1400 m/z and at a resolution of 70,000. The MS2 (MS/MS) analysis was
configured to select the ten most intense ions for HCD fragmentation at a resolution of
35,000. A dynamic exclusion parameter was set for 30.0 s.

4.2.3. Protein Identification and Quantitation

Protein identification and quantitation were performed according to our previous
studies [59,60]. Proteome Discoverer version 2.5 (Thermo Fisher Scientific, Mount Prospect,
IL, USA) was used to identify and quantify proteins. Proteins were identified using a
Human protein database obtained from the software protein center tool using tax ID = 9606.
Protein identifications were obtained using a SEQUEST HT algorithm. The modifications
included were the following: a dynamic modification for oxidation +15.995 Da (M), a static
modification of +57.021 Da (C), and static modifications from the TMT reagents +229.163 Da
(Any N Term, K). The false discovery rate was set at 0.01 (strict) and 0.05 (relaxed). A
differential expression analysis was conducted using the R-Limma package (version 3.41.15)
on Bioconductor version 3.16 [61]. COVID-19 severity groups (mild, moderate, and se-
vere) were considered the observation groups and compared to the COVID-19-negative
control group. In this study, the proteins considered significant were those with a fold
change ≥ |1.5| and a p-value ≤ 0.05. Canonical pathway analyses were conducted for
the significantly differentially expressed proteins for each observation condition using
Ingenuity Pathway Analysis (IPA, version 22.0.2, QIAGEN Digital Insights, Germantown,
MD, USA).

4.3. Cytokines

Plasma aliquots from 39 COVID-19-positive individuals stratified by disease severity
and 56 COVID-19-negative subjects were obtained from the prospectively collected samples
stored at −80 ◦C in the LPIP for determination of cytokines. Samples were matched for
age and gender. Approximately 50–200 µL per sample were used to identify and quantify
23 cytokines, chemokines, and growth factors in plasma, using the Bio-Plex Pro Human
Cytokine Screening Panel, following manufacturer instructions (Bio-Rad, Hercules, CA,
USA). The following analytes were measured: IL-1β, IL-1ra, IL-4, IL-6, IL-7, IL-8, IL-9,
IL-10, IL-12p70, IL-13, IL-17A, Eotaxin, FGF basic, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1,
MIP-1α, PDGF-BB (or PDGFb), MIP-1β, RANTES, and TNF-α. Values below the lower
limit of detection, not detected, and/or outliers (ROUT, Q = 1%) were excluded from
further analyses.
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4.4. Validation Using ELISA

Repository plasma samples from unvaccinated healthy controls (n = 8) and COVID-19-
positive patients stratified by disease severity (Mild: n = 12, Moderate: n = 12, and Severe:
n = 8) were randomly selected for validation using ELISA, following manufacturer instruc-
tions. Random selection of proteins for validation is an accepted approach in TMT-labeling
proteomics studies [62–64]. The following ELISA analyses were performed: cadherin-13
(Invitrogen, Waltham, MA, USA), PON1 (Ray Biotech, Peachtree Corners, GA, USA), KNG1
(Ray Biotech, Peachtree Corners, GA, USA), hemoglobin (Sigma Aldrich, St. Louis, MO,
USA), SAPC (Abcam, Waltham, MA, USA), APOA2 (Abcam, Waltham, MA, USA), ICAM-1
(Abcam, Waltham, MA, USA), and sL-selectin (Invitrogen, Waltham, MA, USA).

4.5. Statistical Analyses

For analyses of participants’ demographics, Kruskal–Wallis test was performed to
determine differences in age between the groups, and Fisher’s exact test was performed
to determine differences in categorical variables such as sex, Hispanic origin, and pres-
ence of comorbidities. For TMT labeling proteomics bioinformatic analyses, the statistical
analysis was performed pairwise between the groups, as follows: Case vs. Controls. Differ-
entially expressed proteins were considered significant with a fold change (FC) ≥ |1.5|
(Log2 FC ≥ |0.5|) and p-value < 0.05. Identified proteins for each comparison were used to
generate the heatmap. For the volcano plot, the threshold was set as –log10 p-Value ≥ 1.30
(or p-value ≤ 0.05) and FC ≥|1.5| (Log2 FC ≥ |0.5|). For cytokine and protein validation
analyses, outliers (ROUT, Q = 1%) were eliminated from raw data. Normal distribution
of data was assessed using Shapiro–Wilk, and parametric or non-parametric tests were
performed where appropriate. Unpaired t-tests were performed for comparisons regarding
COVID-19 status (positive vs. negative) or for comparisons of each severity group vs. the
healthy control group. For comparisons between the different disease severities (Mild,
Moderate, and Severe), One-way ANOVA or Kruskal–Wallis tests were performed where
appropriate. Statistical significance was considered at p < 0.0500. A schematic of our study
design is shown in Figure 1.
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Kuśnierz-Cabala, B.; et al. Fetuin-a Deficiency but Not Pentraxin 3, FGF-21, or Irisin, Predisposes to More Serious COVID-19
Course. Biomolecules 2021, 11, 1422. [CrossRef]

76. Kurt, N.; Ozgeris, F.B.; Kocak, O.F.; Yuce, N.; Bayraktutan, Z.; Parlak, E.; Coban, T.A.; Bakan, E. Evaluation of Fetuin-A, CRP, and
CRP/Fetuin-A Values in COVID-19 Patients. Int. J. Med. Biochem. 2022, 5, 125–131. [CrossRef]

77. Di Flora, D.C.; Dionizio, A.; Pereira, H.A.B.S.; Garbieri, T.F.; Grizzo, L.T.; Dionisio, T.J.; de Lima Leite, A.; Silva-Costa, L.C.;
Buzalaf, N.R.; Reis, F.N.; et al. Analysis of Plasma Proteins Involved in Inflammation, Immune Response/Complement System,
and Blood Coagulation upon Admission of COVID-19 Patients to Hospital May Help to Predict the Prognosis of the Disease.
Cells 2023, 12, 1601. [CrossRef]

78. Lipman, D.; Safo, S.E.; Chekouo, T. Integrative Multi-Omics Approach for Identifying Molecular Signatures and Pathways and
Deriving and Validating Molecular Scores for COVID-19 Severity and Status. BMC Genom. 2023, 24, 319. [CrossRef] [PubMed]

79. Souza Junior, D.R.; Silva, A.R.M.; Rosa-Fernandes, L.; Reis, L.R.; Alexandria, G.; Bhosale, S.D.; de Rose Ghilardi, F.; Dalçóquio,
T.F.; Bertolin, A.J.; Nicolau, J.C.; et al. HDL Proteome Remodeling Associates with COVID-19 Severity. J. Clin. Lipidol. 2021,
15, 796. [CrossRef]

80. Qin, Z.; Liu, F.; Blair, R.; Wang, C.; Yang, H.; Mudd, J.; Currey, J.M.; Iwanaga, N.; He, J.; Mi, R.; et al. Endothelial Cell Infection
and Dysfunction, Immune Activation in Severe COVID-19. Theranostics 2021, 11, 8076. [CrossRef] [PubMed]

81. Huet, A.; Tugarov, Y.; Dvorshchenko, K.; Grebinyk, D.; Savchuk, O.; Korotkyi, O.; Ostapchenko, L. TGFB1, FOXO1, and COMP
Genes Expression in Blood of Patients with Osteoarthritis after SARS-CoV2 Infection. Cytol. Genet. 2023, 57, 128. [CrossRef]

https://doi.org/10.1007/S00705-023-05821-7
https://doi.org/10.1186/S12870-020-02531-Z
https://www.ncbi.nlm.nih.gov/pubmed/32652934
https://doi.org/10.1186/S13071-021-05113-6
https://doi.org/10.1126/SCIENCE.ABC6261
https://www.ncbi.nlm.nih.gov/pubmed/32788292
https://doi.org/10.1038/s41598-021-98253-9
https://doi.org/10.1186/S12931-023-02364-Y
https://doi.org/10.1016/J.JACBTS.2022.01.013
https://www.ncbi.nlm.nih.gov/pubmed/35530264
https://doi.org/10.1016/J.ECLINM.2022.101495
https://doi.org/10.3389/fimmu.2022.1027122
https://www.ncbi.nlm.nih.gov/pubmed/36405747
https://doi.org/10.1172/JCI148635
https://www.ncbi.nlm.nih.gov/pubmed/34196300
https://doi.org/10.1021/ACS.JPROTEOME.1C00215
https://doi.org/10.1038/S41467-024-44986-W
https://doi.org/10.3389/FIMMU.2021.730710
https://doi.org/10.3390/biom11101422
https://doi.org/10.14744/IJMB.2022.83097
https://doi.org/10.3390/cells12121601
https://doi.org/10.1186/S12864-023-09410-5
https://www.ncbi.nlm.nih.gov/pubmed/37308820
https://doi.org/10.1016/J.JACL.2021.10.005
https://doi.org/10.7150/THNO.61810
https://www.ncbi.nlm.nih.gov/pubmed/34335981
https://doi.org/10.3103/S009545272302010X


Int. J. Mol. Sci. 2024, 25, 5426 19 of 19

82. Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; García-Seisdedos, D.; Jarnuczak, A.F.;
Hewapathirana, S.; Pullman, B.S.; et al. The ProteomeXchange Consortium in 2020: Enabling ‘Big Data’ Approaches in
Proteomics. Nucleic Acids Res. 2020, 48, D1145. [CrossRef]

83. Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.;
Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data.
Nucleic Acids Res. 2019, 47, D442. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/NAR/GKZ984
https://doi.org/10.1093/NAR/GKY1106
https://www.ncbi.nlm.nih.gov/pubmed/30395289

	Introduction 
	Results 
	Demographics 
	Proteomic Profile of Puerto Rican COVID-19 Patients 
	Validation of Cadherin-13 as Potential Biomarker of Severe COVID-19 in Puerto Ricans 
	Cytokine Profile of Puerto Rican COVID-19 Patients 

	Discussion 
	Materials and Methods 
	Study Participants, Ethics, and Sample Collection 
	Proteomics 
	Depletion of Most Abundant Proteins 
	TMT Labeling, Fractionation, and Mass Spectrometry Analyses 
	Protein Identification and Quantitation 

	Cytokines 
	Validation Using ELISA 
	Statistical Analyses 

	References

