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Abstract

Background: Although social rejection is among the strongest proximal precipitants of major 

depressive disorder (MDD), little is known about the underlying neurobiological mechanisms and 

whether neural sensitivity to social rejection may help explain differences in MDD risk. To address 

this issue, we tested whether neural responses to social threat differed in female adolescents at 

high vs. low maternal risk for MDD.

Method: Female adolescents with (high-risk; n = 22, Mage = 14.68) and without (low-risk; n 
= 30, Mage = 15.07) a maternal history of depression were experimentally exposed to negative 

and neutral social evaluation while undergoing an fMRI scan. Neural responses were assessed by 

event-related activity and functional connectivity, as well as multivoxel pattern analysis. Activity 

and functional connectivity analyses focused on a priori-selected regions of interest implicated in 

self-referential processing and emotion regulation.

Results: Compared to low-risk female adolescents, high-risk female adolescents exhibited 

greater increases in self-reported depression and social disconnection following social evaluation. 

Moreover, compared to low-risk female adolescents, high-risk female adolescents exhibited 
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greater amygdala responses to negative social evaluation and a differential pattern of functional 

connectivity in brain regions related to emotion regulation, self-referential processing, and 

negative affect. Additionally, these markers of neural threat reactivity were related to depressive 

symptoms.

Limitations: A cross-sectional study design and relatively small, Western sample.

Conclusions: These results suggest that exaggerated neural reactivity to social threat—and an 

atypical pattern of related functional connectivity—is evident in individuals with a preclinical risk 

factor for depression. Targeting such responding may thus be a fruitful strategy for preventing 

depression in at-risk youth.
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1. Introduction

Depression is a leading cause of disease burden worldwide (Gore et al., 2011; Ferrari et 

al., 2013), but this burden is not shared equally between males and females. Indeed, while 

rates of major depressive disorder (MDD) are equally low for males and females before 

the pubertal transition, MDD rates rise substantially for females following puberty (Salk et 

al., 2017; Mojtabai et al., 2016). This disease burden is compounded by the fact that MDD 

is recurrent for some individuals (Slavich and Irwin, 2014) and increases risk for suicide 

(Smith et al., 2010; Stewart et al., 2019) as well as several somatic conditions including 

heart disease, chronic pain, and autoimmune and neurode-generative disorders (Slavich 

and Irwin, 2014). Understanding factors that contribute to the initial onset of depression, 

especially in female adolescents, is therefore of paramount public importance, especially if 

such research can help identify preclinical risk processes that could be modified to reduce 

risk for developing a first onset of MDD.

Nearly all major theories of depression posit that major life stressors increase risk for 

depression, especially for persons who are already vulnerable (Slavich and Irwin, 2014; 

Beck and Bredemeier, 2016; Slavich, 2020; Slavich et al., 2010a; Luby et al., 2020; Slavich, 

2022). One particularly robust social-psychological antecedent of MDD is social rejection 

(Slavich et al., 2009). Despite this knowledge, however, the neurobiological mechanisms 

linking social rejection with risk for depression remain unclear. We addressed this issue 

using a high-risk family design, which examined how neural responses to social rejection 

differed for female adolescents at high vs. low risk for developing depression. We also 

investigated how these neural responses related to both female adolescents’ and their 

mothers’ depressive symptoms.

1.1. Social rejection and depression

As alluded to above, the lifelong societal and health impacts of adolescent depression 

have fostered substantial research aimed at better understanding the social-environmental 

antecedents of MDD. Life stressors, and social rejection in particular, appear to be one of 

the strongest proximal social-psychological precipitants of depression (Stewart et al., 2019; 
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Slavich et al., 2010a; Slavich et al., 2009). In a retrospective study of individuals diagnosed 

with MDD, for example, those who experienced targeted rejection (e.g., being broken up 

with by a romantic partner) developed MDD approximately three times faster than their 

counterparts who experienced severe life stressors that did not involve targeted rejection 

(Slavich et al., 2009). Relatedly, recent experiences of social rejection have been found to 

distinguish individuals who have attempted suicide from those who thought about (but did 

not attempt) suicide, as well as those with psychiatric diagnoses who had not attempted or 

thought about suicide (Stewart et al., 2019). Some research has shown that social rejection 

upregulates inflammatory activity (Slavich et al., 2010b), and that inflammation can induce 

some depressive symptoms (Slavich and Irwin, 2014; Kappelmann et al., 2018; Shields 

et al., 2017; Shields and Slavich, 2017; Slavich, 2015). However, what neurobiological 

processes underlie these links in adolescence remains unclear.

The Social Signal Transduction Theory of Depression (Slavich and Irwin, 2014) posits that 

experiences of social rejection are converted into neural signals of threat, including greater 

amygdala and anterior insula activity, as well as altered functional connectivity between 

these regions and other regions involved in negative affect, self-referential processing, and 

emotion regulation (e.g., the anterior cingulate cortex [ACC], ventromedial prefrontal cortex 

[VMPFC]) [see also (Ho et al., 2014; Kaiser et al., 2015)]. These neural representations of 

threat are then posited to initiate a downstream biological cascade that ultimately increases 

risk for MDD for vulnerable individuals (Slavich and Irwin, 2014). A key prediction of 

this theory is that neural responses to social rejection should be stronger for individuals at 

heightened risk of developing depression, such as those with a maternal lifetime history of 

MDD (Hammen et al., 1987; Lieb et al., 2002; Lin et al., 2019). In support of this prediction, 

prior research has found that greater ACC responses to social rejection paradigms, such as 

“cyberball,” predict increases in depressive symptoms over time (Masten et al., 2011; Silk 

et al., 2022; Silk et al., 2014), as well as greater inflammatory responses to social stress 

(Slavich et al., 2010b). To date, however, no study has tested this prediction in youth who 

are at known high risk for depression but who have not yet experienced depression or any 

other Axis I disorder.

1.2. Present study

We addressed this issue by examining neural responses to social rejection in female 

adolescents, 12–16 years old, who were at high vs. low risk of developing MDD. We 

focused specifically on this age group because it is a critical period when risk for MDD 

increases significantly but is before most female adolescents experience their first major 

depressive episode (MDE) (Angold et al., 1998). Risk of depression was determined by 

maternal lifetime history of MDD, as having a mother with a lifetime history of depression 

is a strong risk factor for MDD in female adolescents (Hammen et al., 1987; Lieb et 

al., 2002; Lin et al., 2019). Participants were introduced to another female similar in 

age (actually a confederate) who was ostensibly going to socially evaluate them while 

the participant was in the fMRI scanner. We assessed youths’ self-reported changes in 

social disconnection and depression, event-related neural activity and functional connectivity 

that was time-locked to adjective selection, and whole-brain functional connectivity that 

distinguished groups and types of socially evaluative adjectives (i.e., negative or neutral) 
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using multivoxel pattern analysis (MVPA). MVPA is more sensitive to differences than 

univariate approaches to fMRI, as it detects information contained within patterns of activity, 

rather than in the level of activity alone (Coutanche and Thompson-Schill, 2012; Norman 

et al., 2006). MVPA is also more sensitive in some ways than an ROI-based approach 

to functional connectivity, as it examines patterns of connectivity at the level of voxels—

corrected for multiple testing—rather than between ROIs (Norman et al., 2006). MVPA can 

thus supplement inferences by elucidating clusters of voxels that show strong and complex 

patterns associated with social threat.

Drawing from Social Signal Transduction Theory of Depression (Slavich and Irwin, 2014) 

and prior research showing that greater ACC activity (consistent with threat and negative 

affect reactivity, among other interpretations) during social rejection predicts increases in 

depressive symptoms (Masten et al., 2011; Silk et al., 2022; Silk et al., 2014), we had 

three primary hypotheses. In particular, compared to participants in the low MDD risk 

group, we expected participants in the high MDD risk group to exhibit (a) greater increases 

in self-reported depression and social disconnectedness, (b) greater functional activity and 

connectivity to social threat in the amygdala and ACC, and (c) reduced functional activity 

and connectivity to social threat in and with the VMPFC in response to social evaluation.

2. Method

2.1. Participants

Participants at high and low risk for developing a first lifetime MDE (N = 52; 22 high-risk, 

30 low-risk; Mage = 14.90, SD = 1.35) were recruited using flyers posted in community 

locations, online advertisements, social media posts, word of mouth, and announcements 

made at schools located throughout the greater Los Angeles area. This sample size provides 

99.1 % power to detect a similar effect size obtained in a study on familial-risk-related 

differences in fMRI activity to social stimuli (Morgan et al., 2019), though we note that 

power analyses based on pilot studies with limited sample sizes can minimize the number 

of participants needed to obtain adequate power (Kraemer et al., 2006). To be eligible, 

daughters had to be between 12 and 16 years old at time of recruitment, English-speaking, 

right-handed, not claustrophobic, free of bodily metal (except dental fillings) and other 

contraindications for MRI, living with their biological mother, and have no current or past 

history of any Diagnostic and Statistical Manual-IV (DSM-IV) Axis I affective disorder. In 

addition, daughters must not have had any recent alcohol or substance use or dependence, 

not have been pregnant as verified with a pregnancy test, and not have had any history of 

head trauma or a learning disability. Finally, daughters had to be free of past or current 

inflammatory illness, major sleep disturbance, tobacco use, prescription drug use, excessive 

caffeine use (i.e., >8 cups/day), or a body mass index of ≥30 due to the measurement of 

peripheral inflammation (data not analyzed in current manuscript) (O’Connor et al., 2009). 

Seven adolescents (five low-risk, two high-risk) were excluded from fMRI analyses due to 

motion (see Materials and Procedure).

The high-risk group was comprised of female adolescents whose mothers met Structured 

Clinical Interview for DSM-IV [SCID-IV; (First et al., 1995)] diagnostic criteria for major 

depressive disorder at some point in their lifetime (i.e., positive lifetime history of MDD). 
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Conversely, the low-risk group was comprised of female adolescents whose mothers had no 

lifetime history of any Axis I disorder. As noted above, none of the female adolescents could 

have had a current or past history of any Diagnostic and Statistical Manual-IV (DSM-IV) 

Axis I affective disorder.

2.2. Materials and procedure

All procedures were approved by the UCLA Institutional Review Board. Mothers and 

daughters interested in the study first completed a phone screening session to introduce 

the study and preliminarily assess their likelihood of meeting the inclusion and exclusion 

criteria. If the mothers and daughters both appeared eligible, an intake session was 

scheduled for the first available date.

At the intake session, informed consent and assent were obtained, and mothers and 

daughters were separately screened by trained diagnostic interviewers to determine their 

risk group. Using the Schedule for Affective Disorders and Schizophrenia for School-Age 

Children-Present and Lifetime version [K-SADS-PL; (Kaufman et al., 1997)], we assessed 

each daughter’s diagnostic status and, in addition, created interviewer-derived indices of 

youths’ depressive symptoms and symptom severity. In turn, each mother’s diagnostic 

status was assessed using the SCID-IV (First et al., 1995). Eligible mother-daughter pairs 

separately completed questionnaires. Mothers provided reports of their current depressive 

symptoms using the Beck Depression Inventory-II [BDI-II; (Beck et al., 1996)].

Next, daughters completed a 10-minute video-recorded interview in which an interviewer 

asked daughters 33 questions about themselves in the absence of their mothers (Sichko et 

al., 2021). The interview had a conversational feel and focused on the daughters’ opinions, 

feelings, and memories. Daughters were then scheduled for a second 3.5-hour session, 

which took place within approximately 1 month of their initial session (median = 26.5 days).

Upon arriving for this second session, daughters were taken to a private testing room 

and informed of the session’s procedures. Participants completed questionnaires assessing 

self-reported depression [i.e., the depression subscale of the Profile of Mood States – Short 

Form; POMS-SF; (Curran et al., 1995)] and social disconnection (Eisenberger et al., 2010). 

The depression subscale in the POMS-SF consists of eight items. Participants were asked 

to indicate how well eight words (discouraged, hopeless, sad, blue, helpless, unhappy, 

worthless, and miserable) described how they felt right then, at that moment, using a 

scale from 1 (Not at all) to 5 (Extremely). Self-reported feelings of depression could thus 

range from 8 to 40, with higher values indicating more depression. Similarly, the social 

disconnection questionnaire asked participants to indicate, using a scale from 1 (Not at all) 
to 5 (Very much so), the extent to which they felt certain ways right then. Each of the 12 

items on this questionnaire was related to social situations or social interaction more broadly 

(e.g., “I feel alone,” and, “I feel like being around other people”). Scores could thus range 

from 0 to 60, and the measure was coded such that higher values indicated greater social 

disconnection. During the time in which the participant completed these questionnaires, they 

were introduced to “another participant” (actually a confederate) who they were told was 

completing a related study. The confederate was always a female, college-aged research 

assistant who dressed and acted like a slightly older adolescent.
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Approximately 1 h after the start of this session, both the participant and the confederate 

were taken to the MRI scanner control room. Participants and the confederate were given 

instructions for the social evaluation task (Eisenberger et al., 2011). First, participants were 

reminded of their recorded interview and the first five seconds of their interview was shown. 

The evaluative nature of the task was introduced by explaining that the confederate would 

be watching and judging the participant’s video by clicking on 1 of 24 potential adjectives 

every ten seconds to indicate her impression of the participant. The participant was informed 

she would see the adjective selections in real time while in the MRI scanner. An example of 

the display screen was shown to both the participant and the confederate. The confederate 

always asked a clarifying question (i.e., “How often am I supposed to give a rating?”) 

to enhance the task’s believability. In reality, all participants watched the same recorded 

10-minute video in which the adjectives (one-third positive, one-third neutral, one-third 

negative) were “selected” in pseudo-random order, with a jittered inter-adjective interval and 

no more than two similarly valenced words clicked consecutively. This task engages the 

amygdala (Muscatell et al., 2015) and increases self-reported feelings of social evaluation 

and rejection (Dedovic et al., 2016), which are common features of depression in youth 

(Platt et al., 2013).

After the MRI scan, participants returned to the testing room, where they completed the 

self-reported depression and social disconnection questionnaires again (post-evaluation). 

Finally, participants were fully debriefed and thanked.

2.3. fMRI image acquisition

Imaging data were acquired using a Prisma 3.0 Tesla whole-body scanner (Siemens Medical 

Systems, Iselin, New Jersey) at the Staglin One Mind Center for Cognitive Neuroscience at 

UCLA. High resolution T1-weighted structural images were acquired using a magnetized 

prepared rapid acquisition gradient echo (MPRAGE) sequence containing 1.1 mm isotropic 

voxels, TR/TE/flip angle = 2300 ms/2.95 ms/9◦, FOV = 270 mm2, 176 slices. Blood 

oxygenation level-dependent (BOLD) functional images were acquired containing 3 mm 

isotropic voxels, TR/ TE/flip angle = 2000 ms/34 ms/76◦, FOV = 208 mm2, 48 slices.

2.4. fMRI preprocessing & analyses

2.4.1. Activity—Functional and structural MRI data used in univariate (i.e., BOLD 

activation) analyses were preprocessed using SPM12. Preprocessing included realignment 

(and unwarp) of functional files, functional centering to (0,0,0) coordinates (translation), 

functional slice-timing correction, motion correction, functional segmentation and 

normalization, structural translation, and structural segmentation and normalization. 

Participants with >3 mm and/or 3◦ of movement between slices and/or who were 

removed from functional connectivity analyses due to excessive motion were excluded 

from neuroimaging analyses. Contrast images for activity were estimated using SPM12. 

The mask for the amygdala ROI was taken from the Harvard-Oxford subcortical atlas, the 

masks for the anterior insula and ACC were taken from the salience network set of ROIs 

from CONN Toolbox, and the mask of the VMPFC was taken from Bhanji et al. (2019) 

(Fig. 1). For consistency with our functional connectivity analyses and to make the most of 

the probabilistic amygdala ROI data, we used REX (https://www.nitrc.org/projects/rex) to 
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extract weighted-sum values of signal intensity from the amygdala for the negative adjective 

minus neutral adjective contrast. We also used REX to quantify mean signal intensity in 

nonprobabilistic ROIs. Signal intensities were then standardized prior to analyses.

2.4.2. Functional connectivity—Because best practices in preprocessing differ 

slightly between univariate activation and functional connectivity analyses, for functional 

connectivity analyses, raw functional and structural MRI data were preprocessed using 

the default preprocessing pipeline in CONN toolbox v19.b (Whitfield-Gabrieli and Nieto-

Castanon, 2012). This pipeline consists of functional realignment (and unwarp) of 

functional files, functional centering to (0,0,0) coordinates (translation), functional slice-

timing correction, functional outlier detection using the artifact detection toolbox (ART; 

http://www.nitrc.org/projects/artifact_detect/) for scrubbing, functional segmentation and 

normalization, structural translation, and structural segmentation and normalization. ART 

parameters were set to flag acquisitions with framewise displacement above 0.9 mm or 

global BOLD signal changes above five standard deviations as potential outliers. Participants 

(n = 7) with >20 % of functional images identified as outliers by ART were removed from 

subsequent analyses. Outlier matrices, three translational and three rotational movement 

parameters and their first-order temporal derivatives, ten noise component parameters from 

the anatomical component-based noise correction procedure (aCompCor; five parameters 

from white matter, five from cerebrospinal areas), and all effects of conditions (done by 

default in CONN Toolbox to remove illusory correlations) were entered as covariates during 

first-level analysis. BOLD timeseries were first preprocessed and denoised, then spatially 

normalized to build the time series for each voxel.

2.4.2.1. ROI-to-ROI analyses.: Event-related functional connectivity (Rissman et 

al., 2004) for each assessed valence condition was assessed using generalized 

psychophysiological interaction (gPPI) in CONN Toolbox with contrasts that examined 

differences in functional connectivity between negative and neutral adjective viewing 

between groups [(High-Risk Negative – High-Risk Neutral) – (Low-Risk Negative – Low-

Risk Neutral)]. The ROIs used were the same as those used in the univariate analyses 

described above.

2.4.2.2. Multi-voxel pattern analysis (MVPA).: We computed pairwise connectivity 

between each voxel and the rest of the brain using whole-brain MVPA implemented in 

CONN Toolbox. We reduced the dimensionality of these data using principal components 

analysis with nine components to maintain an approximate 5:1 ratio between participants 

and components, as is recommended (Whitfield-Gabrieli and Nieto-Castanon, 2012; 

Whitfield-Gabrieli et al., 2016). We then conducted multivariate analyses to identify 

clusters of functionally connected voxels between any of the nine component scores that 

differentiated the interaction between Group and Valence [i.e., (High-Risk Negative – High-

Risk Neutral) – (Low-Risk Negative – Low-Risk Neutral)] in a data-driven approach. These 

analyses were thresholded at a cluster level of an FDR-corrected p < .05 and a height level of 

p < .001.
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2.5. Data analysis

Activity values (beta weights) were extracted from REX, and functional connectivity 

values were extracted from CONN. Connectivity values are Fisher Z-transformed partial 

correlations. Because we did not have a priori expectations of differences between 

hemispheres, we averaged across hemisphere for the activity and connectivity analyses. 

ROI-to-ROI analyses were all specified a priori and thus were not corrected for multiple 

comparisons. Using false discovery rate corrections for multiple comparisons in ROI-

to-ROI analyses reduced the group difference in VMPFC to amygdala connectivity to 

nonsignificance but did not alter other inferences.

All analyses were conducted using R, version 4.3.1. Changes in self-reported feelings 

of depression and social disconnection were analyzed as difference scores; tests were 

conducted to determine whether each group differed in change in each of these variables 

from zero, as well as whether the groups differed in change from each other, using 

one-sample and two-sample independent groups t-tests, respectively, with change scores 

as the dependent variables. Extracted fMRI data were also analyzed using two-sample, 

independent groups t-tests. MVPA clusters were analyzed for group differences in CONN 

using default corrections before being extracted for association analyses. Associations 

between extracted activity or functional connectivity data and pre- to post-evaluation 

change scores were quantified via Pearson correlations. Depressive symptom totals are 

count data that often violate standard Poisson model assumptions; therefore, associations 

with depressive symptoms were examined in robust Poisson regressions conducted using 

the robustbase package, version 0.99–0, using the default Mlqe method. Zero-inflated and 

hurdle Poisson models produced equivalent results to those presented below; in these 

models, the associations were significant within the count—not zero—coefficients, as 

would be expected from our Poisson results. Mediation analyses were conducted using 

the mediation package, version 4.5.0, using the appropriate outcome distributions (e. g., 

Gaussian, Poisson) for each model. Mediation analyses were conducted when risk group, 

depressive symptoms, and fMRI data were all related in order to explore relations among 

these data; they should be interpreted as exploratory and thus with caution. Excluding 

outliers, defined as standardized residuals > ±3, did not alter any inferences from analyses of 

risk group differences or associations reported below.

Results include presentation of Bayes factors (BF10), calculated using the BayesFactor 

package, version 0.9.12–4.4, in R. A Jeffreys-beta prior was used for the prior in all 

Bayesian analyses. A Bayes factor quantifies the evidence in favor of the data being 

observed in the model of interest, such that a Bayes factor >1 (e.g., 2.5) indicates that 

the data were more likely to be observed in the model of interest than an alternative model 

(e.g., a Bayes factor of 2.5 indicates that the data are 2.5 times as likely to have occurred 

given the model of interest than the model it is being tested against, such as a null model), 

whereas a Bayes factor BF10 <1 indicates evidence against the data occurring under that 

model. By convention, a Bayes factor BF10 of 3.16 or greater indicates substantial evidence 

in favor of the data being observed in the model of interest.
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3. Results

Participant demographic characteristics by MDD risk group are reported in Table 1.

3.1. Self-reported depression and social disconnection following social evaluation

As expected, self-reported depressed mood (POMS-SF) increased from pre- to post-social 

evaluation Mdiff = 0.69, p = .05; moreover, this change significantly differed between 

groups, with high-risk female adolescents increasing in self-reported depressed mood (Mdiff 

= 1.77, SE = 0.62, p = .009) to a much greater degree than low-risk female adolescents 

(Mdiff = −0.10, SE = 0.34, p = .769), t(50) = 2.84, p = .007, 95% CIdiff: [0.55, 3.20] 

d = 0.80, BF10 = 6.71 (Fig. 2a). Similarly, self-reported social disconnection increased 

significantly from pre- to post-social evaluation across both groups, Mdiff = 2.74, p = .003. 

Unlike depressed mood, however, changes in social disconnection were only marginally 

greater for the high-risk group, with high-risk female adolescents increasing in self-reported 

social disconnection (Mdiff = 4.48, SE = 1.83, p = .02) to a marginally greater degree 

than low-risk female adolescents (Mdiff = 1.48, SE = 0.67, p = .04), t(48) = 1.72, p 
= .09 (p = .045, one-tailed), 95% CIdiff: [0.51, 6.50] d = 0.49, BF10 = 0.94 (Fig. 2b). 

When analyses were restricted to participants with usable fMRI data, relative to low-risk 

female adolescents, high-risk female adolescents showed significantly greater increases from 

pre- to post-evaluation in both self-reported feelings of depression, p = .008, and social 

disconnection, p = .037.

3.2. Neural activation

We first tested for potential group differences in neural activity in ROIs that we hypothesized 

would distinguish high- and low-risk female adolescents—namely, the amygdala, anterior 

insula, ACC, and VMPFC (see Fig. 3)—while participants received negative (vs. neutral) 

social evaluation. As hypothesized, high-risk female adolescents (M = 0.43, SE = 0.23) 

exhibited greater activity in the amygdala than low-risk female adolescents (M = −0.34, SE 
= 0.14) when receiving negative (vs. neutral) social evaluation (Fig. 3a), t(43) = 3.03, p = 

.004, d = 0.91, BF10 = 9.87. Although high-risk female adolescents showed numerically 

greater activity in the anterior insula, ACC, or VMPFC in response to negative (vs. neutral) 

social evaluation as compared to low-risk female adolescents, these differences were not 

statistically significant, ps > .140 (see Fig. 3b–d).1

3.3. Functional connectivity

3.3.1. ROI-to-ROI analyses—We next tested for potential group differences in neural 

connectivity between the ROIs described above (i.e., amygdala, anterior insula, ACC, and 

VMPFC). Although only the amygdala differed in activity between these two groups, we 

examined all four ROIs given the potential for them to exhibit differential coupling in 

1Controlling for either pubic hair development or breast development did not alter the main findings. In particular, the group 
difference in anterior cingulate activity increased in magnitude to marginal significance, β = −0.294, p = .058. The group difference 
in amygdala activity remained significant, β = −0.484, p = .001, and the group tests in insula activity, β = −0.224, p = .168, 
and in VMPFC activity, β = −0.034, p = .813, remained nonsignificant. The same was true of functional connectivity, in that no 
nonsignificant result became significant and no significant result became nonsignificant, although VMPFC to amygdala functional 
connectivity fell from being significant (p = .045) to marginal significance (p = .089).
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activity over time between the two groups. We again focused on differences between the two 

diagnostic groups as a function of receiving negative (vs. neutral) social evaluation.

In these analyses, three ROI-to-ROI group differences in functional connectivity emerged. In 

particular, relative to the low-risk group, high-risk female adolescents exhibited: (a) greater 

connectivity between the anterior insula and ACC (M = 0.03, SE = 0.01; low-risk group M = 

0.00, SE = 0.01), t(43) = 2.30, p = .03, 95 % CIdiff: [0.001, 0.07], d = 0.69, BF10 = 2.35; (b) 

greater connectivity between the anterior insula and VMPFC (M = 0.02, SE = 0.01; low-risk 

group M = −0.03, SE = 0.01), t (43) = 2.74, p = .009, 95 % CIdiff: [0.01, 0.08], d = 0.82, 

BF10 = 5.35; and (c) lesser connectivity between the VMPFC and amygdala (M = −0.04, 

SE = 0.01; low-risk group M = 0.01, SE = 0.02), t(43) = 2.07, p = .04, 95 % CIdiff: [0.001, 

0.09], d = −0.62, BF10 = 1.60, while receiving negative (vs. neutral) social evaluation (Fig. 

4).

3.3.2. Multivoxel pattern analysis—We next used MVPA to determine connectivity 

patterns in clusters of voxels across the whole brain that distinguished high- vs. low-

risk female adolescents when contrasting neural responses to negative vs. neutral social 

evaluation. Six clusters of voxels survived corrections for multiple comparisons. In 

particular, clusters in the left precentral sulcus (peak coordinates: −14, −18, 64; pcluster < 

.001, ppeak < .001), left frontal pole (peak coordinates: −36, 44, 0; pcluster = .007, ppeak 

< .001), left superior frontal gyrus (SFG; peak coordinates: −18, 16, 68; pcluster = .016, 

ppeak < .001), left cerebellum (peak coordinates: −16, −64, −50; pcluster = .02, ppeak < .001), 

left ACC (peak coordinates: −12, 22, 28; pcluster = .020, ppeak < .001), and right frontal 

orbital cortex (peak coordinates: 14, 34, −22; pcluster = .023, ppeak < .001) distinguished 

high- and low-risk female adolescents in a negative vs. neutral social evaluation contrast. 

Low-risk female adolescents had higher values in each of these clusters than high-risk 

female adolescents, ds > 1.10.

3.4. Associations of neural activity and functional connectivity with depressive 
symptoms

3.4.1. Neural activity—We then examined how activity in each of the ROIs examined 

related to depressive symptoms using robust Poisson regressions. Less activity in the 

VMPFC while receiving negative (vs. neutral) social evaluation was related to more baseline 

depressive symptoms across all female adolescents, as assessed with the K-SADS, B = 

−0.32, Z = −4.73, p < .001. There was no association between activity in other regions 

and depressive symptoms, ps > .21, nor was there an association between activity in these 

regions and changes in feelings of social disconnection or depression from pre- to post-

evaluation, ps > .440. Interestingly, female adolescents’ VMPFC activity while receiving 

negative (vs. neutral) social evaluation was also inversely related to their mothers’ baseline 

depressive symptoms as assessed with the BDI-II, B = −0.31, Z = −6.06, p < .001.

3.4.2. Functional connectivity

3.4.2.1. ROI-to-ROI values.: Because anterior insula-to-ACC, anterior insula-to-VMPFC, 

and VMPFC-to-amygdala functional connectivity differed between the high- and low-risk 

groups, we next investigated how these connectivity profiles (contrasting negative vs. neutral 
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social evaluation) related to participants’ baseline depressive symptoms, as assessed by 

the K-SADS for female adolescents and BDI-II for their mothers. Two main associations 

emerged. First, anterior insula-VMPFC functional connectivity was positively associated 

with female adolescents’ baseline depressive symptoms as assessed by the K-SADS, B = 

0.32, Z = 3.17, p = .002. Statistical mediation analysis showed that MDD risk group (high- 

vs. low-risk) was indirectly related to depressive symptoms via anterior insula-VMPFC 

functional connectivity, p = .02. Second, interestingly, female adolescents’ anterior insula-

VMPFC functional connectivity values were positively related to their mothers’ baseline 

depressive symptoms, B = 0.21, Z = 3.16, p = .002. Mothers’ depressive symptoms did not 

mediate the association between daughters’ MDD risk group and daughters’ insula-VMPFC 

functional connectivity, p = .17.

None of these three functional connectivity variables were related to changes in feelings of 

social disconnection or depression from pre- to post-evaluation (ps > .095).

3.4.2.2. MVPA values.: Finally, two main associations emerged between MVPA cluster 

connectivity values and baseline depressive symptoms. Specifically, connectivity values in 

the left ACC cluster, B = −0.43, Z = −7.08, p < .001, and in the left superior frontal 

gyrus cluster, B = −0.50, Z = −8.94, p < .001, were significantly inversely associated with 

mothers’ depressive symptoms. Statistical mediation analysis showed that MDD risk group 

was indirectly related to connectivity values in both of these clusters through their mothers’ 

current depressive symptoms, ACC cluster p = .04, SFG cluster p = .005.

With respect to changes from pre- to post-evaluation, connectivity values in the left 

precentral sulcus cluster were associated with both changes in feelings of social 

disconnection (r = −.415, p = .005) and depression (r = −.477, p < .001), such that 

individuals with lower connectivity values showed greater increases in feelings of social 

disconnection and depression from pre- to post-evaluation. Statistical mediation analysis 

showed that MDD risk group was indirectly related to pre- to post-evaluation changes in 

feelings of depression (p = .04), but not social disconnection (p = .06), through precentral 

sulcus cluster connectivity. No other MVPA cluster that differentiated between groups was 

associated with changes in feelings of social disconnection or depression (ps > .148).

4. Discussion

A key prediction derived from Social Signal Transduction Theory of Depression is that 

individuals who are at heightened risk of depression should exhibit exaggerated neural 

responses to social threat, which may underlie the strong association observed between 

social rejection and depression in this group. In testing this hypothesis, we found that female 

adolescents at high risk of developing MDD exhibited greater increases in self-reported 

depressed mood and feelings of social disconnection in response to being socially evaluated 

than those at low risk of developing MDD. Additionally, we found that high-risk female 

adolescents exhibited greater amygdala activity while being socially evaluated than low-risk 

female adolescents. Moreover, high-risk female adolescents demonstrated relatively greater 

functional connectivity between the insula and both the ACC and VMPFC. In turn, MVPA 

revealed several functional connectivity clusters that distinguished between the high- vs. 

Shields et al. Page 11

J Affect Disord. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



low-risk groups during viewing of negative (vs. neutral) adjectives, including a cluster with a 

peak in the ACC. Finally, many of these neural markers were associated with individual 

differences in both daughters’ and mothers’ depressive symptoms, the latter of which 

should be considered cautiously, as there are multiple plausible explanations for it (e.g., 

shared environment, genetics), but which is nonetheless consistent with intergenerational 

transmission of depression, among other interpretations. Considered together, these results 

provide converging evidence that never-depressed female adolescents at high risk of 

developing a first lifetime episode of MDD have potentiated neural responses to social 

rejection and, moreover, that these neural responses to social evaluation relate to depression 

severity in both the adolescents and their mothers.

The patterns of activity and functional connectivity that differed between high- and low-risk 

female adolescents may highlight neurobiological mechanisms that underlie the relatively 

greater social evaluation-induced increases in self-reported depression and social isolation 

observed for high- vs. low-risk female adolescents. For example, participants in the high-risk 

group exhibited greater signaling between the insula, which is involved in self-referential 

processing and a variety of other functions (Slavich et al., 2010a), and the ACC and 

VMPFC—regions implicated in multiple processes, including executive control (Sharp et 

al., 2010; Inzlicht et al., 2015)—when receiving negative (vs. neutral) social evaluation. 

Although we can only speculate about the psychological processes that coincide with this 

pattern of functional connectivity, this pattern is consistent with a greater perceived rejection 

of self and subsequent need to exert executive control over emotions in the high-risk 

group. Similarly, high-risk female adolescents exhibited less signaling between the VMPFC, 

which is critical for executive control over emotions (Lamm and Lewis, 2010; Wagner and 

Heatherton, 2013; Kerestes et al., 2014), and the amygdala, which—when coupled with 

the heightened amygdala activity evident in the high-risk female adolescents—is consistent 

with a possible decreased ability to regulate heightened neural threat signaling induced by 

social stress. However, we note that this interpretation is merely consistent with our data, not 

required by them. To infer psychological processes from these fMRI data would be reverse 

inference, and these theoretical interpretations are thus only plausible speculations.

Several limitations of this study should be noted. First, the sample size was limited, 

decreasing our ability to detect small effects. Second, although this was a diverse community 

sample, it was still a Western, Educated, Industrialized, Rich, and Democratic (WEIRD) 

sample, and replicating these results across cultures is needed (Henrich et al., 2010). Third, 

although all of the mothers of high-risk individuals had a verified history of MDD and 

none of the mothers of low-risk individuals had ever been depressed, all verified by SCID-

IV interview, we cannot rule out the possibility that possible subclinical or subthreshold 

symptoms in the low-risk individuals’ mothers could have weakened the strength of the 

group difference. Fourth, although our sample size was large enough to reliably detect a 

similar effect observed in another small study, small studies—including ours—are likely to 

overestimate effect sizes (Silk et al., 2014). Future research with larger samples should thus 

attempt to determine if there exist any smaller differences between groups that we were 

unable to detect, as well as the extent to which the effect sizes that we observed might differ 

in magnitude. Finally, even though no daughters had a lifetime episode of MDD, without 
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longitudinal brain and depression data, establishing the temporal precedence of these neural 

markers vis-à-vis increases in depressive symptoms was not possible.

Notwithstanding these limitations, the present data provide support for the Social Signal 

Transduction Theory of Depression by showing that adolescents at high risk of developing 

MDD, but who have not yet experienced depression, exhibit greater increases in social 

disconnection, increases in depressed mood, and amygdala reactivity to social evaluation 

than those at low risk for developing the disorder. Moreover, consistent with this theory, 

high-risk female adolescents exhibited a pattern of functional connectivity that, among other 

interpretations, is consistent with a greater perceived need to engage in emotion regulation 

but a lesser ability to successfully exert that emotion regulation during socially evaluative 

threat. Furthermore, these patterns of activity and functional connectivity related to both 

mothers’ and daughters’ depressive symptoms.

Although our data are correlational and thus cannot determine whether these markers play a 

mechanistic role in structuring risk for depression, these neural markers of social threat may 

be important. For example, if this neural reactivity does contribute to the development of 

depression as the Social Signal Transduction Theory of Depression predicts, then targeting 

this pattern of neural reactivity may represent a potentially promising target for interventions 

aimed at attenuating the link between social rejection and depression to help prevent 

first onsets of MDD in high-risk youth. Additional research is needed to investigate the 

generalizability of these findings and to assess how the neural differences documented here 

relate to the development of MDD over time.
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Fig. 1. 
The a priori ROIs examined. Amygdala values were probability-weighted sums in keeping 

with the probabilistic ROI, whereas values from the remainder of the ROIs were not.
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Fig. 2. 
Changes in (A) self-reported depression and (B) self-reported feelings of social 

disconnection by depression risk group in response to being socially evaluated. Both 

self-reported depression and feelings of social disconnection increased from pre- to post-

social evaluation. As expected, high-risk female adolescents exhibited significantly greater 

increases in self-reported depression and marginally greater increases in self-reported 

feelings of social disconnection than low-risk female adolescents.
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Fig. 3. 
Neural responses to negative (vs. neutral) social evaluation in the a priori regions of interest. 

High-risk female adolescents exhibited numerically greater activity in all regions of interest 

(A-D) in response to receiving negative (vs. neutral) social evaluation, but these differences 

were statistically significant only for the (A) amygdala. Values were standardized to 

facilitate scaling comparison between the probabilistic weighted-sum regions of interest and 

the nonprobabilistic regions of interest. The lack of difference between groups in response 

to negative social evaluation in the ventromedial prefrontal cortex activity persisted after 

removal of the high-risk outlier.
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Fig. 4. 
Functional connectivity in the a priori regions of interest that were significant during 

negative (vs. neutral) social evaluation. Specifically, as compared to low-risk female 

adolescents, high-risk female adolescents exhibited significantly greater functional 

connectivity between (A) the anterior cingulate cortex (ACC) and anterior insula, as well as 

(B) between the anterior insula and ventromedial prefrontal cortex (VMPFC). Additionally, 

high-risk female adolescents exhibited significantly less coupling between (C) the VMPFC 

and amygdala as compared to low-risk female adolescents.
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Table 1

Sample characteristics by MDD risk group.

High-risk female adolescents
n = 22
mean (SD)

Low-risk female adolescents
n = 30
mean (SD)

Group difference
P

Age 14.68 (1.39) 15.07 (1.31) .31

Body mass index 24.87 (6.70) 22.24 (4.51) .10

Adolescents’ depressive symptom severity (K-SADS) 26.63 (6.79) 25.08 (3.67) .34

Mother’s depressive symptoms (BDI-II) 9.91 (10.41) 4.95 (4.94) .03

Race .45

 Black or African American 9 % 7 %

 Asian or Asian American 0 % 7 %

 White/Caucasian 23 % 40 %

 Hispanic/Latina 32 % 27 %

 Other 5 % 7 %

 Mixed/multiple 32 % 13 %

Note. K-SADS, Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version; BDI-II, Beck 
Depression Inventory-II. BDI-II cutoffs are 0–13 (minimal depression), 14–19 (mild depression), 20–28 (moderate depression), and 29–63 (severe 
depression).
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