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Abstract: COVID-19 has been a challenging outbreak to face, with millions of deaths among the globe.
Acute respiratory failure due to interstitial pneumonia was the leading cause of death other than
prothrombotic activation and complications. Lung ultrasound (LUS) and point-of-care ultrasound
(POCUS) are widely used not only to triage, to identify, and to monitor lungs involvement but also
to assess hemodynamic status and thrombotic and hemorrhagic complications, mainly in critically
ill patients. POCUS has gained growing consideration due to its bedside utilization, reliability, and
reproducibility even in emergency settings especially in unstable patients. In this narrative review, we
aim to describe LUS and POCUS utilization in COVID-19 infection based on the literature found on
this topic. We reported the LUS patterns of COVID-19 pulmonary infection, the diagnostic accuracy
with respect to CT lung scan, its prognostic value, the variety of scores and protocols proposed, and
the utilization of POCUS to investigate the extra-lung complications.

Keywords: COVID-19; acute respiratory failure; lung ultrasound; pneumonia; lung effusion; pulmonary
embolism; deep venous thrombosis; diaphragm impairment; acute heart failure

1. Introduction

Coronavirus Disease 2019 (COVID-19) is a viral infection due to a new type of coro-
navirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1].
The outbreak and the severity of the disease led clinicians to find ways to treat and manage
especially acute respiratory failure (ARF) as a life-threatening condition characterized by
acute onset of hypoxemia due to pneumonia caused by SARS-CoV-2 [2–4]. Beyond ARF,
multi-organ dysfunction can be present and characterized by acute liver failure, acute
kidney injury, cardiovascular disease, and thrombotic and hemorrhagic complications due
to coagulation regulation impairment [5].

Over the last decades, point-of-care ultrasound (POCUS) has gained increasing consid-
eration and widespread utilization in emergency care settings due to its availability at bed
side, reliability, reproducibility, and overall cheap costs [6]. Furthermore, it is an essential
tool to assess acutely ill patients in low-resource field such as prehospital settings and in
those so unstable that radiological images are difficult to obtain [7,8].

Thus, POCUS has been found to be particularly useful as its versatility and the
possibility to use it bed-side have allowed clinicians to strictly monitor compromised
patients and, at the same time, to promote infection control [9].

The overwhelming application of POCUS in the assessment of COVID-19 patients has
been reported not only for lung compromission but also to identify complications such as
cardiovascular and hemodynamic compromission, thrombotic and hemorrhagic events,
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and diaphragm movements evaluation. Many studies has been published on the triage,
diagnostic, and prognostic roles of POCUS in COVID-19 patients.

Objective

Due to the extensive body of literature and data on this subject, we decided to conduct
this narrative review on the role of POCUS in the management of COVID-19 patients.

2. Materials and Methods

A comprehensive search was conducted across the PubMed/Medline, Scopus, Cochrane,
and Google Scholar databases. The search incorporated the following search terms, utilizing
Medical Subject Headings (MeSH) terms in adherence to the National Center for Biotechnology
Information (NCBI) nomenclature and guidelines: “Lung AND ultrasound OR Point of Care
Ultrasound AND COVID-19 OR SARS-CoV2”.

Inclusion criteria encompassed retrospective studies, case reports, and case series
published in either English or Italian, with no temporal constraints, exclusively focusing
on patients in Emergency Departments (ED) or Intensive Care Units (ICU). Publications
concerning patients who had undergone surgery or had been admitted to geriatric wards
were systematically excluded.

Two of the authors independently reviewed the literature. Articles were initially screened
based on their titles and abstracts, employing the Rayyan platform for Systematic Review
(https://www.rayyan.ai/, accessed on 22 January 2024). Subsequently, the full text of relevant
research was acquired and rigorously assessed. Additionally, the references of the selected arti-
cles were scrutinized to ensure comprehensive inclusion of relevant research. Any instances of
disagreement were resolved through discussion until a consensus was achieved. The assess-
ment of potential bias and the evaluation of study quality were conducted independently
by two researchers employing distinct assessment tools tailored to the specific study design
presented in the paper at hand. Any disagreements were solved by consensus.

A total of 1407 papers were initially selected, of which 1334 were excluded for not meeting
the inclusion criteria. Subsequently, a state-of-the-art review was conducted to address more
current matters in contrast to other combined retrospective and current approaches. This may
offer new perspectives on issues or point out areas for further research.

3. Discussion
3.1. LUS and COVID-19

The increasing knowledge around and utilization of lung ultrasound (LUS) was
extensively applied during the COVID-19 pandemic, allowing a global assessment of the
disease in many areas:

- Triage (pneumonia/non-pneumonia) of symptomatic patients in hospital as well as in
the prehospital setting.

- Diagnostic suspicion and awareness in the emergency department setting.
- Prognostic stratification and monitoring
- Treatment of intensive care unit patients with regard to ventilation and weaning.
- Monitoring the effect of therapeutic measures (antiviral or others).
- Reducing the number of health care professionals exposed during patient stratification [10].

LUS seems to be an ideal tool to assess COVID-19 disease, and since the first breakout,
it has been recognized to be a useful, quick, flexible, bedside, non-radiating, and repeatable
tool [11].

At the beginning of the pandemic, when the swab-PCR was the only way to make a
COVID-19 diagnosis, ultrasound represented a triage instrument for patients admitted to
the emergency department with shortness of breath and suspected COVID-19 infection [12],
making their management easier and reducing time of care [13].

Studies conducted early during the pandemic have documented the presence of
alterations of the echographic patterns and their correlation to the severity and prognosis
of COVID-19 disease [14]; as much as in a specular point of view, it was employed to
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rule out infected patients without pulmonary lesions [15]. Many case reports described
the possibility of making a quick evaluation and diagnosis by ultrasound for patient with
respiratory failure due to COVID-19 infection [16,17].

LUS Patterns in COVID-19

LUS images reflect the “state of the aeration” of the lungs: the more the alveoli and
interstitium are overwhelmed by exudate due to the inflammatory cascade, the more the
ultrasound waves can reveal fluid and consolidative areas.

In a well-aerated lung without inflammatory/infective processes, pulmonary parenchyma
is not “accessible” to ultrasound waves. Only the interface between visceral and parietal pleura
is visualized and its movements are the so called “sliding sign”. The interaction between
ultrasound waves and piezoelectric crystals of the probe generates artifactual reverberation of
the pleural line, the so-called A line [18].

When pulmonary interstitium is imbibed with fluids and inflammatory products due
to COVID-19 disease progression, B lines starts to appear as vertical bright lines from the
pleural line down to the bottom of the screen [19]. The more B lines are present, the more
the lung is compromised, until they are not distinguishable (the so-called white lung).
Thus, a B1 pattern and a B2 pattern are described as characterized by the presence of
“non-coalescent” or “coalescent” B lines, respectively. The pleural line appears irregular,
fragmented, and thickened [20].

Another COVID-19-related finding are subpleural consolidations due to the presence
of exudate in the alveolar spaces where air is no longer present. Thus, LUS can appreciate
iso-hypoechoic subpleural areas that can be surrounded by B-lines: this is the so-called
C-pattern (Figure 1) [21,22].

J. Clin. Med. 2024, 13, x FOR PEER REVIEW  3  of  14 
 

 

At the beginning of the pandemic, when the swab-PCR was the only way to make a 

COVID-19 diagnosis, ultrasound represented a triage instrument for patients admitted to 

the emergency department with shortness of breath and suspected COVID-19 infection 

[12], making their management easier and reducing time of care [13].   

Studies  conducted  early  during  the  pandemic  have  documented  the  presence  of 

alterations of the echographic patterns and their correlation to the severity and prognosis 

of COVID-19 disease [14]; as much as in a specular point of view, it was employed to rule 

out  infected patients without pulmonary  lesions  [15]. Many case reports described  the 

possibility of making a quick evaluation and diagnosis by ultrasound  for patient with 

respiratory failure due to COVID-19 infection [16,17].   

LUS Patterns in COVID-19 

LUS images reflect the “state of the aeration” of the lungs: the more the alveoli and 

interstitium are overwhelmed by exudate due to the inflammatory cascade, the more the 

ultrasound waves can reveal fluid and consolidative areas.   

In  a  well-aerated  lung  without  inflammatory/infective  processes,  pulmonary 

parenchyma is not “accessible” to ultrasound waves. Only the interface between visceral 

and parietal pleura is visualized and its movements are the so called “sliding sign”. The 

interaction between ultrasound waves and piezoelectric crystals of  the probe generates 

artifactual reverberation of the pleural line, the so-called A line [18].   

When pulmonary interstitium is imbibed with fluids and inflammatory products due 

to COVID-19 disease progression, B lines starts to appear as vertical bright lines from the 

pleural line down to the bottom of the screen [19]. The more B lines are present, the more 

the  lung  is compromised, until  they are not distinguishable  (the so-called white  lung). 

Thus, a B1 pattern and a B2 pattern are described as characterized by the presence of “non-

coalescent”  or  “coalescent”  B  lines,  respectively.  The  pleural  line  appears  irregular, 

fragmented, and thickened [20]. 

Another COVID-19-related finding are subpleural consolidations due to the presence 

of exudate in the alveolar spaces where air is no longer present. Thus, LUS can appreciate 

iso-hypoechoic subpleural areas that can be surrounded by B-lines: this is the so-called C-

pattern (Figure 1) [21,22].   

 

Figure 1. LUS patterns in COVID-19 infection: Intercostal lung scan showing the following: (A): pattern
A = A lines are present, no B lines or consolidation; (B): pattern B1 = B lines are present and coalescent
on the left half of the image so <50%; (C): pattern B2 = B lines are present >50% of the image; (D): pattern
C = a subpleural consolidation is present surrounded by B-lines.

The most frequent LUS pathological findings in patients affected by COVID-19 pneu-
monia were B lines and consolidations (pattern C), respectively found in 96.9% and
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83.3% [23]. In a small prospective study conducted on a group of 30 patients, B2 (multiple
coalescent B-lines) and C patterns (in this study, thickening and irregularity of the pleural
line and subpleural consolidations) were correlated with pathologic findings at the CT scan
with a PPV of 87.1%. Those who died underwent histological sampling to evaluate alveolar
damage. This revealed the presence of diffused alveolar damage and lung fibrosis, which
correlated with the C pattern, while jaline membranes, organized pneumonia, and fibrosis
correlated with pattern B2. This kind of histological damage did not show a correlation to
patterns A (A lines or isolated B lines) or B1 (multiple well-defined B-lines) [24].

In another prospective observational study, LUS collected in 28 COVID-19 patients
with acute respiratory failure at ICU admission and discharge was characterized by pre-
dominantly lateral and posterior non-translobar C pattern (58.9%) and B2 pattern (19.3%).
Furthermore, they observed that LUS’s role in follow-up of lung lesions due to COVID-19
is not so reliable in the short term, as in this study, little difference was observed in LUS
score calculation at the initial evaluation and discharge time, independently from the
outcome [25].

In two prospective observational studies, the prevalence of LUS findings in
COVID-19-affected patients was studied. In the first, thickening of the pleural line (>6 lung
areas) were found in 49/62, confluent B lines (B2) in 38/62, separated B lines (B1) in 34/62,
and consolidations (C) in 19/62 [26]. In the second, only patterns B2 and C were reported,
which were found in 19.3% and 58.9% of cases, respectively [25].

In summary, lung POCUS is a low-cost and radiation-free method that is more feasible
than CT scan, especially useful in ICUs as it does not require patients’ transport to radiology
facilities and the bedside approach allows closed monitoring and appears safer in terms of
infection control [27].

In patients suspected for COVID-19, lung POCUS patterns of probability combined
with a medical history allowed practitioners to rule in or rule out COVID-19 pneumonia
at bedside with high accuracy. In the early and mild infection stage, focal B lines are the
main pattern(B1); in the progressive stage and critically ill patients, thickened pleural line,
multiple or fused B-lines, and subpleural non-homogeneous consolidations are the main
features (pattern B1/B2); in an advanced stage, the main features are multiple continu-
ous large-scale hypoechoic consolidations with hepatization signs, diffused B-lines, and
extensive air bronchogram signs (pattern B2/C) [28].

LUS’s limitations in COVID-19 are the same as in other lung diseases: lesions must
be extended to the pleural surface to be detected, and consolidation has to be within an
intercostal window. In the post-epidemic era, it is difficult to distinguish COVID-19 from
other causes of pneumonia [27,29].

3.2. Diagnostic Accuracy: Comparison with Radiological Images

Many efforts were made during the first breakout, mainly in the emergency and inten-
sive care unit settings, to establish a meaningful comparison between LUS and radiological
images [30].

In this study proposed by Mongodi et al., a US self-imposed-based approach was
implemented in a ICU to minimize transport for CT scan and reduce bedside CXR, compar-
ing a year of COVID-19 management (2020) versus pre-COVID-19 (2019). They found a
significant reduction in the employment of both chest CT and CXR without worsening the
level of care [31]. Furthermore, in another cohort study, it was observed that monitoring of
lung involvement was possible only with US instead of CT scan [32]. Conversely, different
results were found in another prospective follow-up study: a lower rate of abnormalities
were detected by LUS with respect to CT [26]. Furthermore, in a prospective observational
study, only 67% of subjects did not present US abnormalities after 3 months from COVID-19
infection, even if the PaO2/FiO2 ratio returned to normal values (>400 mmHg), concluding
that even if, during follow-up, LUS kept detecting lung abnormalities, it did not correlate
with clinical state. [33]. These long-standing abnormalities were especially observed in
cases affected by ARDS [34].



J. Clin. Med. 2024, 13, 2756 5 of 14

A retrospective cohort study conducted on 174 patients about diagnostic reliability
comparing lung US with RT-PCR swab results found a sensitivity of 86%, a specificity
of 71.6%, NPV of 81.7%, and PPV of 77.7%, whereas when considering only 12 complete
scans, these values rose to 90.9%, 75.6%, 87.2%, and 82%, respectively. Less accurate results
were found in patients with history of interstitial lung disease, severe emphysema, and
chronic heart failure [35]. In another similar study on LUS diagnostic reliability, the authors
observed a sensitivity of 96.9% and specificity of 91.7%, confirming previous results [36].

To remark such data, Walsh et al. found, in a retrospective study performed in
symptomatic COVID-19 patients, that LUS, compared to chest CT, showed a sensitivity of
100% (95% CI 74–100), a specificity of 88% (95% CI 47–100), a positive LR of 5.8 (95% CI
1.3–25), and a negative LR of 0.05 (95% CI 0.03–0.71) in detecting lung abnormalities [37].
However, they excluded patients with chronic lung and heart diseases.

Another aspect of interest was COVID-19-induced ARDS severity evaluation. In a cohort
study, a correlation was observed between the severity of ARDS and the detection of more than
three B lines in the antero-superior and postero-lateral thoracic sites: it showed a sensitivity of
97% (83–100%), a specificity of 62% (50–74%), a positive predictive value of 54% (41–98%),
and a negative predictive value of 98% (88–99%), with an AUC of 0.82(0.75–0.90) [38].

3.3. Prognostic Stratification and Monitoring

Another interesting aspect about POCUS is the evaluation of damage and clinical state
evolution. There are some prospective studies about it. One of these studies simply docu-
mented that damaged lung areas reduced from the admission to the discharge time [39],
although another similar study observed only a minimal variation that did not correlate
with the outcome [25]. In another prospective observational study, echographic monitor-
ing predicted the outcome. Changes in US correlated with oxygen level (Pearson = 0.591,
p 0.033), PaO2/FiO2 ratio (Pearson = 0.167, p 0.008), PEEP (Pearson = 0.495, p 0.043), and
lung compliance (Pearson = −0.572, p 0.016) [40]. In a similar way, other prospective
studies observed a negative correlation between LUS score and PaO2/FiO2 ratio [33,41].
There are similar retrospective studies that observed LUS’s utility in monitoring patients
with PaO2/FiO2 ratio <200 mmHg. Patients with a major LUS score value correlated with
a worse outcome [42], or in a specular way, worse PaO2/FiO2 ratio correlated with worse
LUS findings [43]. This kind of correlation was also observed for intubated patients [44].
So, LUS has also been used to evaluate responses to therapeutic acts such as non-invasive
ventilation [45]; in a prospective observational study, it was observed that LUS score >12
was predictive of NIV failure [46] and it was also employed for prone positioning trial
response [46,47].

Intensity of cure has been studied as a prognostic element in both prospective and
retrospective studies. Worse LUS findings and higher values of LUS score correlated with
worse outcome, death, and need for ICU treatment [31,43,48–52]. An alternative score,
named PLIS, was ideated to support the decisional process, as it was correlated to SOFA
score and ICU admission [53].

In a prospective longitudinal study conducted by Alharthy et al. on 100 COVID-19
patients admitted to their ICU, they found, at five to six weeks follow-up, that mortal-
ity was significantly correlated with lung alterations detected with POCUS at hospital
admission [39].

3.4. POCUS and COVID-19-Related Issues Hemodynamic, Thrombotic and Hemorrhagic Assessment

Beyond lung damage identification, POCUS was employed for differential diagnosis,
hemodynamics impairments, and thrombotic and hemorrhagic COVID-19-related complica-
tions. Extensive evidence has been produced, mainly on the utilization of POCUS to assess
heart function and to investigate the presence of deep venous thrombosis. Furthermore,
other applications were experienced and reported.
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3.4.1. Cardiovascular and Hemodynamic Assessment

The most frequent cardiac abnormality found in COVD patients was right ventricular
(RV) dysfunction related to increased pulmonary circulation resistance as a result of small
vessels thrombosis and hypoxemia. The reflection on the heart is increased pulmonary arte-
rial pressure, RV afterload, RV dilatation, and dysfunction [54]. In addition, the detection
of RV enables the assessment of RV-pulmonary arterial coupling and the evaluation of RV
adaptability to pressure loading, which can guide clinical treatment [55].

Moreover, ventilatory therapy (both non-invasive and invasive) affects RV dimension
and function by influencing heart–lung interactions increasing intra-thoracic pressure.

Specific findings to be measured are as follows:
RV dimensions: dilatation is defined by a diameter > 41 mm at the base and > 35 mm

at the mid-level.
RV wall thickness: RV hypertrophy is identified by thickness more than 5 mm.
Systolic pulmonary arterial pressure: RV right atrial pressure gradient can be estimated

in the presence of tricuspid regurgitation by measuring the peak regurgitant jet velocity; it
is important during ventilation, as afterload is augmented by positive pressure applied, to
monitor pulmonary arterial pressure by means of echocardiography to detect right ventricle
dilatation and/dysfunction early.

Inferior vena cava (IVC) diameter and collapse: diameter > 2.1 cm that collapses < 50%
with a sniff suggests a high RA pressure of 15 mm Hg.

Tricuspid lateral annular motion (TAPSE): good correlation with RV fractional
left ventricular (LV) ejection fraction.
ACP is defined as the association of RV dilatation with a paradoxical septal motion at

end-systole [21,56,57].
In a retrospective observational study by Doi et al., the authors found that patients

with echographic signs of RV involvement (specifically the McConnell’s sign), left ventric-
ular wall motion abnormalities, and higher D-dimer level were associated with a worse
outcome [58].

Moreover, LV contractility assessment allowed researchers to identify cases compli-
cated by myocarditis and myocardial infarction by looking at the LV kinetic and ejection
fraction [28,59].

The combination of LUS and echocardiography has had a great impact on treat-
ment decisions [54,59]. There are many case reports that report cardiac involvement in
COVID-19-affected patients [60].

3.4.2. Thrombotic and Hemorrhagic Assessment

Many case reports papers have described a wide employment of POCUS for throm-
botic pathology identification. Also, hemorrhagic complications have been described as
the identification of subarachnoid hemorrhage using trans-cranial color-coded duplex
sonography added to usual POCUS [61].

POCUS is a reliable tool to detect thrombotic events, a common complication in
COVID-19 syndrome, especially in the first breakout. Even if screening of deep venous
thrombosis (DVT) was not routinely recommended, during COVID-19 infection, D-dimer
conventional values were a less reliable marker to assess thromboembolism as higher
values were found irrespective of its presence [62]. Thus, an extensive use of POCUS
was implemented, especially in those with sever hemodynamic worsening [63]. A case
report reported how the BLUE protocol was integrated with a focused echocardiography
to permit a stronger diagnosis in suspected pulmonary embolism in a case of COVID-19
with a normal lung ultrasound [64]. In a multicentric prospective study by Pieralli et al.,
they screened for DVT with POCUS in non-ICU settings in 227 patients with COVID-19
infection. They found an overall incidence of 13.7%, older patients, and those with higher
D-dimer peak (>2000 ng/mL) were more affected [65].

Another application of POCUS was diaphragm ultrasound (DUS) evaluation in
COVID-19 patients with respiratory distress. DUS enables practitioners to obtain informa-
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tion regarding breathing mechanics, lung compliance, and diaphragm dysfunction [13].
Diaphragm thickening fraction (DTF), a measurement of the difference in end-inspiratory
and end-expiratory diaphragmatic thickness, expressed as a percentage and diaphragm
excursion (DE), the diaphragmatic altitude difference between expiration and inspiration,
can be assessed with ultrasound. DTF was used to assess COVID-19 patients with severe
respiratory failure on non-invasive ventilation support; if altered, it showed a correla-
tion with the need of invasive mechanical ventilation [66]. Furthermore, DTF was used
during weaning from mechanical ventilation in COVID-19 patients and was significantly
correlated with pH, PaO2/FiO2 ratio, and hospital and ICU length of stay [67]. Moreover,
diaphragmatic US disfunction was found in 13/132 patients affected by severe COVID-19
pneumonia at 6 months follow-up [68].

Finally, a peculiar utilization of POCUS has been reported: in a case report, it was used
to detect and monitor complications as thrombotic events and subarachnoid hemorrhage
in COVID-19 patients, adding transcranial color-coded duplex sonography to standard US
after CT scan diagnosis [62].

3.5. Scores and Protocols Proposed on LUS and POCUS

The LUS score was proposed in an attempt to standardize lung US examination and
interpretation. The LUS score is based on a semiquantitative score representing the lung
aeration loss caused by the progression of the pathological lung parenchymal involvement.
It is calculated by the sum of points from 0–3 given to 12 regions of LUS (upper and lower
region of anterior, later and posterior lung regions). With the probe positioned in the
intercostal space allowing full pleural visualization, points are given as follows:

0 points—presence of lung sliding with A lines or one or two isolated B lines;
1 point—moderate loss of lung aeration with three or four B lines involving <50% of

each ultrasound image (septal rockets);
2 points—severe loss of lung aeration with five or more B lines involving >50% of each

ultrasound image (glass rockets);
3 points—presence of a hypoechoic poorly defined tissue characterized by complete

loss of lung aeration (consolidation) [69].
In a cohort study, the correlation between LUS score values and parenchymal damage

extension detectable on the CT scan was measured. A LUS score mean of 15 ± 6.7 correlated
with <50% involvement at CT scan, and a LUS score mean of 21 ± 6 with >50%, p < 0.001 [30].
Furthermore, LUS score was tested during patient monitoring, and correlation between CT
scan and LUS score was maintained [70].

In an observational pilot study by Baciarello et al., LUS score correlation with the stage
of respiratory failure in terms of PaO2/FiO2 ratio and mortality were evaluated: a cut-off
of >11 showed an AUC of 0.83 with a PPV of 98% for ARF and a significant correlation
with in-hospital mortality [42]. Similar results were found in a cross-sectional study in
which LUS score showed a correlation with PaO2/FiO2 ratio of −0.52 (p < 0.001) at the
multivariate analysis [71].

LUS score has been used as a value to monitor ARDS evolution and the effects of
mechanical ventilation on lung aeration. Data regarding diagnostic performance of LUS
score demonstrated high accuracy (93.3%), sensitivity (100.0%), and specificity (92.9%) for
severe lung lesions, confirming its usefulness in the diagnosis and monitoring of critical
COVID-19 patients [72].

In another retrospective study, a severity score was calculated based on LUS findings
that showed good discriminatory performance to predict all-cause inpatient mortality,
death or critical care admission, and escalated oxygen requirements [48].

Thus, we can conclude that LUS score is a useful tool for clinicians to assess prognosis
and to monitor lung parenchymal impairment in a standardized way.

Manivel et al. proposed the CLUE protocol which combines LUS score and the amount
of oxygen requirement at the time of examination to help physicians in making disposition
decisions. Patients were classified as mild, moderate, and severe risk based on LUS scores
of 1–5, 6–15, and >15, respectively, plus the need for oxygen supply to obtain an adequate
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saturation levels. They advised admitting patients to a standard ward if at moderate risk
plus oxygen supply or severe risk without oxygen supply and to ICU if at severe risk plus
oxygen supply [73]. In a prospective study based on the implementation of CLUE protocol,
based on regression analysis, a LUS score higher than 10 was found as an independent risk
factor for intensive care requirement, a score lower than 3 for discharge, and a score over
11 for mortality [74].

Orosz et al. applied the so-called BLUE-LUSS protocol to mechanically ventilated
critically ill patients. It consists of the sum of LUS score for four scans for each hemithorax
(a superior point below the middle-clavicular point, a diaphragm point at the lung–liver
or lung–spleen junction at mid-axillary line, an M point is at the midpoint between these
two points and a posterolateral point at the intersection of posterior axillary line and the
vertical line from M point). They found a significant correlation between LUS score and
PaO2/FiO2 ratio but not with the inflammatory biomarkers [75]. Xue et al. evaluated the
interobserver variability and correlation of disease severity of M-BLUE protocol in ICU
patients. They found a good agreement between ICU practitioners and radiologists with
an ICC of 0.61 and 0.60 [76].

In a prospective observational study, Torre-Macho et al. analyzed the prediction
accuracy of serial LUS examinations. Their protocol was based on 10 scanned zones:
each intercostal space of the upper and lower parts of the anterior, lateral, and posterior
regions of the left and right chest wall were examined (four anterior and six posterior
scans). For each of the 10 zones, a score from 0 to 5 was given depending on sonographic
findings: A pattern (0 points), isolated B-lines defined as less than three in a 3 s clip
(1 point), more than three B lines during a 3 s clip (2 points), coalescent B-lines (3 points),
small (<1 cm) subpleural consolidations (4 points), and consolidations >1 cm (5 points).
The total score was calculated by summing the scores of all 10 zones (range of possible
scores: 0–50). The score was calculated at 0–48 h and 72–96 h from hospital admission
in a total of 469 patients, with death or the need for invasive mechanical ventilation as
primary endpoints. They found an AUC of 0.72 (0.58–0.85) at the second examination but
an higher discrimination power for the differential score between the second and the first
examination, with an AUC of 0.78 (0.66–0.90) for the primary endpoints [77].

Even if many scores and protocols have been proposed, the interpretation and stan-
dardization of the ultrasound lung images with the LUS score seems the most reliable and
simple way to assess lung involvement in COVID-19 patients.

4. COVUS and ORACLE Protocol

During the outbreak, many structured protocols were reported to standardize and to
optimize time of examination and complications detection of COVID-19-affected patients.
ORACLE and COVUS are two proposed protocols aimed to detect cardio-thoracic compli-
cations using a single sector probe. These protocols are slightly different in execution and
results, as they have been ideated and are applied to establish the diagnosis of multiple
associated pathologies that could influence the medical management.

As reported in the respective flow charts, both protocols are designed for a cardiac-
first approach, to detect life threatening conditions, and LUS integration, to identify lung
complications like pleural effusion and pneumothorax (Figures 2 and 3).

ORACLE can be executed in 20 min and consists of six parts (as reported in the
flow chart Figure 3) that, respectively analyze left ventricle function, right ventricle func-
tion, valvular disease, pericardium, lung ultrasound (executed on six segments in each
hemithorax), and hemodynamic parameters.

COVUS divides cardiac and lung examinations. For lung examination, the lawnmower
technique is suggested (instead of 12 segments examination).

In a cross-sectional study, ORACLE protocol was applied. It permitted the authors to
characterize the lung–cardiac involvement and hemodynamic status of critically ill patients,
helping in the decision-making about management and treatment [78,79].
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5. Limitations

POCUS application in clinical practice and its effectiveness in reducing unfavorable
outcomes are affected by some limitations from many different points of views.

Availability and settings: There is a lack of ultrasound machines in specific settings
like pre-hospital or in limited-resource countries; furthermore, updated software and
probes are needed to obtain more reliable images. Moreover, in case of intensive use from
patient to patient and a lack of disinfection and cleanliness, the probes could be a vector of
infection [80].

Technical impairment: “Air” in itself is a limitation to ultrasonic waves’ propagation,
and their interaction with body tissue and fluids generates artifacts that have to be rec-
ognized and correctly interpreted. Furthermore, the correct use of the different probes
and the many settings allowed by the new ultrasound machine is mandatory to properly
set up adequate images. Finally, the lack of standardization with specific protocols for
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upper and lower airway POCUS execution may limit replication and increase interobserver
variability [81].

Competences: Education in POCUS techniques and an adequate level of experience
are cardinal points to obtain a reliable POCUS assessment. Continued US utilization in daily
clinical practice, comparison with other gold standard imaging exams, and support of senior
team members are needed to avoid clinical errors and to improve personal skills. Specific
ultrasound training program should be implemented in trainee core curriculum [82].

Scientific level evidence: Most of the published data about POCUS clinical utiliza-
tion and effectiveness are based on observational study. However, it is difficult to plan
studies with a strong level of evidence such as TRIAL or prospective multicentric and inter-
ventional study due to organizational and methodological impairment such as different
ultrasound machines in different settings, interobserver variability, availability of ultraso-
nologist with the same level of competences, and contradictory outcomes identification
and measurements.

Even in light of such considerations, POCUS is undoubtedly a useful clinical tool;
further and stronger evidence is needed to fully support its utilization.

6. Conclusions

LUS and other POCUS applications in COVID-19 had a great impact on clinical
management in terms of lung involvement and monitoring, identification of thrombotic and
hemorrhagic complications, prognostic assessment, and infection control safety. Among
clinicians, POCUS spread during the COVID-19 outbreak, and its utilization has grown
in daily life, even after the infective emergency. Nowadays, POCUS can be considered
a precious tool in the management of critically ill patients. Perspectives should focus on
implementing LUS and POCUS utilization in daily practice and the possibility to create
clinical both therapeutic and organizational pathways. This may allow researchers to plan
prospective study such as trials with and without LUS utilization in the management of
COVID-19 patients, looking at the real impact on clinical outcomes.
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74. Acar, H.; Yamanoğlu, A.; Arıkan, C.; Bilgin, S.; Akyol, P.Y.; Kayalı, A.; Karakaya, Z. Effectiveness of the CLUE protocol in
COVID-19 triage. Cukurova Med. J. 2022, 47, 722–728. [CrossRef]

https://doi.org/10.1186/s13089-021-00223-9
https://www.ncbi.nlm.nih.gov/pubmed/33835273
https://doi.org/10.1371/journal.pone.0267506
https://www.ncbi.nlm.nih.gov/pubmed/35544450
https://doi.org/10.3389/fcvm.2021.663864
https://doi.org/10.1007/s10741-021-10108-7
https://www.ncbi.nlm.nih.gov/pubmed/33864580
https://doi.org/10.1007/s11739-020-02494-x
https://www.ncbi.nlm.nih.gov/pubmed/32936380
https://doi.org/10.1111/echo.14779
https://doi.org/10.1007/s12574-020-00507-4
https://doi.org/10.1007/s00508-021-01968-y
https://www.ncbi.nlm.nih.gov/pubmed/34714384
https://doi.org/10.3390/jcdd8100133
https://www.ncbi.nlm.nih.gov/pubmed/34677202
https://doi.org/10.1213/XAA.0000000000001357
https://www.ncbi.nlm.nih.gov/pubmed/33278088
https://doi.org/10.1177/10760296211017668
https://www.ncbi.nlm.nih.gov/pubmed/34011194
https://doi.org/10.4329/wjr.v13.i3.64
https://www.ncbi.nlm.nih.gov/pubmed/33815684
https://doi.org/10.1002/ccr3.4075
https://www.ncbi.nlm.nih.gov/pubmed/34084496
https://doi.org/10.1371/journal.pone.0251966
https://www.ncbi.nlm.nih.gov/pubmed/34015018
https://doi.org/10.1002/jcu.23074
https://www.ncbi.nlm.nih.gov/pubmed/34634153
https://doi.org/10.1186/s12931-022-02138-y
https://www.ncbi.nlm.nih.gov/pubmed/35989352
https://doi.org/10.3389/fmed.2022.949281
https://www.ncbi.nlm.nih.gov/pubmed/36091672
https://doi.org/10.1186/s13613-020-00799-w
https://www.ncbi.nlm.nih.gov/pubmed/33427998
https://doi.org/10.1016/j.rmed.2021.106384
https://www.ncbi.nlm.nih.gov/pubmed/33839587
https://doi.org/10.1016/j.ultrasmedbio.2021.04.023
https://www.ncbi.nlm.nih.gov/pubmed/34088529
https://doi.org/10.1097/MCC.0000000000000906
https://www.ncbi.nlm.nih.gov/pubmed/34864792
https://doi.org/10.1111/1742-6723.13546
https://doi.org/10.17826/cumj.1086062


J. Clin. Med. 2024, 13, 2756 14 of 14

75. Orosz, G.; Gyombolai, P.; Tóth, J.T.; Szabó, M. Reliability and clinical correlations of semi-quantitative lung ultrasound on BLUE
points in COVID-19 mechanically ventilated patients: The ‘BLUE-LUSS’—A feasibility clinical study. PLoS ONE 2022, 17, e0276213.
[CrossRef] [PubMed]

76. Xue, H.; Li, C.; Cui, L.; Tian, C.; Li, S.; Wang, Z.; Liu, C.; Ge, Q. M-BLUE protocol for coronavirus disease-19 (COVID-19) patients:
Interobserver variability and correlation with disease severity. Clin. Radiol. 2021, 76, 379–383. [CrossRef] [PubMed]

77. Torres-Macho, J.; Sánchez-Fernández, M.; Arnanz-González, I.; Tung-Chen, Y.; Franco-Moreno, A.I.; Duffort-Falcó, M.; Beltrán-
Romero, L.; Rodríguez-Suaréz, S.; Bernabeu-Wittel, M.; Urbano, E.; et al. Prediction accuracy of serial lung ultrasound in
COVID-19 hospitalized patients (Pred-Echovid Study). J. Clin. Med. 2021, 10, 4818. [CrossRef]

78. García-Cruz, E.; Manzur-Sandoval, D.; Rascón-Sabido, R.; Gopar-Nieto, R.; Barajas-Campos, R.L.; Jordán-Ríos, A.; Sierra-Lara
Martínez, D.; Jiménez-Rodríguez, G.M.; Murillo-Ochoa, A.L.; Díaz-Méndez, A.; et al. Critical care ultrasonography during
COVID-19 pandemic: The ORACLE protocol. Echocardiography 2020, 37, 1353–1361. [CrossRef] [PubMed]

79. Coneybeare, D.; Das, D.; Lema, P.; Chang, B.; Ng, L. COVUS: An Algorithm to Maximize the Use of Point-of-Care Ultrasound in
the Emergency Management of COVID-19. J. Emerg. Med. 2021, 61, 61–66. [CrossRef] [PubMed]

80. Westerway, S.C.; Basseal, J.M.; Brockway, A.; Hyett, J.A.; Carter, D.A. Potential infection control risks associated with ultrasound
equipment—A bacterial perspective. Ultrasound Med. Biol. 2017, 43, 421–426. [CrossRef] [PubMed]

81. Moore, C.L.; Wang, J.; Battisti, A.J.; Chen, A.; Fincke, J.; Wang, A.; Wagner, M.; Raju, B.; Baloescu, C. Interobserver Agreement
and Correlation of an Automated Algorithm for B-Line Identification and Quantification with Expert Sonologist Review in a
Handheld Ultrasound Device. J. Ultrasound Med. 2022, 41, 2487–2495. [CrossRef]

82. Kumar, A.; Kugler, J.; Jensen, T. Evaluation of trainee competency with point-of-care ultrasonography (POCUS): A conceptual
framework and review of existing assessments. J. Gen. Intern. Med. 2019, 34, 1025–1031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0276213
https://www.ncbi.nlm.nih.gov/pubmed/36240250
https://doi.org/10.1016/j.crad.2021.02.003
https://www.ncbi.nlm.nih.gov/pubmed/33663912
https://doi.org/10.3390/jcm10214818
https://doi.org/10.1111/echo.14837
https://www.ncbi.nlm.nih.gov/pubmed/32862474
https://doi.org/10.1016/j.jemermed.2021.02.008
https://www.ncbi.nlm.nih.gov/pubmed/33785247
https://doi.org/10.1016/j.ultrasmedbio.2016.09.004
https://www.ncbi.nlm.nih.gov/pubmed/28341192
https://doi.org/10.1002/jum.15935
https://doi.org/10.1007/s11606-019-04945-4

	Introduction 
	Materials and Methods 
	Discussion 
	LUS and COVID-19 
	Diagnostic Accuracy: Comparison with Radiological Images 
	Prognostic Stratification and Monitoring 
	POCUS and COVID-19-Related Issues Hemodynamic, Thrombotic and Hemorrhagic Assessment 
	Cardiovascular and Hemodynamic Assessment 
	Thrombotic and Hemorrhagic Assessment 

	Scores and Protocols Proposed on LUS and POCUS 

	COVUS and ORACLE Protocol 
	Limitations 
	Conclusions 
	References

