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Abstract: Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling
detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential,
cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality
due to incomplete data collection angles. Recently, supervised deep learning methods leveraging
convolutional neural networks (CNNs) have considerably addressed this issue; however, their
pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when
representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept
unsupervised learning approach using coordinate networks (CNs) that optimizes network weights
directly against input projections. This eliminates the need for pretraining, reducing reconstruction
runtime by 3–20× compared to supervised methods. Our in silico results show improved shape
completion and reduction of missing wedge artifacts, assessed through several voxel-based image
quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study
illuminates benefits and considerations of both supervised and unsupervised approaches, guiding
the development of improved reconstruction strategies.

Keywords: machine learning; artificial intelligence; coordinate networks; unsupervised learning;
missing wedge; cryogenic electron tomography (cryoET); cryogenic electron microscopy (cryoEM);
reconstruction; simulation

1. Introduction

Recent advancements in cryogenic electron microscopy (cryoEM) [1,2] have elevated
it from a specialized technique to a cornerstone of structural biology [3,4] and molecular
sciences [5]. Cryogenic electron tomography (cryoET), an extension of cryoEM, offers
detailed three-dimensional (3D) representations of macromolecules, cells, and tissues in
states close to their natural environment at nanometer-scale resolution [6]. This technique
is versatile, allowing for the examination of a wide array of macromolecular complexes
in vitro [7] and in situ [8], including amyloid filaments [9–14] and enveloped viruses
such as SARS-CoV-2 [15]. CryoET can also probe the structure of other clinically-relevant
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samples ranging from individual organelles [16,17] and cells [18,19] to complex tissue
sections [20–24]. Insights from cryoET data analysis can facilitate understanding dynamic
molecular processes such as viral infections [25–30], enable pathology diagnosis [31,32],
and reveal the impacts of potential therapeutic interventions [19], among other biomedical
applications. A critical downstream technique, subtomogram averaging (STA) [33,34],
further refines cryoET data to achieve subnanometer [35] to near-atomic [36] resolution
of repeated structures within tomograms [37,38], underscoring the importance of precise
cryoET reconstructions for accurate particle localization and structural analysis.

CryoET involves the rapid freezing of biological specimens followed by their exami-
nation with a transmission electron microscope (TEM) [39]. This process entails capturing
a series of two-dimensional (2D) projection images as the specimen is incrementally tilted,
compiling what is known as a tilt series [40]. These images are then aligned and combined
to produce a 3D reconstruction, or tomogram, typically through weighted-back projection
(WBP) methods [41], as enabled by software such as IMOD [42]. Despite cryoET’s ability to
capture intricate structural details, the technique is limited by the specimens’ susceptibility
to radiation damage [43] and the inherent mechanical constraints of TEM, which restrict the
tilt series to angles between −60◦ and +60◦. This limitation results in the “missing wedge”
phenomenon [44] depicted in Figure 1, where the lack of data at experimentally inaccessible
angles leads to artifacts that distort tomogram quality. This affects the resolution and
density accuracy of visualized features, hence complicating 3D analyses. Such distortions
are particularly problematic for structures perpendicular to the electron beam, often re-
sulting in the omission of critical top and bottom details in images of spherical, oblong,
or elongated biological features (e.g., cell membranes, organelles, vesicles, microtubules,
and virions).
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Figure 1. Left: CryoET acquires tilt series of 2D projection images of vitrified biological samples over
a limited angular range. Right: Simulations of the widely used Shepp-Logan phantom model show
that restricted projection angles result in a missing wedge in Fourier space, leading to distortions in
the reconstructed image (top row). The objective of this study is to reconstruct the uncollected data in
this region, effectively completing the wedge (bottom row).

Efforts to mitigate the missing wedge’s impact have ranged from introducing new
data collection techniques, such as dual-axis [45] and conical [46] tomography, to novel
applications of statistical and iterative data processing methods [47–49], including to-
tal variation minimization [50] and compressed sensing [51]. In the realm of super-
vised deep learning, IsoNet stands out by employing a convolutional neural network
(CNN) U-Net [52] trained on subtomograms extracted from tomograms reconstructed
via weighted-back projection (WBP), intentionally adding missing wedge artifacts to
create a paired training set. IsoNet, alongside other supervised methods [53–55], has
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shown significant success in addressing the missing wedge problem. However, these
data-driven approaches face limitations: first, they require computationally intensive
supervised pretraining; second, they rely on WBP reconstructions that already exhibit
missing wedge artifacts; and third, supervised learning techniques can be prone to
generating fictitious densities and inaccurately positioning structures within the recon-
struction [56,57]. Supervised learning applications in tomography, including those using
the U-Net architecture [52], have been documented to result in such feature hallucina-
tions and misplacements [58,59]. These problems are exacerbated when the training data
is limited; thus, in cryoET, it could lead to misinterpreting rare events [60,61] that are
scantly represented in large datasets.

As an alternative, we explore a novel unsupervised learning strategy [62–64] that
bypasses the limitations associated with supervised learning [56–59] and the reliance on
artifact-prone WBP reconstructions. Our approach starts with a randomly initialized net-
work, optimizing its weights so that the generated image agrees with the experimentally
captured projections, thus avoiding the need for pretraining on compromised WBP re-
constructions with missing-wedge-induced artifacts. We employ coordinate networks
(CNs) [65] to reconstruct this unsupervised representation of the tomogram. The CN
determines 3D voxel values in the reconstruction volume by relating them to the corre-
sponding 2D pixels in the projection images. Unlike conventional kernel-based methods
such as CNNs, CNs offer a continuous representation by mapping coordinates to their
corresponding values through a network-embedded continuous function—this allows CNs
to capture image details without being constrained by a fixed grid resolution. Given their
growing application in computationally intensive tasks in computer graphics [66,67] and
demonstrated potential in various biomedical imaging applications [68–73], CNs present
a powerful solution for accurately representing extensive cryoET volumes, addressing
the challenges of high computational costs and fixed-resolution limitations associated
with CNNs.

Our study reveals that unsupervised learning with CNs can enhance shape fidelity
and diminish the impact of the missing wedge on in silico data compared to traditional and
CNN-based methods. Furthermore, bypassing the pretraining step allows CNs to produce
reconstructions between three to over twenty times more rapidly than pretrained CNN
methods. To rigorously assess image quality, we employed various voxel-based metrics
and introduced a novel directional Fourier Shell Correlation (FSC) metric. This new metric
is tailored to specifically quantify the restoration of information within the regions affected
by the missing wedge.

While our findings highlight certain advantages of unsupervised learning for cryoET
reconstruction, they are preliminary and not intended to establish superiority over other
methods. Instead, we compare traditional WBP and Fourier inversion reconstructions
against supervised and unsupervised machine learning frameworks, shedding light on
their respective benefits and limitations within the broader context of structural biology
and molecular imaging. Through this comparison, we aim to contribute valuable insights
into the ongoing discourse of cryoET reconstruction techniques.

This manuscript is organized as follows: Section 3 describes the cryoET forward model
(Figure 2), our reconstruction algorithm (Figure 3), data, experimental setup, and evaluation
methods. Qualitative and quantitative results (Figures 3–5) in Section 2 are followed by a
discussion in Section 4. Additional results can be found in Appendix A.
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Figure 2. Unsupervised reconstruction using a coordinate network (CN) to create a 3D volume
estimate, v̂. This diagram depicts one iteration of training process, where network weights θ are
updated by constraining the estimated projections p̂ to match the given projections, p. After the
training process, v̂ closely matches the ground-truth tomogram.

Ground truth IMOD EMAN2 IsoNet Ours

x
z

z
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Figure 3. Qualitative review of the spheres (top), shapes (middle), and P22 (bottom) datasets across
all methods (columns). Images are zoom insets of projections in the xz-plane. Both IMOD and
EMAN2 suffer from back-projection artifacts. Compared to IsoNet, our method better resolves these
artifacts and produces higher shape fidelity. Both IsoNet (tile pattern) and ours (horizontal streaks)
can produce artifacts due to computational constraints, as discussed in Section 4. Figures A1–A3
contain all projection directions and a larger field of view.
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Figure 4. Image quality metrics across all datasets and models. Top: Voxel-based metrics and
algorithm runtime. Ours (CN) generally performs best except for the VIF metric, which measures
high frequencies. Due to pretraining, IsoNet is the most computationally intensive. Bottom: Fourier
shell correlation (FSC) curves for each dataset (columns) across the entire volume (top row) and
missing data region (bottom row). Ours typically performs best at lower frequencies and is surpassed
at higher frequencies. Only ours and IsoNet provide substantive information at lower frequencies.
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Figure 4. Fourier shell correlation (FSC) curves for each dataset (columns) across the entire volume
(top row) and missing data region (bottom row).

PSNR SSIM VIF

Figure 5. Voxel-based metrics (columns) with varying acquisition parameters: angular step, i.e.. num-
ber of degrees between tilts α (top row) and angular range β, corresponding to projections over the
range of [−β, β] degrees (bottom row). Default acquisition parameters are α = 2 and β = 60 degrees.

2. Results

Figure 3 shows xz-plane reprojections of small regions of the spheres and shapes
datasets as well as the full span of a P22 volume. All orthogonal reprojections are shown in
Figures A1–A3 with the xz-projection trimmed in size for display purposes. The missing
wedge artifact due to anisotropic resolution manifests as elongation streaks in the xz-
plane and blurriness along z in the yz-projections. Across methods, IMOD and EMAN2
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reconstructions exhibit these artifacts most strongly. Such artifacts are substantially reduced
by IsoNet and the least pronounced in reconstructions using our approach.

We now consider the accuracy of shape representation. For the spheres dataset, both
IMOD and EMAN2 inaccurately render ellipsoidal contours elongated along the z-axis. For
the P22 dataset, these methods fail to achieve the expected sharpness along the edges of the
particle in z. Across all datasets, IsoNet reduces these distortions considerably. Meanwhile,
our CN reconstruction preserves shape fidelity closest to ground truth, reducing distortions
more than IsoNet.

Figure 3 exhibits high-frequency reconstruction artifacts for IsoNet in the form of
tiling (spheres, shapes) and for our method in the form of high frequency streaks (spheres).
In spite of this, both IsoNet and our method preserve overall shape fidelity at low and
intermediate frequencies, which are most relevant in cryoET outside of high-resolution STA
applications. We provide a thorough discussion of these artifacts in Section 4.

To quantitatively evaluate reconstruction quality, we utilized several voxel-based
metrics (Table 1) alongside the FSC (Figure 4). Our technique outperforms others in terms
of PSNR, which assesses performance at lower frequencies, and SSIM, which evaluates
structural integrity. However, IsoNet outperforms our method in VIF, indicative of higher
frequency accuracy, in two out of the three datasets examined. This observation is consistent
with FSC analysis, which demonstrates superior performance of our method at lower
frequencies while trailing at higher frequencies. FSC curves for the missing data regions
highlight the proficiency of both our method and IsoNet in compensating for the lack of
information in the missing wedge compared to IMOD and EMAN2.

Table 1. Voxel-based metrics and algorithm runtime.

Dataset Model PSNR SSIM VIF Runtime
(Min)

Spheres

EMAN2 26.3 0.94 0.64 2.68
IMOD 27.3 0.93 0.78 0.15
IsoNet 30.2 0.96 0.93 476
Ours 31.4 0.97 0.86 168

Shapes

EMAN2 25.0 0.73 0.76 2.71
IMOD 25.8 0.69 0.74 0.15
IsoNet 27.4 0.69 0.84 473
Ours 31.5 0.94 0.85 172

P22

EMAN2 30.9 0.98 0.76 3.18
IMOD 28.7 0.92 0.70 0.17
IsoNet 34.2 0.95 0.90 503
Ours 36.1 0.99 0.88 19.6

To further test robustness of different methods, we generated alternate tilt series from
one of the P22 tomograms by varying two critical parameters: angular step (α) and angular
range (β). CryoET data collection often uses smaller tilt steps of 1–2◦ for large, continuous
specimens such as cells; however, tilt steps of 3–5◦ or larger can be used for sparse specimens
such as macromolecules in solution destined to undergo STA [33]. Similarly, data collection
ranges can be smaller than [−60◦, +60◦] for high-resolution STA, as high-tilt images may
be too noisy and damaged by cumulative radiation dose. Figure 5 shows the impact of
variations in α and β on the performance of each reconstruction method. Our findings
affirm the adaptability of our method to different acquisition parameters, underscoring the
potential utility of our approach in unique applications requiring varied or non-standard
data collection parameters.

3. Materials and Methods
3.1. Forward Model

Let v∗ ∈ Rx×y×z be the true image volume (tomogram) we wish to reconstruct given
access to projections p ∈ Rl×x×y, i.e. p = Pv∗. Here P denotes the projection operator,
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which projects electrons through the volume v∗ in a parallel beam at l different tilt angles.
This process provides p, a tilt series of l projection images, each size x × y.

3.2. Reconstruction Algorithm

We employ a CN Gθ : R3 → R with trainable parameters θ that maps an individual
3D coordinate c ∈ R3 in the reconstruction volume to a pixel value at the corresponding
locations in the 2D projection images. Evaluating this network over the entire set of
coordinates C = {cq}x×y×z produces a reconstruction volume Gθ(C) ∈ Rx×y×z.

Our goal is to find a set of parameters for the CN such that its reprojections—the
projector applied to the network output, i.e., PGθ(C)—matches the experimentally given
projections p. Hence we randomly initialize parameters θ and solve the following:

θ∗ = argminθ∥p − PGθ(C)∥+ λR(Gθ(C)), (1)

where R is a regularization term applied to the estimated image with strength λ. Because
the projection operator P is differentiable, we can use gradient-based backpropagation to
solve this equation. Figure 2 depicts this training process. The resulting network then
produces v̂, an estimate of the image volume we wish to reconstruct, i.e., v∗ ≈ v̂ = Gθ∗(C).

Our methodology distinguishes itself by employing an unsupervised approach, thereby
obviating the necessity for pretraining. Contrary to pretrained strategies that depend on
supervising with data augmentation strategies—such as using subtomograms that replicate
the effects of the missing wedge—our technique refines network parameters by directly
using the experimental projection images. This direct optimization method effectively
circumvents the common pitfalls of supervised learning, including the propensity for some
types of artifact generation and structural inaccuracies [56–59]. Indeed, our approach lever-
ages more dependable data—the experimental projection images themselves—avoiding the
artifact-laden WBP reconstructions commonly utilized as a starting point for supervised
methods. By ensuring a closer agreement between the reconstructions’ reprojections and
the original experimental projections, our method inherently reduces the likelihood of
introducing hallucinated errors or artifacts.

3.3. Data

To compare our approach with other reconstruction methods, we carried out in silico
experiments for which ground truth is known, enabling precise evaluation via quantitative,
reference-based metrics. Tomograms were created with image processing tools available in
EMAN2 [74], and their corresponding tilt series were generated by projecting through the
volumes every 2◦ across the range of −60◦ to +60◦ using EMAN2’s standard projector. See
below for descriptions of each dataset (x × y × z):

Spheres (1024 × 1024 × 256): a collection of binarized hollow spheres of constant
density and variable sizes (16 to 64 pixels in diameter). Compare to x and y, the smaller
dimension in z renders a slab-shaped volume, geometrically mimicking a distribution of
discrete objects in a thin layer of ice.

Mixed shapes (1024 × 1024 × 256): varied geometric shapes with heterogeneous struc-
tures. These binarized shapes include full spheres, ellipsoids, pyramids, cubes, rectangular
prisms, circular discs, as well as 4- and 6-pointed 3D crosses. Similar to spheres, the slab
shape of this tomogram mimics the geometry of a thin layer of ice.

P22 (360 × 360 × 360): single P22 phage particles. The P22 capsid displays icosahedral
symmetry, while the virion tail exhibits pseudo-six fold symmetry. This map, accessed via
the electron microscopy data bank (EMDB, accession number EMD-9008) [75], is sampled
at 4.5 Å/pixel. We clipped the volume to a 360 × 360 × 360 box size and threshold filtered
it to eliminate negative densities.

Ubiquitin (64 × 64 × 64): the regulatory protein ubiquitin. We created this simulation
using a map generated from an atomic model downloaded from the protein data bank
(PDB) (PDB ID: 1UBQ) [76].
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For final processing steps, each simulated tomogram (except for ubiquitin) was low-
pass filtered to either render shape surfaces smooth (spheres, shapes) or dampen high-
resolution features that would not be present in a raw cryoET tomogram without averaging
(P22, ubiquitin). Finally, each tilt series of projection images was normalized to be within
the range of [0, 1] to standardize input values provided to the network.

3.4. Experimental Setup

To find a set of weights θ∗ that minimize Equation (1), we construct a fully-connected
coordinate network architecture in PyTorch [77]. This network has four hidden layers
each with 256 features, positional encoding [66], and sinusoidal activation functions [65].
For simplicity, we employ this same architecture on all datasets and maintain a consistent
ratio of network parameters to measurements (roughly 1

8 ). This consistency is achieved by
dividing the tilt series p ∈ Rl×x×y into length-j subslices along the y-axis, i.e., psub ∈ Rl×x×j;
in image space, this corresponds to a subvolume v∗

sub ∈ Rx×j×z. Subsequently we fit a
separate set of network parameters to represent each subvolume. For example, given the
aforementioned network with 4 × 2562 = 262, 144 parameters and a tomogram of size
1024× 1024× 256, obtaining a 1

8 ratio would yield 128 networks, each fitting measurements
for a subvolume of size 1024× 8× 256. We then stitch these individual subvolumes together
along the y-axis to obtain the final reconstructed volume.

Given sufficient memory, a sparser representation, or a smaller volume, one could
reconstruct the entire volume with one single network as we demonstrate in Figure A4.
However, we find our subvolume approach has several advantages: (1) it ensures the net-
work has sufficient representational capacity for any tomogram, (2) it uses a small amount
of memory—roughly 2–4 GB on our NVIDIA Quadro RTX 8000—making this method
feasible on smaller GPUs, and (3) it enables us to leverage learned initializations [68], i.e.,
after fitting a network to one subvolume, those same parameters are used to initialize
the network for the adjacent subvolume. This learned initialization strategy improves
reconstruction quality by enhancing consistency along the y-direction and also reducing
the number of gradient step iterations required for the network to fit the subvolume. As
such, we use 2000 iterations to fit the first subvolume and 400 iterations for all adjacent sub-
volumes which leverage learned initializations. For the first subvolume, we use an initial
learning rate of 1 × 10−3 decayed logarithmically to 1 × 10−4; for all adjacent subvolumes,
we use an initial learning rate of 1 × 10−4 decayed logarithmically to 1 × 10−5. By default,
λ = 0 in Equation (1).

3.5. Baselines

We compare our algorithm to three well-established baselines previously introduced
in Section 1: (1) WBP [41] reconstructions generated via IMOD [42], (2) Fourier inversion
reconstructions generated using EMAN2 [78], and (3) reconstructions with missing wedge
restoration by IsoNet [79], a supervised deep learning approach leveraging CNNs to fill
in the missing wedge of the IMOD reconstruction provided as input. We choose IsoNet
because it is widely regarded as the leading method for missing wedge compensation,
outperforming approaches such as ICON [51] or MBIR [49]. We use default parameters for
each reconstruction method.

3.6. Image Evaluation

To provide a comprehensive evaluation of signal preservation across frequencies in
these reconstructions, we employ the Fourier shell correlation (FSC) metric, common in
structural biology, as well as voxel-based metrics from the computational imaging literature.
All metrics are reference-based, comparing the reconstructed image v̂ against a ground
truth reference image v∗. For each metric, higher values indicate superior quality.
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3.6.1. Directional Fourier Shell Correlation (FSC)

FSC measures the similarity between the Fourier coefficients of a reconstructed image
volume and those of its ground truth reference. This measurement is performed by selecting
a specific radius in Fourier space and identifying points within a half-unit distance from
the sphere’s surface corresponding to that radius. These identified points contribute to the
calculation of a normalized Pearson correlation coefficient, which is computed without
subtracting the mean. The process involves incrementally adjusting the Fourier radius from
one unit up to the Nyquist frequency, calculating the Pearson correlation at each step to
assess the correlation across different spatial frequencies.

We first apply the conventional FSC metric across the entirety of the reconstructed
volumes. Additionally, we introduce a directional FSC variant designed specifically for
assessing the missing data regions. This innovative approach aims to directly highlight the
effectiveness of a reconstruction algorithm in compensating for the missing wedge. We
characterize the “present data” region as the areas within a half-unit distance from any
plane defined by the direction of the l acquired projections, effectively defining a slab for
each tilt angle; the “missing data” regions correspond to the complement of the present
data. While alternative methods for interpolating data within this geometric framework are
possible, the FSC typically exhibits a smooth profile across these calculations. Consequently,
we anticipate similar results with varying interpolation strategies.

3.6.2. Voxel-Based Metrics

This subsection outlines three metrics widely recognized in imaging research, each
assessing distinct aspects of image quality.

Peak Signal-to-Noise Ratio (PSNR) quantifies the ratio between the maximum pos-
sible power of a signal and the power of corrupting noise that affects its representation.
Measured in decibels, PSNR is derived from the mean-squared error (MSE) between a
reconstructed image and its ground truth. The formula for PSNR is:

PSNR = 10log10
Im

∥v̂ − v∗∥2
2

,

where Im represents the maximum possible pixel value (e.g., 255 in an 8-bit grayscale image)
and the denominator corresponds to MSE. This metric is particularly suited to measuring
similarity of low-frequency image components [80].

Structural Similarity Index (SSIM) [81] measures perceived image quality by evaluat-
ing aspects like structure (texture and pattern consistency), luminance (brightness levels),
and contrast (voxel variance). SSIM values range from −1 to 1, with 1 signifying perfect
similarity, i.e., v̂ = v∗. Compared to PSNR, SSIM offers a more nuanced evaluation of
image quality, closely aligning with human visual perception [82].

Visual Information Fidelity (VIF) [83] quantifies how well the reconstructed image
captures natural scene statistics corresponding to the human visual system (HVS). It
measures mutual information (MI) between the input and outputs of both the reconstructed
and reference volumes, v and v∗. Hence the formula for VIF can be written as:

VIF =
MI(v̂, HVS(v̂))

MI(v∗, HVS(v∗))
.

Possible values of this metric can be between 0 and 1 (blurry v̂), 1 (v̂ = v∗), or
greater than 1 (v̂ provides contrast enhancement of v∗ without adding noise). This metric
best captures similarity between higher frequency components of an image. In contexts
such as magnetic resonance imaging, VIF has demonstrated alignment with radiologist
preferences [84].

4. Discussion

Our CN reconstruction method exhibits superior performance in low-frequency ranges
as depicted in Figure 4, a trait consistent with observations in unsupervised learning meth-
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ods noted for their low-frequency spectral bias [62–64,85–87]. This may be advantageous
for cryoET tasks that require shape integrity such as feature segmentation and particle
picking—which can be challenging, slow, and inconsistent in typical cryoET tomograms
due to missing-wedge-induced resolution anisotropy [88,89]. At higher frequencies, our
method performs worse than IMOD and IsoNet as deemed by the VIF metric and FSC
curves in Figure 4. This suggests that our method may not benefit high-resolution ap-
plications, such as completing the missing wedge in single-particle cryoEM analyses of
macromolecular complexes which exhibit preferred orientation; for this problem, various
experimental [90] and algorithmic [91–93] approaches have been proposed. The fact that
different methods perform better in different frequency ranges prompts considering an
ensemble approach for future advancements, potentially integrating our unsupervised
model’s strengths in lower frequencies with IsoNet’s proficiency in higher frequency details,
to provide a more uniformly high-quality reconstruction.

The varied performance across frequency ranges also underscores the critical role
of tailored evaluation metrics, such as our innovative use of directional FSC to evaluate
information in the missing data region. This specific assessment underlines the advan-
tage offered by neural network approaches like ours and IsoNet in compensating for the
missing wedge. Given that no single reconstruction method performs best across all fre-
quencies or samples, selecting varied test datasets and evaluation metrics is essential for a
comprehensive assessment of reconstruction methods.

Our direct use of projection images bypasses the initial distortion introduced by WBP
images that IsoNet uses for training. We hypothesize this promotes a higher fidelity to the
original shapes within the tomograms, as exemplified by our spherical outcomes versus
IsoNet’s ellipsoidal tendencies in Figure 3 and by our superior performance at low frequen-
cies and in structural similarity Figure 4. This also reveals a trade-off in our reconstruction
approach, as demonstrated in Figure 5. Our method’s reliance on projections means that
variations in the angular step (α) and range (β) directly alter the volume of information we
process. In contrast, IsoNet’s dependency on WBP images means that, while changes in α
and β affect the quality of its WBP input image, the amount of input data—essentially the
image size—remain unchanged. Interestingly, when we decrease α to 1◦, ostensibly increas-
ing the available information, our method’s performance unexpectedly dips. This likely
stemmed from our network’s capacity being held constant throughout these experiments,
despite processing an increasing amount of projections with decreasing tilt step; i.e., the
network capacity may have been exceeded going from 2° to 1°. This observation motivates
our decision to dynamically adjust the network size in response to the dimensions of
the tomogram and the number of projections available, as discussed in Section 3.4. This
adaptability ensures that the network’s representational capacity—essentially the ratio of
network parameters to tomogram size—remains consistent. Such consistency is beneficial
for achieving uniform quality across reconstructions of varying sizes and complexities.
Additionally, this feature facilitates a scalable runtime, proportional to the tomogram’s size.
For instance, when transitioning from the larger spheres dataset to the smaller P22 dataset,
we observed an 89% decrease in runtime (Figure 4), closely mirroring an 83% reduction in
tomogram volume. In contrast, IsoNet exhibits a relatively uniform runtime across these
datasets, highlighting a fundamental difference in our approaches.

Our method’s capacity to adjust network size allows for customized reconstruction
scale based on the hardware available: smaller subvolumes along the y-axis on more mod-
est systems, and larger subvolumes on more powerful setups. In principle, dividing the
tomogram into adjacent subvolumes to meet memory constrains of the GPU also allows
for parallelization to derive future speed gains. However, this advantage does not come
without challenges. Specifically, it can lead to the emergence of streaking artifacts along the
y-axis, a phenomenon observable in the spheres reconstruction depicted in Figure 3. The
occurrence of such artifacts, however, is not inherent in our CN methodology, as demon-
strated by our experiment using the small regulatory protein ubiquitin in Figure A4, which
shows these artifacts vanish when a single network is employed to reconstruct the entire
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volume. Yet, this single-network approach is not currently feasible for larger datasets like
our spheres and geometric shapes simulations due to memory constraints on our hardware
(NVIDIA Quadro RTX 8000). Future hardware developments or parallelization could allevi-
ate this issue. Separately, future algorithmic improvements could more efficiently represent
large volumes, using strategies such as Gaussian splatting [94] or Gaussian mixture models,
as demonstrated for SPA cryoEM [95,96].

IsoNet also grapples with computational limitations inherent to 3D CNNs, resulting
in tiling artifacts in reconstructions (Figure 3). These artifacts stem from the necessity of
dividing the training set into manageable 3D subtomograms, each measuring 64 × 64 × 64
voxels by default. This methodological constraint underscores a shared challenge in cryoET
reconstruction: balancing computational feasibility with the aim of computing artifact-free,
high-fidelity reconstructions.

While our in silico results are promising, real-world application remains under devel-
opment, presenting a frontier for future research. Real datasets introduce complexities such
as noise and CTF, necessitating advanced unsupervised learning techniques for effective
noise management and image enhancement [97,98]. Indeed, the CTF is particularly chal-
lenging to correct for in cryoET datasets due to the defocus gradient present in cryoEM im-
ages of tilted specimens [99,100], which worsens with increasing specimen thickness [101],
tilt angle [102], and field of view such as at lower magnifications. CTF-induced artifacts can
limit the resolution at which macromolecules and biological specimens in general can be
visualized at, and artificially give an appearance of hollowness to solid objects depending
on their shape, size, and the defocus amount. Moreover, IsoNet’s comprehensive image
processing pipeline, which includes preprocessing steps before reconstruction, such as
CTF deconvolution [103] and masking, underscores the challenges to making objective,
holistic comparisons between reconstruction methods. Here, we focus on characterizing
the performance of unsupervised machine learning methods and evaluating trade-offs with
supervised ones.

Given the increasing popularity of cryoET [104] owing to its demonstrated applications
in cellular structural characterization [105] and histopathological clinical diagnoses [32],
we expect for artificial intelligence developments that enhance tomographic reconstruction
to become an increasingly active and impactful field of research. Since cryoET can provide
3D views of individual macromolecules and complexes across a wide range of sizes, as
well as their distributions within organelles, cells, and tissues, improving tomographic
reconstruction quality may enable novel structure-based diagnostics at the molecular
level and accelerate drug development by assessing the effects of molecular therapeutics
on phenotype.
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Abbreviations
The following abbreviations are used in this manuscript:

CryoET Cryogenic electron tomography
3D Three-dimensional
STA Subtomogram averaging
TEM Transmission electron microscopy
2D Two-dimensional
WBP Weighted back-projection
CNN Convolutional neural network
CN Coordinate network
FSC Fourier shell correlation
PSNR Peak signal-to-noise ratio
SSIM Structural similarity index
VIF Visual information fidelity
CTF Contrast transfer function
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Figure A1. Qualitative review of the spheres dataset. Top: Projections in each direction (columns)
for each method (rows). Bottom: Zoom inset of the xz-plane. IMOD and EMAN2 suffer from back-
projection artifacts. Compared to IsoNet, ours better resolves these artifacts and also produces a more
spherical shape. Reconstruction artifacts are present in both IsoNet (tile pattern) and our (horizontal
streaks) reconstructions due to computational constraints, as discussed in Section 4.
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Figure A2. Qualitative review of the geometric shapes dataset: projections in each direction (columns) for
each method (rows). Ours provides the best shape completion and mitigation of back-projection artifacts.
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Figure A3. Qualitative review of the P22 dataset: projections in each direction (columns) for each
method (rows). Ours provides the best shape completion and mitigation of back-projection artifacts.

Figure A4. Qualitative review of the ubiquitin dataset comparing 3D volumes of the ground truth
(left) vs. ours (right) to emphasize that streaky artifacts are absent when a single network is used
to fit the tomogram, as discussed in Section 3.4. IsoNet also exhibits reconstruction artifacts due to
computational constraints, as displayed in Figure 3. This motivates potential improvement for both
methods and the development of hybrid approaches to more efficiently and accurately represent
large cryoET volumes.
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