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Abstract: Background: Oral mucositis is a common and distressing side effect of head and neck
oncology treatment. Photobiomodulation therapy can be utilized to prevent and treat oral mucositis.
Its impact on salivary cytokines has yet to be thoroughly investigated. This is the first systematic
review aiming to evaluate the effect of photobiomodulation on salivary cytokines in patients under-
going anticancer treatment. Methods: Numerous data resources, from the Web of Science, Embase,
ScienceDirect, PubMed, Cochrane Library, and Scopus were sought. Articles published up until
February 2024 were included if they met the following inclusion criteria: clinical trials reporting
the effect on salivary cytokines in patients undergoing anticancer therapy. The methodological
quality was assessed using several appraisal tools. Results: Four studies were deemed eligible
for inclusion. All the studies were conducted in Brazil and used an InGaAlP diode laser with a
wavelength of 660 nm. The included studies had a relatively low risk of bias. The head and neck
cancer patients’ salivary cytokines that were assessed by the studies, along with photobiomodulation
therapy, included IL-12p70, TNF-α, IL-6, IL-8, IL-10, CXCL8, and IL-1β. The results varied among
the studies. Conclusions: Our results show that photobiomodulation demonstrated positive results
for reducing the severity of OM in all the included studies. Among the examined salivary cytokines,
IL-6 is the most relevant cytokine for oral mucositis development and severity. A variation in the
cytokine levels between the studies was noted due to differences in the type of anticancer treatment
and saliva sampling.

Keywords: photobiomodulation; low-level laser; salivary cytokines; oral mucositis

1. Introduction

Oral mucositis [OM] is a highly distressing and common side effect of the non-surgical
treatment of malignancies. It may result from systemic chemotherapy, radiation therapy,
a combination of both, or in patients who undergo hematopoietic stem cell transplanta-
tion. OM is observed in almost 30–40% of head and neck cancer patients who undergo
chemotherapy alone [1,2]. Whereas, patients receiving hematopoietic stem cell transplanta-
tion exhibit an increased occurrence percentage of 60–85%, and almost 90% of patients who
undergo radiotherapy and chemotherapy together [3,4].
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Oral mucositis develops via direct and indirect pathogenetic processes [5]. In the
early stages, direct DNA damage occurs due to the breakage of DNA strands, thus causing
epithelial basal cell death and the accumulation of reactive oxygen species, leading to
complex bioreaction events and subsequent mucosal damage. Reaction oxygen species
[ROS] mediate the activation of NFκB and the release of pro-inflammatory cytokines, such
as IL-6 and TNF-α, which, in turn, stimulates pathways that destroy surrounding epithelial
cells and fibroblasts [6]. Subsequently, tissue damage and programmed cell death occur.
Deep and painful ulcerations extend from the epithelium to the submucosa, with nerve
endings exposed and rapidly colonized by oral bacteria and latent or secondary viral
infections that effectively contribute to mucositis because they stimulate the secretion of
more pro-inflammatory cytokines [6].

Several studies have analyzed salivary cytokines in patients who have developed oral
mucositis. A systematic review by Diesch et al. concluded that TNF-α, IL-2, IL-6, and
IL-1β pro-inflammatory cytokines are interrelated with the severity of and damage to oral
mucosal tissue; this is of great practical importance for the early detection of mucositis
without needing an in-depth oral examination. An oral examination is often challenging,
particularly when patients have limited mouth-opening ability or are in significant pain.
Examining the salivary cytokines can enhance patients’ quality of life by knowing when to
interfere and administering early therapeutic interventions [7].

Photobiomodulation (PBM) therapy is the application of light in the wavelength range
of [600 nm–1000 nm] to injured or potentially injured tissue for pain relief, inflamma-
tion reduction, and improvement of the healing process [8,9]. The World Association of
Photobiomodulation Therapy [WALT] group has demonstrated PBM’s therapeutic and
prophylactic prospects for cancer therapy side effects [10]. The International Society of Oral
Oncology and The Multinational Society for Supportive Care in Cancer (MASCC/ISOO)
group have also recommended using PBM to manage oral mucositis [11,12].

Several systematic reviews have confirmed photobiomodulation therapy’s effective-
ness for preventing and treating oral mucositis [13–16]. However, the effects of PBM at
the cellular level and the biochemical response, especially of the cytokines, still need to
be fully understood. This may impact the delivery of this therapeutic approach in fu-
ture studies. Therefore, this is the first systematic review aiming to evaluate the effect of
photobiomodulation on salivary cytokines in patients undergoing anticancer treatment.

2. Methods

This systematic review was prepared according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses—PRISMA guidelines [17], and has a registra-
tion number (CRD42023441214) with the International Prospective Register of Systematic
Reviews (PROSPERO).

2.1. Study Design

This review summarizes all human trials on the effect of photobiomodulation on
salivary cytokines in cancer patients undergoing radiotherapy alone or in combination
with chemotherapy.

The PICO framework was utilized to formulate the research question. It is based
on the following: Participants—cancer patients who underwent radiotherapy alone or in
combination with chemotherapy who developed OM. Intervention—photobiomodulation
therapy. Comparison—placebo, nothing, or other preventive or therapeutic measures.
Outcome—cytokine levels in saliva.

2.2. Search Strategy

All papers relevant to this topic were searched for using MeSH terms and related
free terms, and were identified in the following databases: Medline via PubMed, Scopus,
ScienceDirect, and Cochrane Library. No lower date limit was set, and an upper date limit of
February 2024 was established. There was no language restriction imposed. The keywords
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used in this systematic review were photobiomodulation, low-power laser, low-level laser
therapy, low-level light therapy oral mucositis, oral stomatitis, chemotherapy-induced
oral mucositis, chemotherapy-induced oral stomatitis, cytokine, IL, interleukin, cytokines,
saliva, and salivary. The Boolean term used for the search process was “AND, OR”, which
was used to ensure comprehensive results. After a rigorous analysis, only four articles met
the criteria and were deemed eligible. This thorough approach ensures the reliability and
validity of the clinical results by ensuring that the final evaluation is based on the accuracy
and relevancy of the studies.

2.3. Inclusion Criteria

Published clinical trials showing the effect of photobiomodulation on salivary cy-
tokines in patients undergoing anticancer therapy were deemed eligible for inclusion. Thus,
this includes chemotherapy and radiotherapy.

2.4. Exclusion Criteria

Published articles were excluded, including systematic reviews, meta-analyses, obser-
vational studies, case reports, case series, animal research, in vitro studies, study protocol
clinical trials, cost-effectiveness randomized clinical trials, editorials, opinions, and confer-
ence abstracts.

2.5. Study Selection

Three authors (M.K., O.H., and F.A) independently performed the study selection.
The titles and abstracts of all the papers were first meticulously reviewed and assessed,
followed by an independent selection process by the authors for the studies that met the
inclusion criteria, and then an evaluation process for all the articles. The full text of the
article was the primary determinant in the final selection process. A PRISMA flowchart
was generated for the studies included in this systematic review [18].

2.6. Data Extraction

The following data were extracted from the selected studies: author, publication date,
type of tumor, anticancer therapy, sample size, comparison group, kind of PBM device,
OM evaluation methods, type of cytokine, time of saliva collection, outcome, irradiation
parameters, number of irradiation points, and timing of PBM. These data were then
arranged into tables.

3. Results
3.1. Screening Results

Records were identified from 38 studies [7 PubMed, 14 Cochrane Library, 11 Sci-
enceDirect, and 6 Scopus]. Only four articles fit the selection criteria and were included
for a qualitative analysis and data extraction. This review excluded eight parallel (dupli-
cate), twenty-three inconsistent, one collaborative, and six studies based on the preprint
criteria, as shown in [Figure 1]. Furthermore, 76 papers were used as background and
discussion material.

All the studies included in this review were clinical trials conducted in Brazil [19–22].
The type of tumor was head and neck cancer in the studies of both Oton-Leite et al., 2015 [20],
and Martins et al., 2021 [22]. In the study by Silva et al., 2015 [19], and Salvador et al.,
2017 [21], hematological malignancies were found. Regarding the anticancer treatment,
it was radiotherapy with or without chemotherapy, according to Martins et al., 2021 [22].
Patients received chemoradiotherapy in the study by Oton-Leite et al., 2015 [20]; stem
cell transplantation was performed in the study by Silva et al., 2015 [19], and Salvador
et al., 2017 [21]. The trial comparison groups slightly differed between the reviewed trials.
The groups included no treatment, sham radiation, only oral hygiene, and a placebo with
a preventative oral care program. The number of patients ranged from 25 to 51. All
the studies included in this review used an InGaAlP diode laser with a wavelength of



J. Clin. Med. 2024, 13, 2822 4 of 14

660 nm. Oton-Leite et al., 2015 [20], and Martins et al., 2021 [22], used the same irradiation
parameters, irradiation points, and timing. The power was 25 mW, the energy density
was 6.2 J/cm2, and the total number of irradiation points was 61 in the mouth for 10 s for
each point. Silva et al., 2015 [19], and Salvador et al., 2017 [21], used the same irradiation
parameters, irradiation points, and timing. The power was 40 mW, the energy density was
4 J/cm2, and the total number of irradiation points was 10 points distributed in the mouth
for 4 s for each point [Table 1].
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Table 1. General characteristics of the included studies with detailed information about the subjects
and intervention methods.

Author/Date Tumor\
Therapy

Sample
Size

Comparison
Group

Type of PBM
Device Wavelength Energy

Density
PBM

Duration Power Irradiation
Points Timing

Silva et al.,
2015 [19]

Hematologic
malignancies
\High-dose

chemotherapy, with
or without radiation

therapy.

30
patients None InGaAIP 660 nm 4 J/cm2 4.0 s per

point 40 mW

“The tip touched the mucosa
of the lips, right and left

buccal mucosa, right and left
lateral tongue,

ventral tongue, and buccal
floor, giving 10 points per

region.”

“Subjects received
the PBM from

the first day of the
conditioning
regimen and

continued every
day, until D+7.”

Oton-Leite
et al., 2015

[20]

Head
and neck cancer\

Chemoradiotherapy.
25

patients Placebo InGaAlP
diode laser 660 nm 6.2 J/cm2 10 s at each

point 25 mW

“Buccal mucosa [10 points on
each side], lips [8 points on
upper and lower internal

mucosa], hard palate
[3 points], lateral tongue
[10 points on each side],

dorsal tongue [3 points], soft
palate [3 points], floor of the
mouth [2 points], and in the
labial commissure [one point

on each side].”

“The first session
was performed on
the first day of RT,
and the following
sessions occurred
three times a week
on alternate days,

always before each
session of RT, until

the end of the
treatment.”

Salvador
et al., 2017

[21]

Hematologic
malignancies
\High-dose

chemotherapy, with
or without radiation

therapy.

51
patients

Only the
oral

hygiene
guidelines

InGaAlP 660 nm 4 J/cm2 4.0 s per
point 40 mW

“A total of 10 points
were spread over the upper

and lower labial mucosa,
right and left buccal mucosa,
right and left lateral tongue,
ventral of the tongue, and

floor of the mouth.”

“Subjects received
the PBM from the

first day of the
conditioning
regimen and

continued every day
until

the seventh
post-transplant day

[D+7].”

Martins
et al., 2021

[22]

Head and neck
cancer\

Radiotherapy,
associated or not

with chemotherapy.

48
patients

Placebo
and preven-
tative oral

care
program

InGaAlP
diode laser 660 nm 6.2 J/cm2 10 s at each

point 25 mW

“Right and
left buccal mucosa [10 points

on each side], upper and
lower labial mucosa [4 points

each lip], hard palate
[3 points], the lateral surface
of the tongue [10 points on

each side], soft palate
[3 points], dorsal tongue

[3 points], floor of the mouth
[2 points], and labia

commissure [one point on
each side]”

“The first session
was performed on
the first day of RT,
and the following
sessions occurred
three times a week
on alternate days,

always before each
session of RT until

the end of the
treatment.”

PBM: photobiomodulation; RT: radiotherapy.

3.2. Outcome

All the studies used the World Health Organization (WHO) mucositis scale. Oton-
Leite et al., 2015 [20], and Martins et al., 2021 [22], used the National Cancer Institute scales
in addition to the previous scale. All the studies showed a reduction in the severity of
mucositis seen in the PBM group. Regarding the type of cytokines studied, Oton-Leite
et al., 2015 [20], and Silva et al., 2015 [19], studied the same cytokines, while Martins et al.,
2021 [22], studied IL-6, IL-8, IL-10, IL-12p70, IL-1β, and TNF-α. Salvador et al., 2017 [21],
only studied one cytokine type, IL-8. Oton-Leite et al., 2015 [20], and Silva et al., 2015 [19],
used an enzyme-linked immunoassay test (ELISA). The other two authors used a cytometric
bead array analysis. The results varied between the studies included in this review. Silva
et al., 2015 [19], found no effect of PBM on salivary cytokines. However, Oton-Leite et al.,
2015 [20], found that PBM decreased interleukin six levels. Salvador et al., 2017 [21], also
saw an effect of PBM on salivary cytokines, but the only cytokine studied was interleukin 8.
Martins et al., 2021 [22], reported that PBM therapy promoted increased concentrations of
IL-12p70, TNF-α, and IL-10 [Table 2].
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Table 2. Cytokine evaluation and outcomes of the studies.

Author
OM

Evaluation
Method

Type of Cytokine Time of
Saliva Collection Outcome

Silva et al., 2015
[19]

World Health
Organization [WHO]

mucositis scale

“TNF-α, IL-6, IL-1β, IL-10,
TGF-β concentrations
were assessed using

ELISA test.”

“Samples were collected from
patients on admission [AD],

D-1, D+3, D+7, and on
marrow engraftment day

[ME].”

The OM lesions were clinically
less severe in the PMB group
[p < 0.05]. However, neither

blood nor salivary inflammatory
mediators demonstrated any

statistically significant
differences.

Oton-Leite et al.,
2015 [20]

World Health
Organization

[WHO] and National
Cancer Institute [NCI]

scales

“TNF-a, IL-6, IL-1β, IL-10,
TGF-β

concentrations were
assessed using the ELISA

test.”

“Saliva samples were collected
on admission, and on the 7th,

21st and 35th sessions of
radiotherapy.”

Although no statistical
significance can be drawn from

the TGF-β, IL-10, IL-1β, and
TNF-a concentrations between
the PMB and control groups, a
reduction trend was observed.
The PMB group experienced a

significant reduction in IL-6
concentration, especially

following the 35th session.

Salvador et al.,
2017 [21]

World Health
Organization [WHO]

mucositis scale

“CXCL8/interleukin 8,
using cytometric bead

array analysis.”

“Saliva samples were collected
at the time of admission [AD],

on the 7th day after
transplantation [D+7], and on

the day of discharge [with
neutrophil > 0.5 × 109/L for

two consecutive days] [HD].”

The CXCL8 chemokine in the
PBM group was reduced by 85%
at the 7th session, whereas there
was an up to 70.8% increase in
CXCL8 observed in the control

group [p = 0.007].
From the 7th to the 11th sessions,

MO severity was significantly
reduced by PBM [p < 0.05].

Martins et al.,
2021 [22]

World
Health Organization and

the National Cancer
Institute

scales

“IL-6, IL-8, IL-10, IL-12p70,
IL-1β, and TNF-α were

measured using the
cytometric bead array.”

“Samples were collected in the
1st [baseline], 7th, 14th,

21st and 30th sessions of RT.”

PBM increased the concentration
of IL-10, TNF-α, and IL-12p70.

However, OM severity was
noticeably reduced in the PBM

group compared with the
control group.

3.3. Risk of Bias Assessment

The risk of bias in the studies included in this review was assessed using the Revised
Cochrane Risk of Bias for Randomized Trials (RoB 2.0) tool [Figure 2]. Each study was
individually evaluated using QUADAS-2 to determine the risk of bias and applicability
concerns [Table 3], and the Jadad scales for reporting randomized controlled trials to
appraise methodological quality [Table 4]. The assessment included evaluating the risk of
bias arising from the randomization process, the risk of bias due to deviations from the
intended interventions, the risk of bias due to missing outcome data, the risk of bias in the
measurement of the outcome, and the risk of bias in the selection of the reported results.
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Table 3. Tabular presentation of QUADAS-2 results for evaluating risks of bias and concerns of
applicability.

Study
Risk of Bias

Domains

Applicability Concerns

DomainsPatient
Selection Index Test Reference

Standard
Flow and
Timing

Patient
Selection

Index
Test

Reference
Standard

Martins et al.,
2021 [22] Low Unclear Unclear Low At risk of

bias Low Low Low
Low concerns

regarding
applicability

Salvador et al.,
2017 [21] Unclear Unclear Low Unclear At risk of

bias Low Low Low
Low concerns

regarding
applicability

Silva et al.,
2015 [19] Unclear Unclear Low Unclear At risk of

bias Low Low Low
Low concerns

regarding
applicability

Oton-Leite
et al., 2015 [20] Unclear Low Low Low Low risk of

bias Low Low Low
Low concerns

regarding
applicability

Table 4. The Jadad scale for reporting randomized controlled trials was used to evaluate the method-
ological quality.

Study
Dimension

Randomization Blinding An Account of All Patients Total Score

Martins et al., 2021 [22] 2/2 2/2 1/1 5/5 High quality

Salvador et al., 2017 [21] 2/2 1/2 1/1 4/5 High quality

Silva et al., 2015 [19] 1/2 1/2 1/1 3/5 Good quality

Oton-Leite et al., 2015 [20] 1/2 2/2 1/1 4/5 High quality

4. Discussion

Oral mucositis is the most debilitating and bothersome side effect of non-surgical
anticancer therapy. The mechanism of the occurrence of OM is complex, but in a simplified
and brief way, it is associated with an elevated level of local reactive oxygen species
(ROS) [23–25]. ROS provide essential protective tools for health conditions, including their
involvement in the phagocyte-mediated killing of microorganisms [26,27].

However, when the balance within the generated ROS is disturbed, key transcription
factors, such as activation of transcription 3 (STAT3), nuclear factor B (NFкB), and signal
transducer, in turn stimulate the production of tumor necrosis factor (TNF), interleukin
1 (IL-1), and interleukin 6 [IL-6] pro-inflammatory cytokines, which ultimately leads to
OM [23–25]. These mediators create a chain reaction that causes even more tissue dam-
age. During its amplification phase, OM may have an inflammatory infiltration of the
macrophages, neutrophils, and mast cells. Furthermore, bacterial wound colonization is
prevalent and may produce additional inflammatory cytokines, leading to the most severe
state of OM [24,25].

Cytokine levels in the biological fluids of patients with OM have been debated in
several studies. Indeed, cytokine levels in biological fluids and OM development have
demonstrated a significant relationship. Among the cytokines that lead to the development
of OM, IL-1β and IL-6 have been highlighted as essential factors in the process [28,29].
Increasing radiation doses have resulted in elevated concentrations of TNF-a and IL-6 [30],
and reduced salivary EGF levels [31–35] in patients with OM receiving RT. Additionally, a
favorable correlation of IL-6 levels with OM severity has been observed in patients receiving
combination chemotherapy [36]. Min et al. also showed that complications in patients
during HSCT correlate with an elevated level of IL-6 in the blood [37].

Ye et al. [38] found that IL-8 is associated with an increased risk of OM in CT patients.
In the same context, Citrin et al. [30] argued that OM in patients receiving chemoradiation
for head and neck malignancies is related to reduced salivary IL-10 levels.
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According to this systematic review, Silva et al. and Oton-Leite et al. found that IL-6 is
the most relevant inflammatory mediator for the development and severity of OM. Among
the studied cytokines, Martins et al. found that higher OM scores were associated with
higher levels of IL1-β and lower levels of TNF-α, IL12p70, and IL-10. Salvador et al. found
that severe OM was related to the elevation of the only cytokine they studied, IL-8.

PBM is a safe treatment option. No undesirable effects have been observed on over-
all or disease-free survival, and local disease recurrence has been observed [39–42]. In
contrast, [42] it has been indicated that PBM may increase the survival of patients with
head and neck cancer, possibly due to a reduced number of interruptions to the cancer
treatment [43,44]. Many studies have shown PBM’s positive role in preventing and treating
OM [14,45,46]. Due to its positive effects, it has been recommended for use in patients
undergoing non-surgical anticancer treatment by both WALT and MASCC/ISOO.

Although two different irradiation protocols were used in the studies included in
this review, PBM showed positive results in reducing the severity of OM in all the studies.
Despite utilizing different irradiation protocols, they all fell within the recommended limits.
The WALT guidelines recommend using an LED/laser device with a visible wavelength
of 630–680 nm to prevent mucositis [10,45]. Also, the PBM output of 10–100 MW power
was within the range recommended by Bensadon et al. in their meta-analysis [47]. Also,
the frequency of application was among what was recommended by Cronshaw et al., who
recommended applying PBM at least twice a week [10].

Despite the emphasis on the role of PBM in managing OM, the precise mechanism by
which it works still needs to be determined. Experimental studies have showed that PBM
can alter the response to tissue repair in both in vitro and in vivo conditions [48–54] and pro-
inflammatory and anti-inflammatory cytokine levels [55–60]. It has been observed that PBM
can reduce inflammatory cell migration [48,59], as well as TNF-α [55–57,59], COX-2 [58],
IL-1β [53,56,58–60], and IL-6 [56–60] cytokine levels, which have been shown to contribute
to a general decrease in the inflammatory response in animal models of many conditions,
including tendonitis [48,58], osteoarthritis [59], and acute inflammation [55,56,60].

However, studies evaluating the effect of PBM on cytokines in humans have been
limited. Reviewing the literature revealed that only four studies assessed the impact of
PBM on cytokines in the saliva of patients with OM, and all had a low risk of bias.

Studies that used saliva samples were selected for this review due to the advantages of
saliva in terms of the ease of collection compared to plasma and other bodily fluids [61,62].
In addition, cytokine levels in saliva more accurately manifest the immune environment’s
local activity in the oral mucosal compared to its systemic activity [61].

4.1. IL-6

IL-6 has a variety of biological activities. It acts as both an anti-inflammatory and
pro-inflammatory cytokine. It induces the degradation of tissue via matrix metallopro-
teinase activation. Furthermore, IL-6 has a role in increasing vascular permeability and the
migration of inflammatory cells, like macrophages [57,58].

Furthermore, IL6 is secreted from many cell types in a wound environment. It increases
fibroblast proliferation at the site of injury, and it has been shown to have local and systemic
effects on wound healing [63].

Oton-Leite et al. concluded that the lesser the IL-6 concentrations, the lower the
mucosal damage. Arguing that IL-6 inflammatory mediators have a crucial role in the
severity of OM, they noted in their trials that the PBM study group experienced lower
concentrations of IL-6 compared to the control group. However, Martins et al. and Silva et al.
found no significant differences in saliva IL-6 levels between the control and laser groups.

4.2. IL-10

The anti-inflammatory cytokine IL-10 is produced by T lymphocytes, which inhibit
the production of pro-inflammatory cytokines and prevent neutrophils and macrophages
from infiltrating an infection [37,63–65]. According to this systematic review, Silva et al.
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and Oton-Leite et al. found no significant differences in salivary IL-10 levels between the
control and laser groups. However, Martins et al. suggested the role of PBM in increasing
salivary IL-10, attributing this to the role of PBM balancing pro- and anti-inflammatory
cytokines, enabling a more effective healing process.

4.3. IL-8

Interleukin 8 is a cytokine released by different cell types in our body, like lympho-
cytes, neutrophils, macrophages, fibroblasts, keratinocytes, monocytes, epithelial cells, and
endothelial cells [66–69]. IL-8 has a chemotactic effect on macrophages and monocyte-
derived neutrophils, promotes epithelial cell proliferation and migration, and stimulates
the expression of metalloproteinases in leukocytes [70].

Salvador et al. observed lower levels of this cytokine in patients treated with PBM. It
has been hypothesized that a decrease in IL-8 could reduce the migration of neutrophils,
macrophages, and other inflammatory cells, and the production of enzymes, cytokines,
and reactive oxygen species in inflamed oral mucosa, thus reducing tissue damage and
achieving the clinical improvement of OM [67,68,71]. However, Martins et al. found no
effect of PBM on salivary IL-8.

4.4. IL-1β

IL-1β is one of the pro-inflammatory cytokines. It is produced by monocytes, dendritic
cells, and macrophages, and can stimulate a Th1 immune response and produce IL-6 [72].
Despite the significance role of this cytokine in immune response, none of the studies
included in this review indicated any significant change in the levels of this cytokine due
to PBM.

4.5. TNF-α

TNF-α [tumor necrosis factor-alpha] is a cytokine with pleiotropic effects on various
cell types. TNF-α was first identified as a factor that promotes tumor necrosis, but it has
lately been discovered to have additional significant activities. It is an essential regulator
of inflammatory responses and has been linked to the development of several inflam-
matory and autoimmune illnesses [73]. TNF-alpha induces inflammation by activating
pro-inflammatory responses in capillary endothelial cells, allowing leukocyte adhesion and
infiltration [74].

In Martins et al.’s study, higher levels of this cytokine were found in the group that
received PBM. Thus, illustrating the role of PBM in activating inflammatory cells to balance
the inflammatory response. However, Silva et al. and Oton-Leite et al. found no significant
differences in this cytokine’s levels in the control and laser groups.

4.6. IL-12p70

IL-12p70 is a cytokine secreted by dendritic cells and macrophages associated with the
cytotoxic immune response [75]. Martins et al. observed that the concentration of IL-12p70
in saliva was higher in the PBM group. The expression of toll-like receptors (TLRs) has
been reported to be associated with reduced mucositis rates [76,77].

IL-12p70 is probably induced by TLR+ antigen-presenting cells stimulated by PBM,
thus reducing the mucosal aggressive agents, and enhancing the antimicrobial response.

4.7. TGF-β

Transforming growth factor-beta [TGF-β] has several primary functions: it can induce
the growth of mesenchymal cells, extracellular matrix formation, inhibit other cellular
functions, and resolve inflammatory reactions due to its chemoattraction for inflammatory
cells and fibroblasts, which relate to its role in wound healing [78]. Oton-Leite et al. found a
slight reduction in anti-inflammatory cytokines (TGF-β) in the PBM group compared with
the control group at almost all evaluated times. Pires et al. [58] suggested that the reduction
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in TGF-β induced by the laser treatment may be an indirect response to a decreased level
of pro-inflammatory cytokines.

The results regarding cytokine levels were different among the studies included
in this review, likely due to the considerable variation between these studies in several
aspects. It starts with the type of anticancer treatment. The difference in treatment patterns
could be the most prominent reason for the differences in cytokine levels between the
studies. Salvador et al. argued that the biological effect on OM differs between patients
undergoing radiotherapy alone and chemotherapy patients undergoing HSCT. HSCT
compromises cytokine production and inflammatory responses, like the activation and
migration of neutrophils.

Even though the number of selected clinical trials was limited, there are notable
discrepancies in the studies’ results, mainly due to differences in the analysis methods,
such as cytometric bead array analysis and the ELISA test [79]. Furthermore, variations
in saliva sampling times between the studies made it challenging to make quantitative
comparisons. It is worth mentioning that the selected trials exhibited some risk of bias.

5. Conclusions

Our results show that photobiomodulation has demonstrated positive results for re-
ducing the severity of OM in the included studies. Among the examined salivary cytokines,
IL-6 is the most relevant cytokine for oral mucositis development and severity. A variation
in the cytokine levels between the studies was noted, due to differences in the type of
anticancer treatment and saliva sampling. Hence, further studies are needed.
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