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Abstract: Antimicrobial resistance (AMR) is one of the most critical threats to global public health
in the 21st century, causing a large number of deaths every year in both high-income and low- and
middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and
treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective
pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action
and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The
state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular
focus on approaches validated in clinical studies. By underscoring the scope and limitations of
the different emerging technologies, this review points out the complementary of vaccines and
monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well
as challenges associated with the clinical development of these therapies against AMR pathogens,
are highlighted.

Keywords: antimicrobial resistance; vaccines; monoclonal antibodies; antibiotics; innovative
technologies; mode of action

1. AMR: A Global Threat to Public Health

The introduction of antibiotics into clinical use is considered one of the major medical
breakthroughs of the 20th century, as it completely revolutionized the treatment of bacterial
infections and significantly improved the health of many patients worldwide [1]. In 1928,
the discovery of penicillin by Alexander Fleming started the so-called “golden age of
antibiotic discovery”, which reached its peak in the 1950s [1]. Since then, the overuse and
misuse of antibiotics in humans and animals has resulted in the selection of drug-resistant
pathogens giving rise to the current AMR crisis [1].

AMR is silently evolving as the next potential pandemic, and it has been estimated
that the number of deaths due to AMR will exceed those caused by cancer by 2050 [2].
AMR occurs when microorganisms (e.g., bacteria, viruses, fungi, parasites) accumulate
mutations over time and no longer respond to antimicrobial drugs, which become less
effective or ineffective [3]. This complicates the treatment of infections and the risk of
disease spreading, with a great increase in severe illness and mortality.

Although AMR is an evolutionary phenomenon that occurs naturally in microbes,
usually using genetic changes, the inappropriate use of antibiotics in humans and animals
constitutes a key driver to its spread [4]. Global antibiotic consumption has increased
by 65% from 2000 to 2015, mainly in low- and middle-income countries (LMICs), and is
projected to triple by 2030 without appropriate interventions [5].

Over the last few years, the World Health Organization (WHO) and numerous other
authorities called for coordinated action to address AMR. In 2015, with the Global Action
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Plan (GAP), the WHO highlighted the need for a “One Health approach”, i.e., the joint
action in human health, food production, animals and environmental sectors, to achieve
better public health results [6]. In the same year, the WHO initiated the Global Antimicrobial
Resistance and Use Surveillance System (GLASS), a standardized approach to collect,
analyze and share AMR data coming from all countries [7].

To guide and support research and development of new antibiotics, the WHO pub-
lished a list of antibiotic-resistant “priority pathogens” in 2017, where bacteria belonging
to 12 families were classified as critical, high or medium priority, according to the ur-
gency for new antibiotics [8]. Another fundamental step to strengthen the fight against
AMR was achieved in 2019, when the AMR Multi-partner Trust Fund (AMR MPTF) was
launched to intensify efforts to support countries, especially the LMICs, to face the AMR
threat [9]. More recently, the WHO underlined the need to maximize the use of existing
vaccines and accelerate the development of new ones against AMR pathogens [10] that
were categorized according to biological analyses, product development and access and
implementation feasibility.

Nowadays, a significant effort is exerted by the scientific community engaged in
developing new alternative therapies to traditional antibiotics. Figure 1 summarizes the
most important steps in the history of antibiotics and antimicrobial resistance.
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Figure 1. Timeline showing some key milestones, among the most important steps, in the history of
antibiotics and antimicrobial resistance.

AMR is responsible for many deaths every year, affecting both high-income countries
(HICs) and LMICs. According to the Global Burden of Disease 2019 report (GBD 2019),
4.95 million deaths are associated with bacterial AMR, including 1.27 million deaths at-
tributable to AMR, with remarkable prevalence in sub-Saharan Africa and South Asia [11].
Data underline that AMR also affects the world’s poorest countries [11]. Several factors
facilitate the rapid spread of AMR in LMICs, such as uncertain access to safe water and
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proper hygiene conditions, quality healthcare systems restricted to a minor part of the
population and improper use of antibiotics in humans, animals and crops [12]. Additionally,
unlike HICs, where the AMR emergency is periodically monitored by defined surveillance
systems, most LMICs lack adequate and standardized programs, making it difficult to
estimate the extent of AMR [12].

Among the bacterial pathogens considered in the GBD 2019 study [11], Escherichia coli,
Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii,
and Pseudomonas aeruginosa were identified as the six leading pathogens, each responsible
for more than 250,000 deaths associated with AMR, in agreement with the list of antibiotic-
resistant pathogens that the WHO published in 2017 [8]. AMR pathogens associated types
of antibiotic resistance and preventive/treatment options under development can be found
in Table 1.

Table 1. AMR pathogens, according to the WHO prioritization list, associated types of antibiotic
resistance and preventive/treatment options under development over the last five years.

Bacteria Type of Antibiotic
Resistance [8] Vaccines under Development § mAbs under Development References

Priority 1: Critical #

Acinetobacter
baumannii carbapenem resistant Murine anti-capsular mAbs

(preclinical) [13,14]

Pseudomonas
aeruginosa carbapenem resistant

WVDC-5244 (preclinical)
anti-PcrV mAb (preclinical)

MEDI3902 (MedImmune Astra
Zeneca, Ph2)

anti-SpuE mAb (preclinical)

[15–19]

Enterobacteriaceae *
carbapenem-resistant,

3rd-generation
cephalosporin resistant

ExPEC 9V (J&J-Sanofi), bioconjugate, Ph3;
FimHC (Sequoia),

subunit vaccine, Ph2;
Kleb4V (LMTB-GSK), bioconjugate, Ph2

Anti-O-Antigen and anti-capsule K.
pneumoniae mAbs, preclinical

Secretory IgA vs. enterotoxigenic E. coli,
preclinical

[20–25]
(NCT06134804;
NCT04959344)

Priority 2: High

Enterococcus
faecium vancomycin resistant

Murine anti-capsular and
anti-secreted antigen A mAbs,

preclinical
[26]

Staphylococcus
aureus

methicillin-resistant,
vancomycin

intermediate and
resistant

Staph 5V (GSK),
subunit vaccine, Ph2

MEDI4893 (anti-a toxin)
(MedImmune Astra Zeneca), Ph2 [27,28]

Helicobacter pylori clarithromycin
resistant

Campylobacter
jejuni

fluoroquinolone
resistant

Anti-FliD secretory IgA,
preclinical [29]

Salmonella spp. fluoroquinolone
resistant

Entervax (ZH9PA+ ZH9), (Prokarion), live
attenuated, Ph1;

O:2-TT+Vi-TT (NIH, Lanzhou), glycoconjugate, Ph2;
O:2-DT+Vi-TT (SII), glycoconjugate, Ph1;

O:2-CRM+Vi-CRM (GSK/BioE), glycoconjugate, Ph1;
INTS-TCV (GSK), GMMA/glycoconjugate, Ph2;
iNTS COPS-FliC + TypBar (TCV) (Maryland U,

Bharat), glycoconjugate, Ph2

Murine anti-outer membrane protein
mAb Sal-06, preclinical

Anti-Type 3 Secretion System mAb,
preclinical

Anti-LPS Sal4 IgA, preclinical

[30–33]

Neisseria
gonorrhoeae

3rd-generation
cephalosporin resistant,

fluoroquinolone
resistant

NgG (GSK), GMMA, Ph2 2C7 (anti-lipooligosaccharide mAb),
preclinical

[34–36]
(NCT05630859)

Priority 3: Medium

Streptococcus
pneumoniae

penicillin
non-susceptible

Pn-MAPS 24v (GSK), MAPS, Ph2;
Vax-24 (Vaxcyte), glycoconjugate, Ph2

Anti-capsular mAbs,
preclinical

[37]
(NCT05844423)

Haemophilus
influenzae ampicillin resistant na ** Anti-Type 4 pilus mAb,

preclinical [38]
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Table 1. Cont.

Bacteria Type of Antibiotic
Resistance [8] Vaccines under Development § mAbs under Development References

Shigella spp. fluoroquinolone
resistant

ZF0901 (Beijing Zhifei), glycoconjugate, Ph3;
S4V-EPA (LMTB), bioconjugate, Ph2;
altSonflex1-2-3 (GSK), GMMA, Ph2;

SF2a-TT15 (Institute Pasteur), synthetic conjugate, Ph2;
InvaplexAR-DETOX (Walter Reed), subunit, Ph1;

ShigOravax (Hilleman Lab), killed, Ph1

Anti-Type 3 Secretion System mAb,
preclinical [32,39]

# This classification follows that from WHO on antibiotic-resistant pathogens, published in 2017 [8]. Mycobacteria
(including Mycobacterium tuberculosis, the cause of human tuberculosis) were not subjected to review for inclusion
in the WHO prioritization exercise, as it was already considered a globally established priority for which innovative
new treatments are urgently needed. * Enterobacteriaceae include Klebsiella pneumoniae, Escherichia coli, Enterobacter
spp., Serratia spp., Proteus spp., Providencia spp. and Morganella spp. § Only vaccines in clinical development are
listed. ** Vaccines containing Hib conjugates are available in the market.

2. Vaccines and mAbs as Alternatives to Antibiotics in Fighting AMR

While the AMR crisis is spreading worldwide, leading to the emergence of new drug-
resistant pathogens, research is exploiting an integrated strategy involving the synergistic
action of vaccines, monoclonal antibodies (mAbs), diagnostic tools, microbiota and bacte-
riophages together with new antimicrobials [40]. Here, we focus our attention on vaccines
and mAbs, we highlight the major mechanistic differences with respect to antibiotics and
describe the progress of the technologies that support the development of novel products
to fight AMR.

Antibiotics can kill bacteria (bactericidal) or stop their growth (bacteriostatic) and
are grouped according to their mode of action: (i) inhibitors of cell wall synthesis (e.g.,
β-lactams and glycopeptides); (ii) cell membrane depolarization compounds (e.g., lipopep-
tides); (iii) inhibitors of protein synthesis (e.g., aminoglycosides, tetracyclines, oxazo-
lidinones); (iv) inhibitors of nucleic acid synthesis (e.g., quinolones, fluoroquinolones,
rifamycins); and (v) inhibitors of metabolic pathways (e.g., sulfonamides) [41].

Bacterial resistance to antibiotics can be natural or acquired [40]: natural resistance
occurs when bacteria are resistant a priori, and it may be intrinsic (resistance-associated
genes always expressed in the species independently from exposure to antibiotics), or
induced (resistance genes are naturally occurring in bacteria, but are only expressed to
resistance levels after antibiotic exposure) [40]; acquired resistance occurs by acquisition of
genetic material through horizontal gene transfer or by mutations that bacteria accumulate
in their genome [38].

Antibiotic resistance is mediated by three main mechanisms:

(i) Resistance mechanisms that prevent access of the antibiotic to its target: bacteria can
reduce their outer-membrane permeability (via downregulation of the expression of
selective porin proteins), which results in poor penetration of the antibiotics, or can
overexpress efflux pumps conferring high levels of resistance.

(ii) Resistance mechanisms involving modification of the antibiotic target and generation
of the so-called “escape mutants”: bacteria can change the target’s structure to prevent
antibiotic recognition and binding by generation of a mutant of the target through
point mutation(s) or recombination; and by post-translational modifications of the
target by addition of chemical groups by specific enzymes.

(iii) Resistance mechanisms that inactivate the antibiotic: bacteria can express enzymes
that hydrolyze antibiotic molecules, thus preventing binding to the target and result-
ing in resistance. Also, bacterial enzymes can modify the antibiotic structure by the
addition of chemical groups, thereby making the interaction with the target impossi-
ble because of steric hindrance. We refer to recent reviews for a better overview of
antimicrobial resistance mechanisms and how these have evolved and continue to
spread [42–44]. A better understanding of the factors contributing to the persistence
and emergence of AMR may support the design of new antibiotics from one side and
highlight the need for alternatives on the other side.
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In marked contrast, the probability of developing resistance mechanisms to vaccines
is extremely low [40] and, even in the rare instances in which resistance to vaccines has
been reported [45,46], a reduction in disease burden has been achieved anyway. This is an
important difference with antibiotics, for which the effect on a patient can be completely
abolished by the emergence of resistance. Vaccines are usually administered before bacteria
start to multiply and protect the patient from possible infections. On the other hand,
antibiotics act therapeutically on ongoing infectious diseases and encounter an increased
number of bacteria with a high probability of selecting resistant variants.

Differently from antibiotics that have a specific bacterial target, vaccines induce im-
mune responses against multiple targets (called antigens) and/or multiple epitopes of the
same antigen (polyclonal antibodies) (Figure 2). Consequently, the risk of emergence of
vaccine escape mutants is greatly decreased since several mutations would be required for
different epitopes [40].
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In contrast to antibiotics, which usually inhibit essential bacterial functions, mAbs can
bind to essential and non-essential antigens, like virulence factors, and may be associated
with a reduced risk of selecting resistant mutants because mutations in these targets
may result in reduced virulence and enhanced clearance by the immune system. For
example, Tkaczyk and colleagues showed that mutations in the S. aureus alpha-toxin
epitope targeted by mAb MEDI4893 reduced bacterial fitness upon infection [47]. On the
other hand, the extreme specificity of mAbs, especially when they target highly variable
antigens such as capsules and O-antigens, makes their spectrum narrow. However, the
progress in diagnostics, with the possibility to precisely identify the pathogen responsible
for the infection, is likely to help the exploitation of mAbs as novel therapeutics. In
addition, mAbs benefit from a naive repertoire as large as 1012 possible molecules thus
expanding enormously the number of potential candidates to be tested as anti-bacterial
medications [48]. Also, mAbs are intrinsically safe as they are bioproducts, and little or no
toxicity has been reported so far in clinical trials [49], while small molecules, though less
expensive than mAbs, are associated with augmented risk of side effects.
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The advantages and disadvantages of traditional antibiotics and their main therapeutic
alternatives are summarized in Table 2.

Table 2. Advantages and disadvantages associated with antibiotics, monoclonal antibodies and vaccines.

Advantages Disadvantages

Antibiotics Immediate effectiveness soon after administration,
lifesaving during acute bacterial infections.

Selection of escape mutants,
short-term activity,

possible side effects.

Monoclonal Antibodies
(mAbs)

Safety, high target-specificity, less susceptible to
resistance mechanisms, longer half-lives (~21 days

for IgG) compared to antibiotics.

High production cost, possible need for mAb
cocktails, problems in reaching the target

antigen due to biofilm formation or presence
of capsule.

Vaccines

Multiple antigens can be targeted, low risk of
developing resistance, preventive action

(prophylaxis), long-lasting effectiveness, induction
of immunological memory, herd immunity.

2–3 weeks required to elicit an immune
response, full protection

can often require multiple doses.

3. Innovative Vaccine Technologies to Fight AMR

Currently licensed vaccines are prepared from live bacteria and viruses by inactivation,
attenuation or purification of immunogenic components (subunit vaccines). Over the last
few years, scientific progress in many areas has supported the advancement of many
technologies for vaccine design and manufacturing [40] (Figure 3).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Different innovative technologies are available and can be exploited to accelerate the 
development of vaccines against AMR pathogens. 

4. Recent Advancements in mAbs 
Human mAbs are among the most transformative and effective medications against 

cancer and autoimmune diseases [95]. Nonetheless, they are rarely employed for the 
treatment of infections caused by pathogenic bacteria or viruses. The recent COVID-19 
pandemic highlighted the relevance of these innovative drugs, with several candidate 
mAbs discovered and approved for emergency use at a pace never seen before [96]. In the 
quest for novel approaches against the spread of AMR, mAbs can play a major role since 
they bypass the antibiotic mechanisms of action/resistance, are intrinsically safe and 
frequently represent the only therapeutic option for immunocompromised patients. They 
can be easily mass-produced and benefit from the enormous technological progress 
reported in recent years. Finally, mAbs specifically target pathogenic bacteria, thus 
sparing the microbiota. 

Despite the advantages listed above, only a few antibacterial mAbs have succeeded 
in clinical trials, and, to date, three of them have obtained approval from the FDA: 
Raxibacumab and Obiltoxaximab for the treatment of inhalational anthrax [97] and 
Bezlotoxumab for preventing recurrent Clostridium difficile infections [98]. Additional 
mAbs are currently in the discovery or preclinical stage (Table 1). Examples are 
represented by monoclonals targeting bacteria enclosed in the WHO priority pathogen 
list, such as P. aeruginosa Type 3 Secretion System (T3SS) [16], N. gonorrhoeae 
lipooligosaccharide [32], K. pneumoniae O-Antigen and capsule [21,22,99]. All of these 
bacteria are characterized by a steady increase in antimicrobial resistance rates and some 
are even classified as pan-drug resistant [100]. In this context, mAbs can offer a therapeutic 
alternative that goes beyond AMR. 

Antibodies, also known as immunoglobulins (Ig), are 150 kDa Y-shaped proteins 
produced by B lymphocytes. They are composed of two identical light chains, either k 
(kappa) or l (lambda), and two identical heavy chains which determine the isotype: IgA, 
IgD, IgE, IgG and IgM. IgG are the most abundant antibodies in human serum and can be 
further classified into four subclasses, IgG1, IgG2, IgG3 and IgG4, each of them with 
specific features [101]. IgGs exist as monomers and are the most common molecules for 

Figure 3. Different innovative technologies are available and can be exploited to accelerate the
development of vaccines against AMR pathogens.

Glycoconjugation: It is based on the covalent linkage of a bacterial polysaccharide
obtained from a natural source to a carrier protein (typically the genetically modified diph-
theria toxoid CRM197, or chemically detoxified tetanus and diphtheria toxins). The protein
is needed to provide T cell help to carbohydrates that are T cell-independent antigens, thus
producing IgM to IgG switch and a memory response. Examples of glycoconjugate vaccines
licensed worldwide are the ones against Haemophilus influenzae type b, Neisseria meningitidis
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serogroup A, C and ACWY, pneumococcal vaccines, which have been expanded from 7 to
20 valent, and Salmonella enterica subsp. enterica serovar Typhi [50]. Continuous broadening
of pneumococcal vaccine to cover new strains is needed to overcome serotype replacement
and counteract antimicrobial resistance [51]. Bivalent vaccines combining S. Typhi and S.
Paratyphi A O-antigen (O:2) conjugates have entered clinical trials [39]. Investigational
glycoconjugate vaccines against Shigella spp are also under development (Table 1) [52].

Bioconjugation: Recently, a process to generate glycoconjugates in vivo has been de-
veloped by exploiting the oligosaccharyltransferase PglB from Campylobacter jejuni, which
exhibits a relaxed substrate specificity towards glycans and allows the transfer, in E. coli,
of heterologous polysaccharides to carrier proteins containing specific N-glycosylation
sequences. By incorporating in E. coli the glycan operon, along with the oligosaccharyl-
transferase PglB and the protein-encoding plasmid, it is possible to produce in a single
fermentation step the glycoprotein, thus simplifying vaccine manufacturing and preserving
the protein epitopes in their natural conformation. Bioconjugates for the prevention of
different AMR pathogens, including Shigella, S. aureus, P. aeruginosa and K. pneumoniae, are
under development and some candidates have reached the clinical phase (Table 1) [50,53,54].
The most advanced one is a 9-valent vaccine targeting invasive infections caused by Ex-
traintestinal Pathogenic E. coli (ExPEC-9V) [20]. Bioconjugates composed of capsular
polysaccharides from K. pneumoniae based on the oligotransferase PglS which glycosylates
O-serine residues of the protein carrier have been also developed [55]. Based on this ap-
proach, a heptavalent vaccine candidate including O-antigen and capsular polysaccharide
conjugates has been obtained [56].

Multiple Antigen-Presenting System (MAPS): A MAPS is based on the formation
of multivalent immune complexes, containing both polysaccharide and protein antigens
mimicking features of a whole-cell construct for B and T cell activation [57,58]. To obtain the
MAPS complex, a target protein antigen is genetically fused to an avidin moiety (termed
rhavi) and incubated with a biotinylated PS [58]. This design appears advantageous to
target challenging AMR pathogens, such as S. aureus, a bacterium characterized by complex
host–pathogen interactions and a variety of escape mechanisms [59]. Depending on the
type and size of the glycan–protein complex, the MAPS has been shown to drive Th1/Th17-
biased immune responses [58]. Current MAPS vaccines under clinical development include
the 24-valent pneumococcal vaccine that was successful in Phase 2 clinical studies [60]. A
multivalent vaccine targeting invasive K. pneumoniae and P. aeruginosa infections is also
in development.

Reverse vaccinology: This technology enables the selection of potential vaccine candi-
dates by sequencing the bacterial complete genome to select, screen and test the encoded
surface-exposed proteins as vaccine candidates in both in vitro and in vivo preclinical
models. This approach has been successfully applied to the design of the meningococcus
B vaccine [61] and has been exploited for the identification of vaccine candidates against
Shigella [62], P. aeruginosa [63] and Enterococci [64].

Structural vaccinology: Isolation of protective human mAbs from convalescent sera
and structural studies on antigen–antibody complexes have been combined to design
more potent antigens [57]. Although very recent, this technology has already delivered
a vaccine to combat respiratory syncytial virus (RSV) where the F protein of the RSV
responsible for viral entry has been stabilized in the immunogenically relevant prefusion
conformation [65]. Structural vaccinology has been used to inform the design of vaccines
against HIV and to develop universal vaccines against influenza and, more recently, COVID-
19. Human mAbs have allowed the identification of novel protective antigens, such as
the CMV pentameric complex [66]. Of note, structural changes can be relevant also for
bacterial proteins; therefore, this approach can be used to ensure the proper conformational
presentation of these proteins or to select cross-protective antigens against different bacterial
strains or serotypes [67].

Nanoparticle vaccines: Further advances in protein engineering have allowed the
highly ordered display of epitopes in various nano-sized scaffolds [68]. This type of particle



Int. J. Mol. Sci. 2024, 25, 5487 8 of 21

has the potential to promote antigen location in lymph nodes and enhance antigen uptake
by antigen-presenting cells and B-cell receptor cross-linking as compared to subunit protein
antigens [69]. Self-assembling viral structural proteins are already used in commercial
vaccines targeting the hepatitis B virus, the human papillomavirus and the hepatitis E
virus [70,71]. Today progress in the in silico protein design has enabled the optimization of
protein density and the formation of multimers in the correct conformation [72]. The result-
ing protein nanoparticles can be more immunogenic compared with soluble recombinant
proteins and can be combined with novel adjuvants to obtain optimal antibody titers. An
alternative approach for nanoparticle vaccines is the SpyTag–SpyCatcher technology, which
is based on the spontaneous formation of stable isopeptide bonds between a SpyCatcher
genetically encoded protein and its peptide-partner SpyTag. This approach allowed for the
decoration of virus-like particles with a single antigen, such as the malaria protein Pfs25 [73]
or twin antigens, including, for instance, Pfs25 and Pfs28 [74]. The SpyCatcher/SpyTag
protein ligation technology has been also exploited to link antigens to E. coli virulence factor
hemoglobin protease that can be highly expressed on outer membrane vesicles (OMVs).
Through this approach, OMVs exposing the pneumococcal antigens PspAα have been built,
demonstrating applicability to AMR pathogens [75].

Generalized modules for membrane antigens (GMMAs): GMMAs are OMVs produced
by Gram-negative bacterial strains that have been genetically modified to enhance their
release. GMMAs, and more in general OMVs, are advantageous to favor the presentation
of antigens in their natural environment and conformation and promote uptake by im-
mune cells because of their nanosize. Also, the presence on the surface of lipoproteins and
lipopolysaccharide (LPS) exerts an immune stimulatory effect that enhances immunogenic-
ity. Typically, the lipid A portion of GMMA LPS needs genetic modification to modulate
endotoxicity [76]. A 4-component GMMA-based vaccine against Shigella is currently in
Phase 2 [77,78] and a bivalent formulation of S. Typhimurium and S. Enteritidis GMMAs
(NCT05480800), and its combination with a glycoconjugate vaccine against S. Typhi (Ty-
phibev) (NCT 05480800), have recently entered the clinical phase. OMV-based vaccines
against Neisseria gonorrhoeae are under investigation [79–81] and the GMMA approach has
been exploited to develop a vaccine candidate in the clinical phase (NCT05630859).

Additional engineering can be applied to incorporate heterologous polysaccharides
on the LPS backbone resulting in glycan-decorated GMMAs. Through this approach,
glycosylated OMVs exposing pneumococcal capsular polysaccharides [82] or S. aureus
poly-N-acetylglucosamine (PNAG) have been obtained, showing promising results in
preclinical models [83]. Chemical conjugation of a variety of glycan and protein antigens
has been demonstrated feasible and shown to enhance the immune response against the
target antigens in animal models [84].

Adjuvants: Adjuvants are used to enhance the immune response elicited by subunit
vaccines. Currently, a variety of adjuvants, such as AS01, AS03, MF59, AS04, CpG and
other Toll-like receptor agonists, are licensed [85]. AS01 is a liposomal formulation of
the saponin QS21 and monophosphoryl lipid and has been licensed for a vaccine against
malaria, herpes zoster and, more recently, RSV [86–88]. The AS01 adjuvant has also been
used in an investigational subunit vaccine designed to prevent reactivation of tuberculosis,
which showed 54% efficacy in clinical studies [89]. Oil water emulsions such as AS03
and MF59 have been used to adjuvant the pandemic flu vaccine to achieve dose sparing
along with an increased cross-strain coverage [90] and, more recently, AS03 has been
tested in a Phase 1 study in combination with a tetravalent K. pneumoniae bioconjugate
vaccine (NCT04959344).

RNA: RNA-based vaccines exploit the host cell translational machinery to produce
the selected antigens and proved to be game changers to fight COVID-19 [91,92]. Although
this technology has been mostly applied to viral pathogens, a self-amplifying RNA vaccine
encoding for a double mutant of Streptolysin-O (SLOdm) and the backbone protein of pilus
island 2a (BP-2a) from Group A and Group B Streptococci was shown to induce both humoral
and cellular immunity in mice [93]. More recently, a self-amplifying RNA vaccine that
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targets Plasmodium falciparum macrophage migration inhibitory factor, which is secreted by
the parasite and diminishes the host inflammatory response against infection, was shown
to protect from malaria reinfections in a preclinical model [94]. The fast manufacturing
process and relatively low production cost support the use of this platform for vaccines
against AMR infections. The impact of glycosylation that would occur during the bacterial
protein expression should be taken into account, as this could mask relevant epitopes or
generate unwanted neoepitopes.

4. Recent Advancements in mAbs

Human mAbs are among the most transformative and effective medications against
cancer and autoimmune diseases [95]. Nonetheless, they are rarely employed for the
treatment of infections caused by pathogenic bacteria or viruses. The recent COVID-19
pandemic highlighted the relevance of these innovative drugs, with several candidate
mAbs discovered and approved for emergency use at a pace never seen before [96]. In
the quest for novel approaches against the spread of AMR, mAbs can play a major role
since they bypass the antibiotic mechanisms of action/resistance, are intrinsically safe
and frequently represent the only therapeutic option for immunocompromised patients.
They can be easily mass-produced and benefit from the enormous technological progress
reported in recent years. Finally, mAbs specifically target pathogenic bacteria, thus sparing
the microbiota.

Despite the advantages listed above, only a few antibacterial mAbs have succeeded
in clinical trials, and, to date, three of them have obtained approval from the FDA: Rax-
ibacumab and Obiltoxaximab for the treatment of inhalational anthrax [97] and Bezlo-
toxumab for preventing recurrent Clostridium difficile infections [98]. Additional mAbs
are currently in the discovery or preclinical stage (Table 1). Examples are represented
by monoclonals targeting bacteria enclosed in the WHO priority pathogen list, such as
P. aeruginosa Type 3 Secretion System (T3SS) [16], N. gonorrhoeae lipooligosaccharide [32],
K. pneumoniae O-Antigen and capsule [21,22,99]. All of these bacteria are characterized
by a steady increase in antimicrobial resistance rates and some are even classified as pan-
drug resistant [100]. In this context, mAbs can offer a therapeutic alternative that goes
beyond AMR.

Antibodies, also known as immunoglobulins (Ig), are 150 kDa Y-shaped proteins
produced by B lymphocytes. They are composed of two identical light chains, either
k (kappa) or l (lambda), and two identical heavy chains which determine the isotype:
IgA, IgD, IgE, IgG and IgM. IgG are the most abundant antibodies in human serum and
can be further classified into four subclasses, IgG1, IgG2, IgG3 and IgG4, each of them
with specific features [101]. IgGs exist as monomers and are the most common molecules
for therapeutics thanks to their long serum half-life (21 days), ability to fix complement
(especially IgG1 and IgG3) and regulatory effector functions mediated by the Fragment
Crystallizable (Fc) portion [102]. IgGs consist of two Fragment Antigen-Binding domains
(Fabs) linked to an Fc through a flexible hinge region that confers to Fabs a high degree of
conformational flexibility. The two Fabs comprise a variable domain composed of a pair of
variable domains, one from the heavy and one from the light chain. The complementarity-
determining region of the variable chains defines the Fab antigen-binding site for the
mAb to a specific epitope on the antigen [103]. On the other hand, IgM- and IgE-isotype
antibodies are in clinical trials, although their half-life is shorter than that of IgGs (3 to
5 days) [104,105], whereas IgA molecules have not reached the clinical stage yet despite
their relevance in mucosal immunology [106–108].

Developing mAbs is currently possible thanks to the availability of several methods.
Hybridomas were first generated in 1975 and consist of combining antibody-producing
murine B cells and myeloma cells [109]. Novel methodologies have emerged during the
years for cloning and expression of fully human mAbs and these include phage display
libraries [108], transgenic mice [109], mammalian expression cell lines and the isolation of
mAbs from human B lymphocytes obtained from convalescent or vaccinated individuals.
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The latter approach is frequently referred to as Reverse Vaccinology 2.0 [110] since it exploits
human mAbs as baits for fishing their cognate antigens, which, in turn, can become part of
a rationally designed vaccine.

Finally, the most recent advancements in omics technologies and systems biology have
allowed the prediction of antigens and epitopes exposed on the bacterial surface that can
be targeted by mAbs [111,112].

5. Vaccines and mAbs Mode of Action

Vaccines and mAbs represent two sides of the same coin and should not be considered
to be mutually exclusive but rather complementary in their mode of action. The adaptive
immune response elicited by vaccines is mediated by B cells that produce antibodies
(humoral immunity) and by T cells responsible for cellular immunity. For most vaccines,
the induction of antibodies is critical to confer protection [113]. However, while vaccines
generate immunological memory, train the immune system to recognize external invaders
and induce a protective response that includes antibody production, mAbs do not exert
any training on the immune system nor do they generate memory. However, mAbs
constitute an effective and immediately available shield against infections and are therefore
more suitable than vaccines, which require 2–3 weeks to elicit the immune response,
for addressing health emergencies. On the other hand, vaccines can confer long-lasting
protection whilst mAbs usually have a few months’ half-life (Table 2). Antibodies (either
recombinantly produced mAbs or polyclonal antibodies elicited through vaccination) can
be directed toward exotoxins or bacterial cell surface components, such as proteins and
polysaccharides, and can display a variety of mechanisms of action, depending on the
antibody and its cognate antigen (Figure 4).
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Figure 4. Modes of action of antibodies (either recombinantly produced mAbs or polyclonal anti-
bodies elicited through vaccination). (a) Antibodies can neutralize toxins produced by pathogenic
bacteria, thus blocking the infectious process; (b) antibodies can enhance the opsonophagocytic
activity of macrophages and promote elimination of internalized bacteria; (c) antibodies can recruit
the C1q complement component and initiate the complement cascade, which results in bacterial
membrane lysis by the membrane attack complex; (d) antibodies can bind adhesins on the bacterial
surface, thereby disrupting the interactions within bacteria or between bacteria and abiotic surfaces
or between bacteria and cell receptors, thus interfering with adhesion/invasion of epithelial barriers
and biofilm formation.
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Neutralization is a process by which antibodies selectively bind to either bacterial sur-
face molecules or toxins generated by bacteria, thereby blocking pathogenesis. For instance,
raxibacumab specifically targets PA, the protective antigen toxin of Bacillus anthracis [114].
Another example is represented by bezlotoxumab, which binds to Clostridium difficile toxin
B [98]. The mechanism known as complement-dependent cytotoxicity (CDC) involves
activation of the complement cascade that starts with the recruitment of C1q, which triggers
a series of events leading to the generation of the membrane attack complexes, which in
turn causes perforation of bacterial cell membranes and subsequent lysis. The comple-
ment pathway contributes, for example, to the host’s defense against Salmonella [115],
Shigella [116,117] and N. gonorrhoeae [118]. For this reason, Fc engineering to facilitate
IgG hexamerization has been exploited to enhance complement-dependent bactericidal
properties of mAbs. It has been shown that by inserting specific mutations, namely E345K
and E430G, in the IgG1 backbone, mAbs form hexamers upon binding to their cognate
antigen [119]. Enhanced hexamerization and increased CDC were observed upon engineer-
ing a mAb against N. gonorrhoeae, where higher engagement levels of C1q and increased
bactericidal activity were detected in the presence of the mutagenized mAb compared to
its wild-type version [34]. Notably, the mAb carrying the E430G mutation performed well
in vivo [34].

Through their Fc portion, antibodies can promote opsonophagocytosis, a process
where bacteria are coated by antibodies to enhance their recognition and engulfment by
immune cells such as macrophages and neutrophils, thereby facilitating the elimination
of bacteria by the immune system. The process is known as antibody-dependent cellular
phagocytosis and relies on FcγRIIa’s ability to activate macrophages and increase their
phagocytic effects [120,121]. An example of such antibody functionality is represented by
a humanized mAb against the anti-opsonic Staphylococcal protein A (SpA). This protein
binds to the Fc-domain of most immunoglobulin subclasses and disables the effector
functions of antibodies, resulting in B cell expansion and secretion of antibodies with no
specificity for S. aureus [122]. Mutants lacking the Fc binding property have been tested as
vaccine candidates [123,124]. An anti-SpA mAb was shown to block Spa activity, thereby
promoting complement-dependent cell-mediated phagocytosis of S. aureus in human cord
blood [125].

Interestingly, it was demonstrated that opsonophagocytic killing was dependent
on galactosylation of the Fc portion [126]. While some bacteria developed intracellular
survival mechanisms to evade opsonophagocytic killing, mAbs can exert their protective
action through the promotion of neutrophil extracellular traps (NET) release. For example,
protection against K. pneumoniae infection by IgG1 and IgG3 antibodies was shown to
be associated with NET release in vitro and in vivo [127]. Fc-mediated effector functions
include antibody-dependent cellular cytotoxicity (ADCC), mediated by the interaction of
the Fc domain with the corresponding FcγR. ADCC is mainly caused by Natural Killer
cells, neutrophils and eosinophils upon activation of FcγRIIIa [128].

Also, antibodies can inhibit bacterial adhesion to host cells, especially epithelial cells,
therefore preventing bacterial invasion and infection. Studies on Bordetella pertussis demon-
strated how murine mAbs targeting bacterial virulence factors (hemagglutinin (FHA),
pertactin (Prn), or fimbriae) inhibited bacterial adhesion to epithelial host cells [129]. More
recently, a study by Amerighi and co-workers showed that a mAb against the S. pneumo-
niae RrgA adhesin impeded the colonization of human epithelial cells [130]. Monoclonal
antibodies targeting the K. pneumoniae fimbrial protein MrkA have been isolated through
phage display and hybridoma platforms and shown to elicit strong in vitro and in vivo
protections against a multi-drug resistant strain [131]. Induction of anti-adhesive antibodies
has been also harnessed to develop a vaccine preventing recurrent urinary tract infections
caused by uropathogenic E. coli, which adheres to uroepithelial cells through the fimbrial
protein FimH [132]. Interestingly, since the protein shifts from an extended low-affinity
conformation to a high-affinity compressed form following interactions with the mannosy-
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lated receptor on uroepithelial cells [133], mAbs able to intercept the high-affinity form and
effectively block adhesion have been identified [134].

Lastly, antibodies can prevent biofilm formation or disrupt existing biofilms by in-
terfering with cell-to-cell adhesion mechanisms and attachment to surfaces. Examples,
in this sense, include antibodies directed against Staphylococcus epidermidis biofilm matrix
components, namely PNAG and the accumulation-associated protein, which were shown
to reduce biofilm formation [135–137].

6. Discussion

Vaccines have an enormous potential impact on AMR by reducing antibiotic utilization
and decreasing selective pressure leading to the emergence of resistant strains. For licensed
vaccines, such as those against S. pneumoniae [138] and H. influenzae type B (Hib), the impact
on antibiotic-resistant strains has been shown [40]. The continuous broadening of vaccine
formulations for S. pneumoniae, through the incorporation of new capsular polysaccharides
covering more and more strains, is expected to also impact AMR. An arsenal of technologies
that allow the design of novel and complex vaccines by combining glycan and protein anti-
gens in the same formulations to target different pathogenic mechanisms, as well as diverse
strains, is now available (e.g., bioconjugation, MAPS technology, nanoparticles, GMMA)
(Figure 3) and are being tested at the clinical level (Table 1). For the RNA platform, recent
clinical data showed a quicker waning immunity compared to classic subunit vaccines;
therefore, applicability to bacterial targets will require technological improvements [139].

While new technologies are emerging, identifying a population to prove the clinical
efficacy of a vaccine remains a challenge. Some of the AMR pathogens driving infections
(e.g., recurrent infections by E. coli in the urinary tract [140], severe infections caused
by S. aureus [141], or individuals undergoing elective surgeries and at risk of C. difficile
infections [142]) occur either in a community or in a pre-hospitalization setting with an
incidence compatible with the execution of clinical studies. Targeting infections in the
nosocomial environment, where AMR is a critical problem, remains a challenge for the low
relative incidence of infections associated with the single pathogen [143] and because of
the need for fast-acting one-dose vaccines.

Importantly, compatibility and cooperation between vaccines and mAbs have been re-
ported in the case of SARS-CoV-2 where antibody feedback and epitope masking mechanisms
were shown to increase the breadth of vaccine efficacy [91,144]. An important emerging
challenge for bacterial infections, such as staphylococcal ones, is the pre-exposure of most of
the targeted patients to the bacterium, which seems to present a pre-existing immunity that
those vaccines tested so far fail to shift towards a protective immunity [145,146], and calls for
alternative vaccine approaches and formulations. A more profound understanding of the
immunology behind these infections is needed to guide vaccine development.

Although vaccines for tuberculosis, a major global burden with high levels of drug
resistance, are under clinical evaluation, and a vaccine candidate has shown promising
efficacy in a Ph2 study [147], there is a need to develop formulations with a higher impact
on the infection.

For other AMR pathogens, such as A. baumannii or E. faecium, the identification of
antigens to prevent their infections is ongoing at the preclinical level and none of the
emerging candidates has reached the clinical phase.

Despite the great progress in the field of mAb discovery and development, major chal-
lenges remain. These include a choice of the best animal models that recapitulate human
disease, selection of target patients for effective and timely administration, and mAb doses.
The main explanation for the minor number of approved antibacterial mAbs is the poor cor-
relation between preclinical and clinical study results. Antibodies that are effective in vivo
in animal models often show limited protection in clinical trials, highlighting a discrepancy
that can be explained by the genetic and immunological differences between human and
animal models. For instance, DiGiandomenico and co-workers reported the efficacy of a
bispecific antibody against P. aeruginosa PcrV protein and PsI exopolysaccharide in mouse
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and rabbit models of infection [17,148]. Unfortunately, the candidate medication was not
effective in preventing pneumonia when tested in P. aeruginosa-colonized mechanically
ventilated subjects in a Phase 2 clinical trial [18]. For these reasons, to successfully employ
mAbs as primary therapies against AMR bacteria, establishing clinically relevant in vitro
and in vivo models predictive of success in clinical studies should be considered a priority
and certainly demands long-lasting efforts.

One critical aspect related to the exploitation of mAbs as medications is strictly linked
to their extreme specificity: mAbs recognize well-defined epitopes of an antigen and this can
be a limitation when multiple bacterial serotypes exist such as in K. pneumoniae [149] and S.
pneumoniae [150]. The presence of a thick capsular layer masking potentially conserved pro-
tein antigens constitutes an additional challenge. Finally, the intracellular lifestyle of some
bacterial pathogens has been frequently thought to pose a barrier to mAb activity as anti-
bodies may not be able to cross cell membranes and carry out their protective/therapeutic
functions. However, the discovery of TRIM-21-mediated intracellular restriction of vi-
ral and bacterial pathogens by binding to opsonizing antibodies modified this view and
strengthened the role of mAbs in intracellular immunity [151,152].

While the above issues are being addressed by the research community, considerable
efforts are being made to advance the mAb field. For instance, exploration of mAb-antibiotic
synergies has started [148] and interesting findings have paved the way to generating
antibody–drug conjugates that exploit mAb specificity for targeted antibiotic delivery as
in the case of P. aeruginosa [153] and S. aureus [154]. Of note, Raxibacumab, the first mAb
developed against the B. anthracis toxin, was approved for the treatment of inhalational
anthrax in combination with appropriate antibiotics [155], thus exemplifying the relevance
of additive and/or synergistic effect of mAb-antibiotic cocktails. Antibody engineering is
greatly progressing thanks to the pioneering work in cancer research which is now being
applied to infectious diseases as well. For example, a hexamerization method alternative
to the Hexabody technology and based on the IgM tail-piece has been reported [156];
an IgG1/IgG3 chimeric antibody was described as endowed with enhanced cytotoxic
activity [157]; and bi- and tri-specific antibodies were produced to expand the breadth
of reactivity [158–160]. Special attention is reserved for single-domain antibodies, also
known as VHH (when they originate from camelids) or nanobodies, which are simpler
molecules as compared to full-length human antibodies. A. baumannii-specific nanobodies
have been identified [161], as well as anti-Shigella IpaD VHHs, which inhibit the activity of
the Type 3 Secretion System [162]. Investigation of IgA functional properties in promoting
enchained bacterial growth [163] is paralleled by the design of efficient expression and
purification procedures [164]. Most recently, the delivery of mAbs as mRNA molecules was
validated for an antibody against chikungunya infection [165], while detailed studies of
mAb glycosylation profiles prompted mAb glycoengineering projects with the purpose of
creating new molecules that can modulate the host’s immune system to tackle intracellular
pathogens [166].

Of note, currently, mAb production relies on well-established protocols that do not
require chemical synthesis and allow easy scale-up, although associated costs still rep-
resent an issue, especially if these medications are intended for use in LMICs. Constant
effort should be directed to promote the availability of both therapeutic and prophylactic
approaches to emerging countries where AMR is a major public health problem as well.

Overall, vaccines and mAbs represent two valid complementary approaches to fight
AMR. Synergies between the two technologies have emerged: potent human mAbs can
be isolated from vaccinated subjects or patients naturally exposed to a certain pathogen,
and this can help understand the mode of action of the vaccine, identify novel antigens for
vaccine development and determine antibody functionalities correlating with protection.

7. Conclusions

In conclusion, AMR represents one of the most critical threats to global public health
and the scientific community is committed to fighting this challenge by developing new al-
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ternative therapies to traditional antibiotics. Vaccines and mAbs constitute complementary
valid approaches to this scope. Advancements in the recent years have made innovative
technologies available in both areas. A better understanding of their general applicability
to AMR pathogens and mode of action will help accelerate the development and implemen-
tation of novel interventions. It will also be critical to document and quantify the impact
that vaccination and the use of mAbs can have on antibiotic use and the spread of AMR
to prove their value and support further research in the field. Additional research in the
field is needed to identify optimal antigens to target some pathogens, better understand
the immunology behind some infections still difficult to treat, increase the platformability
of innovative technologies, establish clinically relevant in vitro and in vivo models and
accelerate testing of novel candidates in small size human trials to reduce the probability of
failure in larger and longer clinical trials after spending years with preclinical studies.
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