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S Y S T E M S  B I O L O G Y

Feedback between stochastic gene networks and 
population dynamics enables cellular decision-making
Paul Piho and Philipp Thomas*

Phenotypic selection occurs when genetically identical cells are subject to different reproductive abilities due to cel-
lular noise. Such noise arises from fluctuations in reactions synthesizing proteins and plays a crucial role in how cells 
make decisions and respond to stress or drugs. We propose a general stochastic agent-based model for growing 
populations capturing the feedback between gene expression and cell division dynamics. We devise a finite state 
projection approach to analyze gene expression and division distributions and infer selection from single-cell data 
in mother machines and lineage trees. We use the theory to quantify selection in multi-stable gene expression net-
works and elucidate that the trade-off between phenotypic switching and selection enables robust decision-making 
essential for synthetic circuits and developmental lineage decisions. Using live-cell data, we demonstrate that com-
bining theory and inference provides quantitative insights into bet-hedging–like response to DNA damage and 
adaptation during antibiotic exposure in Escherichia coli.

INTRODUCTION
Cells make decisions in response to changes in gene expression, 
which is unexpectedly noisy even among genetically identical cells 
facing the same environmental conditions (1–3). Such cellular noise 
arises from randomness in the biochemical reactions synthesizing 
proteins. Because these proteins are involved in gene regulatory net-
works, stochasticity in expression levels can affect cellular functions, 
cell proliferation, and survival. The interactions between gene net-
works and population dynamics give rise to phenotypic selection 
even in clonal populations (3–5). Phenotypic selection can have 
functional consequences in development (6, 7), how cells respond to 
stress (8–10), and drug resistance (11–13). Understanding these con-
sequences is important to enhance the function of synthetic circuits 
inside cells (14–16).

The Gillespie algorithm is widely used to simulate stochastic gene 
expression (1). The method exactly simulates reaction dynamics at 
cellular scales, but it implicitly assumes that cells are static and gene 
expression occurs in isolation from dynamic cellular context. Recent 
studies have challenged this static view of cells by examining the effect 
that cell division has on gene expression through mechanisms of par-
titioning of molecules (17–20). Some studies showed that when cells 
compete for growth, the distribution across growing populations dif-
fers from isolated lineages as observed in the mother machine (21–
23). However, the differences between such measures are not well 
understood when gene expression affects cell division.

It is becoming increasingly clear that gene expression noise con-
tributes to cell-to-cell variation in cell growth (24, 25) and cellular 
timings (26). A range of studies have focused on modeling interdivi-
sion time through the expression of a division protein hitting a set 
target level from a fixed basal level (27–31). The model recovers cor-
relations in interdivision time and cell size compatible with the adder 
division rule in bacteria. However, a single division protein consistent 
with time-lapse observations cannot always be identified, and several 
cues may contribute to phenotypic selection when cells respond to 
stress or drugs.

More generally, the coupling of gene expression and cell division 
involves feedback, where gene expression affects cell division frequen-
cy, which modulates expression levels. For example, competition be-
tween cells decreases the interdivision time and, in turn, increases the 
frequency with which molecules are partitioned at cell division (23). 
When gene expression affects the interdivision time (32, 33), which 
we refer here to as division-rate selection, it leads to additional com-
petition. Selection due to differences in division rate is thus distin-
guished from natural selection arising from a competitive advantage 
of fast-growing subpopulations.

Natural selection can, in principle, be probed through switching 
off competition. This can be achieved, for example, by culturing cells 
in a mother machine (34). Yet, differences in division rates are ex-
pected to affect expression levels even in isolated cells and can also be 
engineered artificially (14). A quantitative theory of the interactions 
between gene networks and population dynamics is still missing, and 
it thus remains elusive how to distinguish natural selection from se-
lection on division rate.

We propose a stochastic framework to model cells as agents that 
divide in response to intracellular stochastic reaction networks. The 
model allows us to probe how gene expression contributes to cell pro-
liferation and natural selection and how these effects shape gene ex-
pression. Specifically, we show that the division distributions in 
growing cell populations differ from the first passage distributions of 
conventional stochastic reaction networks due to the consequences of 
division rate, natural selection, and cell history. We provide accurate 
but tractable approximations that provide insights into wide ranges of 
parameter space and allow us to quantify selection effects from time-
lapse observation data.

RESULTS
Analytical framework for stochastic agent-based modeling 
of selection in gene networks
We developed a stochastic agent-based formulation of a growing 
clonal cell population that couples the internal stochastic gene regula-
tory dynamics and the population dynamics via cell division. In the 
model, each cell is represented by an agent (Fig. 1A) that contains a 
gene regulatory network composed of biochemical species X1, …, XNs 
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that react through R intracellular reactions. Consequently, the state of 
each cell is given by its age τ and the molecular content x. The cells 
divide at an x and τ-dependent rate γ(x, τ) where the dependence of 
γ(x, τ) on x encodes the effects of selection on x. For example, if γ(x, 
τ) is a monotonically increasing function in x, then we have positive 
selection and negative selection in the case of monotonically decreas-
ing dependence. There is no selection on x if the division rate depends 
only on τ. Such agent-based models of cell populations can be exactly 
simulated by the extended first division algorithm (see Materials 
and Methods).

Agent-based stochastic simulations are time- and resource-
consuming, especially in the context of parameter inference, when 
large numbers of parameterizations need to be checked. We can make 
analytical progress by considering the long-term behavior of the 
mean number of cells n(x, τ, t) with molecule counts x and age τ that 
grows exponentially with time t (section S1). Normalizing this quan-
tity leads to a stable snapshot distribution Π(x, τ) = Π(x∣τ)Π(τ), 
where Π(x∣τ) is the (conditional) snapshot distribution of molecule 
numbers for cells with a given age τ, and Π(τ) is the age distribution 
given by Π(τ) ∝ ∫ τ

0
ds eλ(s−τ)ν(s) . The age distribution is consistent 

with the age-structured models of McKendrick and von Foerster (35). 
In their models, the interdivision time distribution ν affecting cell age 
and division and determining the population growth rate λ is typi-
cally assumed to be a fixed parameter or provided by experimental 
data. However, the (conditional) snapshot distribution is less studied, 
and, as we will see, interdivision time distribution generally depends 
on the gene network dynamics in the presence of selection.

We derived the first passage distribution ν(x, τ) for a cell to di-
vide at state x and age τ, henceforth called the division distribution 
for brevity

Here, m is the number of offspring at cell division and γ(τ) = EΠ[γ(x, 
τ)∣τ] is the marginal division rate with respect to the conditional 
distribution Π(x∣τ). The snapshot distribution Π(x∣τ) of gene ex-
pression satisfies a master equation

which has to be solved along with a boundary condition that con-
nects the molecule numbers at cell birth and division

Biochemical reactions are encoded by the transition matrix

where δ is the Kronecker delta, wr(x, τ) are the (potentially cell cycle–
dependent) reaction propensities, and vr is the reaction stoichiom-
etry. The partitioning kernel K(x∣x�) = 1

2
K1(x∣x

�) +
1

2
K1(x

� − x∣x�) 
where K1(x∣x′) and K1(x′ − x∣x′) are the marginal distributions of 
molecules inherited by the two daughter cells from the mother cell 
with intracellular state x′.

The theory highlights the intricate feedback that exists between 
gene expression and cell division and underlies division-rate selec-
tion. The division rate multiplies the gene expression distribution in 
the division distribution (Eq. 1A), meaning that cells where γ(x, τ) is 
low are underrepresented, while cells with high division rate are over-
represented. The division distribution then determines the distribu-
tion at cell birth (Eq. 1C) and the time evolution of the gene expression 
distribution (Eq. 1B). The latter differs from chemical master equa-
tion models as the frequency of gene expression phenotypes is not 
only determined by biochemical reactions but modulated by division-
rate selection throughout the cell cycle.

Natural selection contributes to this feedback through the exponen-
tial dependence of the division distribution on the population growth 
rate. Cells dividing slower than the population doubling time are un-
derrepresented in the division distribution compared to cells that divide 
faster. The strength of natural selection is controlled through the num-
ber of offspring at cell division. For example, for a lineage tree of cellular 
agents, we have m = 2, and the population growth rate λ needs to be 
computed self-consistently through normalizing Eq. 1A, while, in the 

ν(x, τ)=me
−λτ

e

−

τ

∫
0

dsγ(s)

γ(x, τ)Π(x∣τ)

(1A)

[

�

�τ
+γ(x, τ)−γ(τ)

]

Π(x∣τ)=ℚ(τ)Π(x∣τ) (1B)

Π(x∣0) = m

∞

∫
0

dτ
∑

x� ∈ S

K(x∣x�)ν(x�, τ) (1C)

ℚ
x,x� (τ) =

R
∑

r=1

wr(x
�, τ)(δ

x,x�+vr
− δ

x,x� ) (2)

A B C

Fig. 1. Quantifying interactions between gene networks and population dynamics with agent-based modeling of clonal populations. (A) Cartoon of the agent-
based model where intracellular reaction network couples to cell division. Intracellular reactions affect cell division rate (red arrow), while partitioning of molecules dilutes 
cellular expression levels (black repressive arrow). (B) Lineage statistics of agent-based models measure distributions across lineage tree resulting from competition of 
cells through natural selection. A mother machine lineage (green line) follows a single cell in the lineage tree starting from an ancestral cell and following each daughter 
cell with equal probability. Mother machine sampling avoids natural selection, i.e., competition of cells for growth (red arrow). (C) Illustration of division distributions for 
a cell to divide at a given age and protein count for a lineage tree of cells including division-rate selection and natural selection (red), a lineage tree without division-rate 
selection (blue), and the corresponding mother machine lineages (green and orange).
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mother machine setting, i.e., considering an isolated cell lineage, 
we have m = 1 and λ = 0. The difference between mother machine 
lineages and lineage trees provides a measure of natural selection 
(36–39). The theory extends to cell growth and cell size control 
through an effective division rate (see Materials and Methods) and 
thus provides a coarse-grained view of gene expression–induced 
selection effects.

Division-rate versus natural selection in the telegraph gene 
expression model
To study selection effects, we consider the telegraph model (Fig. 2A) 
where a promoter switches between active and inactive states. Once 
the promoter is activated, a protein is produced in random bursts. Se-
lection in our model is introduced through the division rate, which we 
assume to be of the form

where s(x) describes the effects of gene expression levels x on the 
division rate and g(τ) is the division rate in the absence of selec-
tion on the gene expression (see also Materials and Methods on 
modeling growth rate–dependent selection). Our main equations 
(Eqs. 1A to 1C) cannot be solved in closed form because they are 
essentially an infinite system of coupled integro–ordinary differ-
ential equations (ODEs). An analytical solution is only known in 
the special case with deterministic divisions and without selec-
tion (20, 40, 41).

To overcome this challenge, we developed a powerful approxima-
tion based on the finite state projection (FSP) method (see Fig. 2B and 
Materials and Methods). In brief, the method consists of restricting 
the dynamics to a finite subset of the state space  ⊂ S for x and solv-
ing the dynamics of Eqs. 1A to 1C up to a finite cell age τmax. This is 
akin to what is done in the standard FSP method (42), but, in addi-
tion, we introduce (i) cell division events that split the dividing cell via 
partitioning of molecules leading to m newborn cells and (ii) events γ(x, τ) = s(x)g(τ) (3)

A B C D

E F G

x

Fig. 2. FSP enables accurate prediction of selection on gene expression noise. (A) Schematic illustration of the agent-based model. Intracellular dynamics of stochas-
tic gene expression are modeled by the telegraph model for bursty expression of a protein. The protein is binomially partitioned at cell division. The selection effect is 
introduced through a division rate increasing with expression (details in section S3A). (B) Illustration of the finite state projection (FSP) algorithm. Intuitively, gene expres-
sion (light arrows) drives cells to either commit to division or cross the truncation boundary, leading to their states being reinitialized (dark arrows). (C and D) Birth and 
division distributions for the model converge in a few iterations and agree with agent-based simulation of lineage trees obtained using the first division algorithm (Mate-
rials and Methods; see fig. S1 for mother machine lineages). Top inset of (C) shows the used selection functions [s(x) = 1 for no selection, s(x) = 1/((20/x)2 + 1) for selection 
on the gene expression]. Bottom inset shows the convergence of the computed population growth rate λ (see Materials and Methods). (E) The exit probability due to FSP 
truncation decreases with truncation size and time horizon τmax. (F) Summary distributions without (blue solid line) and with selection (red solid line) are compared to 
direct simulations of the lineage trees (shaded areas). Our method is in agreement with the simulation results. Distributions obtained using mother machine lineages 
(dashed) are also shown. (G) FSP solution of the agent-based model predicts bimodal division distribution without division-rate selection (blue lines correspond to levels 
of equal probability) and an unimodal division distribution in the presence of division-rate selection.
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that reinitialize single-cell trajectories once they leave the prescribed 
state space (Fig. 2B).

For the case without selection, we set the expression-dependent 
selection function in the telegraph model to be s(x) = 1 and a Hill 
function for positive selection (Fig. 2C, top inset). We computed the 
birth and division distributions for a fixed truncation size (Fig. 2, C 
and D) along with the corresponding growth rate (Fig. 2C, bottom 
inset). We observe that the iterative scheme converges (Fig. 2, C and 
D) and the method allows us to compute the exit probability that 
arises from state space and cell age truncation (Eq. 4 and Fig. 2E). 
Equation  8 corresponds to an Euler-Lotka equation of population 
dynamics (43) up to an error term that involves the exit probability. 
The exit probability measures the proportion of cells that reach the 
truncation boundary and are thus reinitialized instead of dividing. It 
decreases monotonically with maximum age τmax and truncation 
size (Fig. 2E) guiding the accuracy of the approximation. The result-
ing FSP solution (Fig. 2, C and D, shaded area) also agrees well with 
simulations using the first division algorithm (dots; see Materials and 
Methods).

Our analysis predicts bimodal distributions without selection on 
the gene expression, while the distributions with selection are uni-
modal (Fig. 2, F and G). Bimodality in the absence of selection arises 
from slow promoter switching (44). Such long lived transcriptional 
states can arise from transcription factor–mediated looping of DNA 
as observed in the lactose operon of Escherichia coli (45). To clarify 
whether the absence of the zero mode is due to the slow-growing sub-
population being outcompeted or due to division-rate selection on 
the gene expression, we also computed the division distributions of 
mother machine lineages (Fig. 2F). We observe qualitatively similar 
division protein distributions for both population lineage trees and 
mother machine lineages and division-rate with natural selection in 
the population skewing distributions toward lower expression levels. 
Intuitively, this can be understood through Eq. 1A, which is pro-
portional to the division rate, while division times longer than the 
population doubling time are exponentially suppressed. Division-rate 
selection on the gene expression accounts for the absence of the slow 
subpopulation in both measures. This highlights that selection in the 
telegraph model is primarily driven by division rate.

Growth feedback reinforces lineage decisions in multi-stable 
gene regulatory networks
We wondered whether simple patterns of selection are important for 
cell fate decisions. Traditionally, cell differentiation is associated with 
multi-stability in gene regulatory networks shaping Waddington land-
scapes (46). It is known that protein expression modeled by the birth-
death process leads to unimodal distributions both in mother machine 
and lineage trees (22). We therefore considered positive feedback loops 
that are commonly associated with bistability and bimodal distribu-
tions (Fig. 3A). In the model without selection, a protein is expressed 
from a promoter, which, in turn, increases its own expression. The pro-
duction rate is modeled as constant basal transcription rate α along 
with a Hill-type function creating a positive feedback loop. Simulation 
of population histories [a random lineage of a lineage tree; (36)] and a 
mother cell lineage show large fluctuations (Fig. 3B), leading to long-
tailed or bimodal distributions (Fig. 3, C and D).

This phenomenon can be understood in terms of slow switching 
between discrete states of an effective dilution model (EDM). These 
effective reaction networks add one dilution reaction per species to 
the reaction network and can be simulated easily using ODEs or 

Gillespie simulations. Our analysis of the ODE model of the network 
reveals the S-shaped multi-stable response to changes in the basal 
transcription rate (Fig. 3C, dashed black line). Characteristically, trac-
es simulated through the Gillespie simulations switch between two 
equilibria of high and low gene expression that correspond to modes 
in the stationary probability distributions (Fig. 3C, solid blue line). 
Both the lineage tree and mother machine lineages show bimodal 
snapshot (Fig. 3C) and division distributions (fig. S2) and thus quali-
tatively agree with the EDM over large parameter regimes. However, 
a quantitative comparison of the snapshot protein distributions re-
veals different noise characteristics. EDM gives a better approxima-
tion to the mother machine lineage formulation than the lineage trees 
but underestimates the noise because it provides only an effective de-
scription of cell divisions (Fig. 3D).

Because of the presence of random switching, differentiation of this 
circuit can only be achieved when an external parameter is varied. Yet, 
how to design circuits that differentiate irreversibly in the absence of 
fine-tuned signals remains unclear. To this end, we study an extended 
circuit where additional feedback is introduced to the model via divi-
sion rate (Fig. 3E). Cell division is modulated through the repressive 
Hill-type selection function. The extra feedback changes the parameter 
regime where multimodality appears and in some parameter regimes 
introduces an additional steady state in the EDM (Fig. 3G).

Simulations of mother machine lineages show switching be-
tween the tree expression levels with very slow cell divisions in the 
highly expressed states (Fig. 3F, orange line). In stark contrast, the 
histories of population lineage trees display fast divisions selecting 
only the low-expression state (Fig. 3F, red line) due to the negative 
feedback between expression and division rate. The higher expres-
sion level states in a population get rapidly outcompeted by fast-
dividing cells. Comparing the distribution modes of the different 
measures, we observe that the EDM model explores all three states 
(Fig. 3, G and H, and fig. S3). The mother machine lineages mostly 
explore the two high expression states corresponding to slow-
dividing cells, while the population lineage trees display exclusively 
the lowly expressed state that promotes fast cell proliferation. A 
similar effect, with the fast-dividing subpopulation being selected 
in lineage trees, is observed when removing the transcriptional 
feedback loop, which also includes an additional steady state due to 
growth feedback (fig. S4).

We asked whether selection could provide a general mechanism 
for lineage decisions beyond the single-gene feedback models. We 
considered the genetic toggle switch as a common motif in synthetic 
biology, which comprises two antagonistic proteins inhibiting each 
other (Fig. 3I). The protein A is assumed to be under selection through 
the Hill-type selection function. The circuit dynamics are nontrivial 
as selection only acts on protein A, while the dynamics are tightly 
coupled with protein B.

To analyze the balance between the division-rate selection and nat-
ural selection, we again compared the mother machine lineages with 
lineage trees. The trajectories of the mother machine lineages explore 
fast- and slow-dividing states, while lineage tree histories settle into the 
fast-dividing state where protein A is more highly expressed (Fig. 3, J 
and K). The effects are confirmed by estimating the modes of the dis-
tribution computed using FSP where mother machine lineages are bi-
modal in close agreement with the EDM (Fig. 3, L and M). In contrast, 
the protein distributions in lineage trees are unimodal (Fig. 3, L to N). 
We observe that the bimodality in protein distributions of mother ma-
chine lineages was weaker at division (Fig.  3N) than in snapshots 
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Fig. 3. Selection reinforces lineage decisions in cellular switches. (A to D) Agent-based model of transcriptional feedback. (A) Illustration of the transcriptional feed-
back model where protein expression promotes its production with parameter α corresponding to a basal transcription rate. Proteins are partitioned binomially at cell 
division. (B) Agent-based simulations of lineage tree histories and mother machine lineages (α = 4.0) obtained using the first division algorithm (see Materials and Meth-
ods) display switching between low– and high–protein expression states. Individual cell divisions are shown as dots to indicate the timescale of cell divisions. (C) Modes 
(local maxima) of the snapshot protein distributions. FSP solutions of the agent-based model predict bimodal distributions of mother machine (orange) and lineage trees 
(red) over intermediate basal production rates. The EDM (black and blue) agrees well with the mother machine solution. (D) FSP solutions show a transition from uni-
modal to bimodal distributions. (E to H) Agent-based model with transcriptional and growth feedback [s(x) = k2/((x/K2)4 + 1)] where protein synthesis inhibits division rate 
and promotes its own production rate. EDM and mother machine lineages have three stable modes, while lineage trees show that fast-dividing cell lineages take over the 
population. (F) Agent-based simulations of mother machine lineages (basal transcription rate α = 644.0) show switching between low and high protein levels, while, in 
lineage tree histories, the fast-dividing lineages determine the cell fate. (I to O) Agent-based model of the genetic toggle switch. Induction strength α corresponds to the 
maximal transcription rate of protein B. Protein A is under selection via selection function of the form s(x) = k3/((K3/xA)2 + 1). (N to O) Snapshot and division protein distri-
bution display multimodality and a long tail, respectively, in the mother machine lineages (blue, α = 18.9). The fast-dividing subpopulation is selected in the lineage trees 
(red). Parameters and model details in section S3 (B and C).
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(Fig. 3O), implying that division-rate selection shapes the balance be-
tween these states.

The effect of division-rate selection in mother machine lineages 
can be seen as an overrepresentation of slow-dividing cells in snap-
shots compared to the division distributions that occur because cells 
spend more time in these slow states. This suggests that division-rate 
selection acts on division times in mother machine lineages in similar 
directions to natural selection on lineage trees. However, only because 
of natural selection, do fast-dividing cells eventually outcompete the 
slow-dividing ones (figs. S6 and S7). The coupling between gene ex-
pression and growth thus represents a robust strategy to implement 
cell fate decisions in natural and synthetic populations.

Model-based inference predicts DNA damage response from 
division-rate selection
We now apply our modeling framework to understand how cells re-
spond to stress. To this end, we investigate the activity of the SOS path-
way quantified using the SOS promoter PsulA driving the expression 

of a fluorescent reporter (47). Unexpectedly, we found that the expres-
sion of the reporter is highly heterogeneous even in unstressed condi-
tions (Fig.  4C, blue-shaded bars). We use a bursty gene expression 
model to quantify the expression of PsulA (Fig. 4A and section S4B). 
Although we only model a single gene, burstiness describes both ex-
pression noise and upstream variability (48). The simple model fits the 
data well (Fig. 4, B and C, blue line).

In the model, we assumed the division rate to be in the form of 
Eq. 3, where s(x) models a damage-induced modulation and g(τ) is 
the division rate in unstressed conditions. The latter can be inferred 
directly from the interdivision time data of the wild type [s(x) = 1] 
using a nonparametric kernel density estimator (Fig. 4B, blue-shaded 
bars) and fits well the interdivision time distributions. To infer the 
reaction kinetics in unstressed conditions, we convert fluorescence 
measurements to molecule numbers (fig. S8) and define a likelihood 
function via the division distribution ν(x, τ) that can be maximized 
using Bayesian optimization [see Materials and Methods; (49)] to fit 
the reaction parameters, i.e., burst size and burst frequency.

A B C D

E F G H

Fig. 4. Inference of selection effects in E. coli cells. (A) Agent-based model of the SOS response involves a bursty gene expression model with an age-dependent divi-
sion rate and binomial partitioning at cell division. DNA damage is induced through a gene expression–dependent modulation of the division rate. (B and C) Interdivision 
time and protein distributions from the mother machine lineages [fluorescent reporter, medium growth conditions; (47)] in unstressed (blue area) and damage-induced 
mother machine lineages (red area) are well fit by the agent-based model (m = 1; see section S4B for fit parameters). The inset shows the selection function s(x) obtained 
in damage-induced conditions. (D) The division distribution of the fitted model shows a distinctly peaked distribution (red lines) that compares well with the experimen-
tal distribution (red-shaded area) and single-cell traces of the data (representative traces shown in black and gray). (E) Agent-based model of antibiotic resistance gene 
expression using a bursty gene expression model with age-dependent division rate. Antibiotic treatment response involves positive feedback of protein expression and 
division through a gene expression–dependent division rate and adaption of gene expression parameters. (F and G) Statistics of the division distribution of the lineage 
trees [fluorescent fusion-protein genome-integrated reporter; (36)] in untreated (blue area) and antibiotic-treated cells (red area). Lineage tree data is well fitted by the 
agent-based model combining drug-dependent selection and adaptation (red solid line), but not using selection alone (red dashed line, m = 2, parameters in sec-
tion S4B). The inset shows the corresponding selection functions s(x) obtained in treated conditions. (H) The division distribution under treatment shows a peaked distri-
bution (red lines) that compares well with the experimental distribution and single-cell traces of the data (representative traces shown in black and gray).
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When DNA damage was induced, cells displayed a long tail of 
slowly dividing cells and increased levels of SOS pathway expression 
(Fig. 4, B and C, red-shaded area). Intuitively, this could suggest not 
only up-regulation of the SOS pathway as a stress response but also 
positive selection on SOS levels. We investigated this by inferring 
stress-induced selection function s(x) (Fig. 4B, inset; see section S4B) 
but kept the reaction parameters as in unstressed conditions, which 
provided good agreement with the data (Fig. 4, B and C, red solid line). 
We hence conclude that up-regulation of SOS expression is not re-
quired to fit the data. We wondered whether these effects could equally 
be explained through a neutral model without selection but with dif-
ferent interdivision time distributions. The latter gave a worse fit as it 
overestimated the protein-interdivision time correlation (fig. S9).

Our findings thus suggest that the DNA damage response is driven 
mainly by division-rate selection in this system. The observation al-
ludes to a possible bet-hedging strategy in E. coli where SOS expres-
sion is heterogeneous in unstressed conditions to better deal with 
environmental changes in stress levels (50).

Antibiotic resistance gene expression involves division-rate 
selection and adaptation
As a second application, we considered time-lapse data of E. coli express-
ing an antibiotic resistance gene SmR, an efflux pump conferring resist
ance to streptomycin (36). Again, we find that protein distributions are 
highly heterogeneous even in the absence of antibiotics and can also be 
fitted by a bursty model involving a single gene (Fig. 4, E to G, blue solid 
line) parameterized through burst size and burst frequency.

We wondered whether antibiotic resistance gene expression repre-
sents a possible bet-hedging strategy similar to one observed for the 
SOS response (Fig. 4, A to D). To this end, we again modeled the divi-
sion rate via Eq. 3, where now g(τ) is the division rate in the absence 
of antibiotics [s(x) = 1] and s(x) is a drug-induced modulation of divi-
sion rate. We converted fluorescence to molecule numbers (fig. S10) 
and used Bayesian optimization to fit the protein-dependent modula-
tion of the division rate s(x) underlying the interdivision time and 
protein distributions under conditions where cells have been exposed 
to sublethal doses of antibiotics. While this division rate described 
well the reduction in protein expression (Fig. 4G, red dashed line), it 
failed to account for the increase in interdivision time (Fig. 4F, red 
dashed line). Similarly, a model with no selection but matched inter-
division time distributions did not fit the protein expression data 
(fig.  S11). Intuitively, the data suggested attenuated protein expres-
sion, while cells divided slightly slower (Fig. 4, F and G, red area), 
which is inconsistent with the division-rate selection model.

We thus hypothesized that cells adapt gene expression during 
treatment. Allowing for selection on the protein as well as adjusting 
the rate parameters, modeling the adaptation to the new conditions, 
provides good agreement with the experimental data. The model fits 
the interdivision time (Fig.  4F, red solid line), division protein 
(Fig. 4G, red solid line) as well as the joint division distribution of 
protein count and interdivision time (Fig. 4H, red solid line). Our 
results suggest that burst size roughly doubles after treatment (sec-
tion S4B). This highlights that adaptation plays an important role in 
the drug response in E. coli.

DISCUSSION
We developed an agent-based framework for quantifying the 
feedback between stochastic gene expression, cell division, and 

population dynamics. Our approach allows us to derive the divi-
sion distributions of lineage trees directly accessible in live-cell 
imaging of growing cell populations. These distributions are gen-
erally distinct from the first passage distributions of the conven-
tional chemical master equation due to the effects of division rate, 
natural selection, and cell history. Our findings thus provide a 
quantitative understanding of how natural selection and division 
rates shape phenotypes and allow decision-making in response to 
gene expression.

Our method enables accurate solutions of agent-based models 
and efficient parameter inference. Previous approaches typically re-
lied on costly agent-based simulations (51). To this end, we proposed 
a FSP solution. We identified the exit probability of crossing the state 
space, which serves as an error gauge and quality assurance of the 
numerical scheme resulting from truncating the state space and set-
ting a finite maximum age for cells. However, the FSP method (like 
the master equation) presents a large system of coupled differential 
equations. Tensor-train methods and clever state space truncations 
have alleviated some of these challenges (52).

Multi-stable gene regulatory networks are fundamental in develop-
ment, triggering cellular responses, and cell fate decisions. Naturally, 
these networks require environmental signals for robust decision-
making, while, otherwise, they are subject to continuing fluctuations 
that can lead to reversible phenotypic switching. Our methodology al-
lowed us to understand several models implementing positive feed-
back between protein expression and division rate. We showed that 
positive feedback coupled with population dynamics leads to phe-
notypic switching of mother machine lineages but to phenotypic 
selection in the histories of lineage trees, demonstrating that mother 
machine lineages generally do not represent typical cell lineages. Intui-
tively, the mother machine samples lineages with a probability that 
decreases exponentially with the number of divisions, thus oversam-
pling slowly dividing cells compared to lineage trees (36). Division-rate 
selection presents a robust mechanism of irreversible lineage choice in 
a population. This mechanism requires slow-cycling progenitor cells as 
observed in stem cell lineages (7, 53, 54). Mother machine lineages and 
lineage tree histories, which originate from the same ancestral cell, 
both display phenotypic switching initially but then gradually diverge 
over time due to natural selection (figs. S6 and S7). This trade-off could 
present a strategy for adaptation to changing environments.

The present framework provides multiple advantages over previ-
ously proposed stochastic modeling approaches for single-cell data. 
Our framework revealed irreversible cell fate decisions that cannot be 
captured using traditional chemical master equation models. The 
agent-based approach goes beyond the snapshot statistics because it 
explicitly accounts for age structure. This allows us to assess lineage 
statistics and dynamics, such as cell birth, division events, or certain 
cell cycle stages. As we have demonstrated, this information is readily 
available from time-lapse data and allows for parameter fitting and 
model selection. Although we focused on division rate, growth rate is 
coupled to gene expression and, hence, is an important factor for se-
lection (9, 25, 55). Our framework extends to cell size control through 
an effective division rate (see Materials and Methods) where selection 
strength is proportional to the cell growth rate. Analyzing growth and 
cell size dynamics could disentangle the effects of division and growth 
rates and provide further data insights (56).

Our agent-based theory provides crucial insights into how cells 
respond to stress and drugs based on gene expression and division 
feedback. To this end, we used Bayesian optimization for parameter 
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inference on two single-cell datasets in E. coli (36, 47). The frame-
work allowed us to efficiently integrate data from multiple conditions 
to identify selection effects and evaluate competing model hypothe-
ses. Our stochastic model suggested that the increase in SOS pathway 
expression in response to induced DNA damage (47) does not re-
quire up-regulation of SOS expression but is achieved effectively 
through division-rate selection. This suggests that heterogeneous 
SOS expression in unstressed conditions could provide a bet-hedging 
strategy. A similar model applied to the response of an antibiotic re-
sistance gene revealed that division-rate selection alone was not suf-
ficient to explain the data but that cells adapt their gene expression 
during treatment.

Crucially, our analysis quantified changes in gene expression and 
interdivision times between different experimental conditions. Yet, 
we cannot exclude that selection effects are present even in suppos-
edly neutral conditions. It remains to be seen whether differences 
between division-rate and natural selection can be quantified from 
time-lapse observations of individual lineage trees. For simplicity, 
we assumed a multiplicative selection model, Eq. 3, where gene ex-
pression–dependent effects act independently from other sources 
effectively modeled through cell age. Studying the effects of cell 
cycle–dependent feedback on selection would be an interesting 
avenue for future research.

Our theory enables us to understand how variability in gene ex-
pression shapes phenotypes and propagates to population dynamics. 
We used the method to uncover mechanisms of cell fate decision-
making, study how cells respond to stress, and adapt their gene expres-
sion programs in response to drugs. Our findings thus substantially 
advance the understanding of how cells make decisions through cou-
pling gene networks with growth and division. Looking beyond gene 
expression, our framework could more widely be used to study pheno-
typic selection on other processes that affect growth, such as mito-
chondrial turnover (57). We expect our methods to provide insights 
into the role of heterogeneity in growth-associated diseases and drug 
resistance, such as in cancer (58).

MATERIALS AND METHODS
First division algorithm for exact agent-based simulation
We present an exact simulation algorithm to the agent-based 
model of cells in a growing population from time t0 to T. This is 
an extended version of the first division algorithm (22) and the 
Extrande thinning method for sampling division times (59). The 
algorithm uses a lookup horizon Δt over which the division rate 
can be bounded.

1. Initialization: Initialize the cell population at time t = t0 by 
assigning each cell i an age τi(t) at time t and molecule count vector 
xi(τi(t)).

2. Intracellular reaction dynamics: For each cell i simulate the tra-
jectory of molecule counts in the age interval [τi(t), τi(t + Δt)] using 
the Gillespie algorithm.

3. Cell division times: For each cell i sample the division time td,i 
via the thinning method.

a) Compute an upper bound of the division rate by γmax ≥ 
γ(x(τ(t)), τ(t)) for all t in [t, t + Δt].

b) Sample an event time t∗ from exponential distribution with 
rate γmax. The proposed division time is then tp = t + t∗.

i. If tp > t + Δt, then reject the proposed division time tp 
and conclude that the cell does not divide in this time interval.

ii. If tp ≤ t + Δt, sample a u from uniform distribution on 
the interval [0,1] and consider two options. Accept the proposed time 
tp as the next division time for the cell if   γ(x(τ(tp),τ(tp)))

γmax

≤ u . Otherwise, 
set t = tp and repeat from step 3b.

4. Next division time: Determine the next cell to divide by j = 
argminitd,i.

5. Cell division: Replace the dividing cell j by two daughter cells at 
age 0. Set the molecule counts of one by sampling from the partition-
ing distribution K1(x∣xj(τ(td,j))) and give the remaining molecules to 
the other daughter. Simulate the intracellular reaction dynamics of 
the two daughter cells for the time interval [td,j, t + Δt] and sample 
their division times as in step 3.

6. Repeat steps 4 and 5 until no more divisions occur in the time 
interval [t, t + Δt]. Set t = t + Δt and xi to the molecule counts of cell 
i at time t. If t ≥ T, then stop; else, go to step 2.

FSP-based solution to the agent-based model
We developed the FSP scheme for growing cell populations. FSP relies 
on considering the dynamics over a finite truncated state space  ⊂ S 
for x. The scheme effectively computes Π�

n
(x∣τ) = Πn(x∣τ)e

−∫ τ
0

dsγ(s) , 
the product of the probability that cells have x molecules when they 
reach age τ and the probability that cells have not yet divided at that 
age. The cells that leave the truncated state space or do not divide in 
the age interval [0, τmax] are reinitialized at age 0 according to the divi-
sion kernel K(x∣x′). The corresponding exit probability to be reinitial-
ized is given by

which can be self-consistently computed along with the FSP approxi-
mation. q(x, τ) is the rate with which the cells with intracellular state x 
leave the truncated state space. That is, we define  q(x, τ) =

∑

x∈ ℚx,x(τ) , 
and the complement  = S ∖  are the intracellular states outside the 
truncation boundary. The first term of Eq. 4 corresponds to the proba-
bility mass leaving the population though the FSP boundary states 
into the complement  while second to the probability mass of cells that 
do not divide in the interval [0, τmax]. The algorithm is as follows:

1. Set n = 0 and provide an initial guess for the birth distribution 
Π�

0
(x∣0) and growth rate λ0.
2. Solve

where ℚ is defined as

for all x in .
3. Solve

εn(x, λn)=

τmax

∫
0

dτq(x, τ)Π�
n
(x∣τ)e−λnτ

+e−λnτmaxΠ�
n
(x∣τmax)

(4)

�

� τ
Π�

n
(x∣τ) =

[

ℚ (τ) − γ(x, τ)
]

Π�
n
(x∣τ) (5)

ℚ (τ)Π�
n
(x∣τ) =

∑

x� ∈
ℚ

x,x� (τ)Π
�
n
(x�∣τ) (6)

νn(x, τ) = me
−λnτγ(x, τ)Π�

n
(x∣τ) (7)

1 −
∑

x∈
εn(x, λn) =

τmax

�
0

dτ
∑

x∈
νn(x, τ)

(8)
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to obtain the growth rate λn and the division distribution νn(x, τ).
4. Update the boundary condition Π�

n+1
(x∣0) using

5. Repeat from step 2 until λn and Π�
n
(x∣0) converge.

For mother machine lineages, we have m = 1 and the population 
stays constant and, hence, λn = 0 for all n. In this case, only the initial 
condition Π�

n
(x∣0) is iterated. The details of the derivation are given in 

section S1A.

Modeling growth rate–dependent selection via effective 
selection strength
We consider an extended model where selection is modeled by gene 
expression–dependent growth and division rates. Cells grow expo-
nentially where the cell growth rate α(x) is a continuous function of 
the gene expression state x. The division rate γ(x, ς, τ) here also de-
pends on cell size ς, which implements common models of cell size 
control such as adders and sizers. The stable snapshot distribution 
satisfies [section S1A; see also (60)]

with boundary condition

Here, the inherited size fraction θ has distribution ρ(θ), which influ-
ences the molecule-partitioning kernel K(x∣x′, θ) and also determines 
size partitioning via G(ς ∣ ς�) = ∫ 1

0
dθρ(θ)δ(ς − ς�θ) , where δ is the Dirac 

delta function. This model reduces to Eqs. 1A to 1C by defining

as the effective division rate, the effective transition matrix, and the 
effective partitioning kernel, respectively (section S1A). Note that, for 
cell size–dependent propensities, this amounts to using averaged pro-
pensities wr(x, τ) = EΠ[wr(x, ς, τ)∣x, τ] in Eq. 2.

To analyze dependence the effective division rate, we state that 
the division rate can be written as

where, now, explicitly, α(x) models growth rate–dependent selec-
tion and β(x) models division-rate selection and g(ς, τ) is the cell 
size control (56, 61). This leads to

when neglecting the dependence of gene expression on cell size, i.e., 
EΠ[αςg(ς, τ)∣x, τ] ≈ g(τ) and α denotes an arbitrary reference growth 

rate without selection. Hence, growth rate–dependent selection can 
be modeled via an effective selection strength s(x) = α(x)β(x)

α
.

Inference from single-cell data
To perform parameter fitting for the agent-based models, we defined 
a log-likelihood based on N-independent observations of the divi-
sion distribution ν(x, τ) as

where (xi, {xi,j}mj=1, τi)i=1,…,N are the observations of protein counts 
of mother cell at division, protein counts of the daughter cells, and 
interdivision times, and where Θ is the vector of parameters of 
the model.

Inference of reaction kinetics and division rate requires absolute 
quantification of protein numbers. Assuming that the partitioning of 
molecules between the daughter cells is binomial with parameter 1

2
 , a 

linear relationship fi = a ⋅ xi between fluorescence f and absolute pro-
tein number xi can be obtained (section S4A). In practice, one fits the 
relation between the partitioning variance of daughter fluorescence 
conditional on mother fluorescence (figs. S8 and S10). The inference 
problem then becomes

(fi, τi)i=1,…,N are the measured fluorescence intensity at division 
and the corresponding interdivision times. The details on the imple-
mentation are given in section S4C.

Supplementary Materials
This PDF file includes:
Sections S1 to S4
Figs. S1 to S11
Tables S1 and S2
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