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ABSTRACT
Our performance on cognitive tasks fluctuates: the same individual completing the 
same task will differ in their response’s moment-to-moment. For decades cognitive 
fluctuations have been implicitly ignored – treated as measurement error – with a 
focus instead on aggregates such as mean performance. Leveraging dense trial-by-
trial data and novel time-series methods we explored variability as an intrinsically 
important phenotype. Across eleven cognitive tasks with over 7 million trials, we 
found highly reliable interindividual differences in cognitive variability in every task we 
examined. These differences are both qualitatively and quantitatively distinct from 
mean performance. Moreover, we found that a single dimension for variability across 
tasks was inadequate, demonstrating that previously posited global mechanisms 
for cognitive variability are at least partially incomplete. Our findings indicate that 
variability is a fundamental part of cognition – with the potential to offer novel insights 
into developmental processes.

mailto:Nicholas.Judd@radboudumc.nl
https://doi.org/10.5334/joc.371
https://doi.org/10.5334/joc.371
https://orcid.org/0000-0002-0196-9871
https://orcid.org/0000-0003-0420-2702
https://orcid.org/0000-0002-3175-2171
https://orcid.org/0000-0003-0700-4568


2Judd et al.  
Journal of Cognition  
DOI: 10.5334/joc.371

INTRODUCTION
Cognitive performance fluctuates: The same individual performing the same task will 
demonstrate differences in their performance across trials. Traditional studies of individual 
differences have implicitly treated this variability as noise or measurement error, focusing 
instead on averages or sum scores that largely ignore such fluctuations in favor of summary 
measures such as the mean or total score across trials (Deary et al., 2021; Fiske & Rice, 1955).

Focusing on individual differences in mean cognitive performance has borne many fruits, 
predicting outcomes such as educational attainment, income, health, and longevity (Calvin 
et al., 2017; Deary et al., 2021). Ignoring cognitive fluctuations is a sensible approach if the 
information gained is meaningless (i.e., noise) or adds no unique information beyond mean 
performance (Jensen, 1982). Yet, early historical accounts (Fiske & Rice, 1955; Horn, 1966; Hull, 
1943), as well as more recent proposals (Fischer & Bidell, 1998; Thelen & Smith, 1994; Van 
Dijk & Van Geert, 2014; van Geert, 1991) suggest that cognitive variability is a fundamental 
behavioral phenotype – playing a functional role in learning (Nesselroade, 1991; Siegler, 
2007a), aging (MacDonald et al., 2009) and neurodevelopmental disorders such as attention 
deficit hyperactivity disorder (ADHD) and autism (Aristodemou et al., 2023; Karalunas et al., 
2014; Kofler et al., 2013).

However, in comparison to traditional performance measures (mean or sum scores) empirical 
work on variability is much less common, and conceptual gaps remain. This scarcity has many 
causes, but two stand out; 1) a lack of suitable quantitative methodology and 2) the necessity 
of population-scale trial-by-trial data, which until recently remained out of reach. However, 
several methodological breakthroughs (Asparouhov et al., 2018; Hamaker et al., 2018) and the 
rapid increase in dense cognitive data (Bignardi et al., 2021; Trull & Ebner-Priemer, 2014) have 
opened up new opportunities to understand cognitive variability.

The empirical work on variability that does exist suggests that cognitive variability provides 
insights into the dynamics of key developmental periods such as early childhood and old age. 
In children, differences in cognitive variability predict academic and cognitive performance 
(Galeano Weber et al., 2018; Judd et al., 2021; Kautto et al., 2023), while in the elderly greater 
variability is associated with subsequent cognitive decline (Lövdén et al., 2007; MacDonald et 
al., 2009; Rabbitt et al., 2001). In a clinical context, cognitive variability is a relatively sensitive 
marker of neurodevelopmental disorders such as autism spectrum disorder (ASD) and ADHD 
(Aristodemou et al., 2023; Karalunas et al., 2014; Kofler et al., 2013). Although these preliminary 
studies strongly suggest that cognitive variability offers rich insights into understanding 
cognitive performance and development, they have almost exclusively focused on a single 
task or a narrow cognitive domain.

This limited focus has left vital gaps in our understanding of cognitive variability as a novel 
construct of interest. A fundamental pair of unanswered questions are 1) whether meaningful 
individual differences in intraindividual variability are present in all cognitive tasks, and if so, 2) 
how these differences in variability relate across tasks in the same individual. In other words, is 
variability in one task correlated to variability in other cognitive tasks, possibly as a reflection of 
a single underlying tendency shared across tasks? Or, is cognitive variability a more task specific 
phenotype?

A better understanding of this structure of individual differences in cognitive variability will give 
us insights into the underlying mechanisms and likely consequences of this largely neglected 
phenotype. For instance, the observation of the ‘positive manifold’ in intelligence research (that 
individual differences in mean performance across tasks is highly positively correlated) and the 
‘Big Five’ in personality research (that individual differences in personality can be summarized 
as varying along five dimensions) has inspired a considerable body of research. Studying the 
structure of individual differences has shed light on underlying mechanisms, developmental 
processes, and etiology, as well as their ability to predict various key outcomes (Deary et al., 
2021; Keele et al., 1985; Soto, 2019). Variability could manifest as a broader ‘trait’ across a 
range of tasks, or be more closely associated with features of a specific task. To gain insights 
into cognitive variability’s ubiquity and structure we must examine it across a range of cognitive 
tasks.
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Plausible mechanisms that would induce domain- or task specific variability include differences 
in expertise – repeated engagement in the same task leads to increased mean performance, 
decreased variability, and automatization (Li et al., 2004; Lövdén et al., 2020). Some individuals 
may have more expertise or experience in one task, other individuals in another, leading to 
modest correlations across tasks. A related but distinct explanation is differences in task 
strategy. For many cognitive tasks, there are different strategies to achieve better or worse 
performance, and individuals differ in the extent to which they explore different strategies, 
versus exploit a given approach (Frank et al., 2009; Siegler, 2007b; Van den Driessche et al., 
2019). For instance, individuals use different strategies in how they perform Raven’s matrices 
depending on the nature of the task (Jastrzębski et al., 2018; Laurence & Macedo, 2023), and 
even simple numerosity tasks like ‘number line’ show different strategies, with some individuals 
preferring ‘counting’ and others preferring ‘mental anchoring’, leading to differences in 
performance properties (White & Szűcs, 2012). Such person-specific strategy use would 
manifest as weakly correlated individual differences across tasks, whereby an individual may 
try out different strategies within one task, yet not another, while a different individual could 
show the opposite pattern.

In contrast, a distinct class of mechanistic explanations are ‘trait-like’ in nature – in other words, 
they are most simply understood as global mechanisms that would likely affect variability 
similarly across a wide range of tasks or domains. For instance, neural variability – a broad 
class of neural measures with differing biological and temporal scales (e.g., neuronal spiking 
patterns, oscillatory power of local field potentials, time-series of fMRI) – has been proposed as 
one such mechanism fundamental for behavior (Faisal et al., 2008; Garrett et al., 2011; Waschke 
et al., 2021). Moreover, neural variability is particularly relevant for brain networks engaging in 
cognitive processing (Mueller et al., 2013). Interindividual differences in neural variability would 
lead to a pattern whereby people who are more variable on one task are also more variable 
on (all) other tasks. Other causes of variability likely to affect most or even all tasks similarly 
include fatigue (Könen et al., 2015; Ratcliff & Van Dongen, 2011), affect (Neubauer et al., 2019), 
(in)attention (Cohen & Maunsell, 2010; Fukuda & Vogel, 2009), motor variability (Dhawale et al., 
2017; Wu et al., 2014), differences in dopamine levels (Cools & D’Esposito, 2011), white matter 
integrity (Britton et al., 1991; McCormick et al., 2023; Wiker et al., 2023), and locus-coeruleus 
norepinephrine activity (Aston-Jones & Cohen, 2005; Hauser et al., 2016).

Whether cognitive variability is a more global or task specific phenomenon has contrasting 
implications on its meaning as a construct, and, in turn how it impacts translational applications 
such as educational assessment, high-stakes testing, and pharmacological or other 
interventions for neurodevelopmental disorders. Despite the importance of these questions, to 
date, no empirical work has thoroughly examined these contrasting intuitions about individual 
differences in variability.

In this study, we set out to explore the nature of individual differences in intraindividual 
variability by addressing three urgent questions: 1) Ubiquity: are interindividual differences 
in intraindividual variability a consistent property across a battery of 11 cognitive tasks, 2) 
Structure: how are individual differences in variability across tasks related, and, 3) Discrimination: 
is it distinct from mean performance? To test these we leveraged rich timeseries cognitive 
data (7,204,127 trials) across a large number (2,608) of children engaging in 11 different 
tasks on an online mathematical training platform (Judd & Klingberg, 2021). To quantify the 
dimensionality of variability we use a combination of Dynamic SEM (Hamaker et al., 2018; 
McNeish & Hamaker, 2020) (to quantify variability within each task) and factor modeling (to 
examine the quantitative structure of variability across tasks), which together allow us to use 
model comparison techniques to compare and contrast competing explanations. Doing so 
allows us to investigate, for the first time, the structure of this often-neglected property of 
cognitive performance.

RESULTS
We included data from 2,608 children between the ages of six and eight who completed 
cognitive tasks for up to eight weeks on a mathematical training app (Judd & Klingberg, 2021; 
Nemmi et al., 2016). This resulted in slightly over 7 million correct response times across eleven 
distinct cognitive tasks (Figure 1 shows examples from 3 tasks). Each trial reflected the amount 
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of time in milliseconds that a child took to correctly respond to a stimulus in one of the 11 tasks. 
From these trials we derived a model-based estimate of cognitive variability per task using a 
Dynamic SEM (see Methods for more details). This modeling technique allowed us to quantify 
individual differences in residual variability after adjusting for other sources of variance in the 
timeseries of trials. To complement our investigation of cognitive variability, we also examined 
the mean correct difficulty level (called here “mean performance”) for each of the tasks in the 
same sample as a reference. Our key question of interest was the relationship of variability 
estimates between tasks, and how they inform our understanding of the underlying causes 
and possible consequences of variability.

A crucial step in Dynamic SEM (DSEM) is to establish the presence, or absence, of random 
effects – in other words, do people differ meaningfully on parameters in the model, including 
our key parameter of interest, variability. This step is crucial, because if variability does not differ 
systematically between people, it may be more tenable to ignore it as intrinsic, system-level 
noise irrelevant to human cognitive performance in a broader sense. To test this key question, 
we used model selection (difference in Deviance Information Criterion, or DIC values, a model 
information criterion that penalizes complexity) by comparing a model with a random effect 
for the residual variability parameter, to a model without. Doing so we observed that a model 
with random effects for residual variability was overwhelmingly favored for each task (SI Table 
1). This demonstrates that individual differences in intraindividual variability are ubiquitous 
across the 11 tasks studied here. Intriguingly, these response time variability estimates only 
correlated modestly with mean response time estimates for each task (SI Fig 3). This illustrates 
the ability of DSEM to successfully separate these distinct concepts along with offering evidence 
that variability is a distinct facet of the cognitive phenotype. Moreover, the large sample size 
and trial number meant that DSEM variability estimates were also observed to be highly reliable 
within tasks (SI Table 2), allowing us to use these estimates in further analyses to examine how 
they were associated across tasks.

After demonstrating reliable and substantial individual differences in intraindividual variability 
in all 11 cognitive tasks, next we examined how these differences in variability relate across 
tasks. To accomplish this, we extracted the DSEM derived variability factor scores – reflecting 

Figure 1 Shows three of the 
eleven cognitive tasks used a) 
visuospatial working memory 
crush, b) Number pals, and 
c) a 2D Mental Rotation task. 
For illustration purposes 
we randomly sampled one 
subject from the bottom 10% 
of the WM Crush variability 
distribution (in blue), and one 
subject from the top 10% 
(in red). The same subjects 
were then plotted for b) 
number pals and c) 2D Mental 
Rotation. We then plotted 
their logged response times 
by trial number, limiting the 
x-axis to the sample mean 
trial number of that task. 
Next, density plots show the 
distribution of our measures 
of cognitive variability factor 
scores extracted from dynamic 
SEM and the relative position 
of the two subjects (blue & 
red). Cognitive variability is 
modeled using a log-linear 
model, to preclude negative 
values. Note, however, that 
the logarithm of the variance 
can be negative as seen in the 
x-axis of the density plot.
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interindividual differences in variability – for each of our 11 tasks. Doing so we found response 
time variability between tasks to be mostly positively correlated (Figure 2a). However, the 
average magnitude of these correlations was modest (Mean Pearson’s r = .19), suggesting that 
on average those who were more variable on one task, were also more variable on others – but 
only weakly so. In fact, twelve pairwise correlations were not significantly different from zero, 
despite the considerable sample size and high reliability of the parameter estimates. To ensure 
this relatively weak pattern of correlation was not a feature of either the population or task 
battery, we also examined the correlation between mean performance across all tasks. Here, in 
contrast, we observe the omnipresent ‘positive manifold’ (McGrew, 2009) – mean performance 
on each of the 11 tasks was correlated strongly (Mean Pearson’s r = .57) and positively across 
the board (SI Fig 4b).

Additionally, to make sure that our weak between-task variability correlations are not an artifact 
of differing temporal sampling rates (Table 1), we correlated absolute dissimilarity in median 
RT between tasks with our between-task variability correlations. This showed dissimilarity in 
median RT task length to be unrelated (Pearson’s r = –.24, p > .05) to the strength of between 
task variability correlations, suggesting that at this timescale at least, differences in response 
time did not induce artificial large differences in variability. This pattern of weaker correlations 
for variability relative to mean performance was also observed through a dimension reduction 
approach: extracting a first factor across all tasks explained only 25% of the variance in 
cognitive variability measures, but 58% of the variance of the mean performance measures. 
Next, we examined the underlying structure of cognitive variability in more detail.

TESTING THE DIMENSIONALITY OF COGNITIVE VARIABILITY

Above, we found that despite a highly powered sample with reliable measures of variability, 
we observed relatively weak, albeit mostly positive correlations between tasks. To better 
understand the nature of this correlation pattern, and thus cognitive variability itself, we 
explored the structure of correlations among the tasks. A relatively simple model to test is 
a unidimensional factor model, which captures the hypothesis that individual differences 
in variability across tasks are plausibly explained by a single underlying factor and that any 
residual variance is task specific. To formally test this hypothesis, we fit a confirmatory factor 
model with a single underlying factor for cognitive variability (SI Fig 2a). This model fit poorly (χ2 

= 1058.4, df = 44, p < 0.0001, RMSEA = 0.094 [0.089, 0.099], CFI = 0.83) demonstrating that a 
single underlying mechanism driving individual differences in intraindividual variability across a 
range of tasks is inadequate for the structure we observe.

To further investigate individual differences in variability we considered two more complex 
confirmatory models. Although there is no substantive research examining the structure 
of cognitive variability across a wide range of tasks, some authors have suggested that 
cognitive variability and mean performance may be two sides of the same coin (Galeano 
Weber et al., 2018), suggesting the same measurement model should fit both domains. To 
test this hypothesis, we constructed an a priori hierarchical model with three subdomains 
(Math, WM, and Spatial, shown in SI Figure 2b) which did not converge for cognitive 
variability due to negative variance for the math subdomain (i.e., a Heywood case). Notably, 
this model fit the mean performance measures well (SI Fig 5b; SI Table 3), suggesting both 
the domain-based grouping and tasks are defensible – our tasks can replicate the mean 
performance literature (McGrew 2009). Finally, we then fit a hierarchical model with a single 
working memory subdomain. This model fit moderately well – an improvement over both the 
unidimensional model and the a priori mean performance-inspired three-factor model, but 
still not sufficiently well (SI Fig. 5a; χ2 = 517, df = 43, p < 0.0001, RMSEA = 0.065 [0.060, 0.070], 
CFI = 0.92). Due to the lack of adequate fit for cognitive variability, we did not attempt to test 
a latent correlation between variability and mean performance, shifting to an exploratory 
approach instead.

EXPLORING THE STRUCTURE OF COGNITIVE VARIABILITY

Above we found robust evidence that cognitive variability is both qualitatively and quantitatively 
distinct from mean performance, and showed that multiple plausible models did not fully 
capture the dimensionality of variability. To further explore the underlying structure, we switched 
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to an exploratory factor analysis framework. Doing so, we observed that an exploratory three-
factor solution fit cognitive variability well (see Methods). The overall correlation structure and 
pattern of loadings is shown in Figure 2.

The first factor (which we call the ‘WM-factor’ as it was dominated by high loadings on WM 
tasks), explained 23% of the variance and had close to or near zero loadings with the rest of 
the tasks (Figure 2b; SI Table 4). The second factor (mathematical reasoning) explained 9% of 
the variance, with substantial positive loadings with number pals, number line, rotation, and 
non-verbal reasoning, yet near-zero loadings across all WM tasks and tangram. Lastly, the third 
factor (Tangram) explained only 6% of the variance yet it was also the only factor that the 
tangram task loaded on (.63). Intriguingly, the Tangram factor was also the only factor that 
showed non-trivial negative factor loadings. Mental rotation showed an intriguing pattern, as it 
was the only task to show reasonable positive loadings across all three factors.

We found these three variability factors to correlate modestly (Figure 2c) with each other. 
Intriguingly they showed distinct relationships with mean performance (Figure 2d). To 
examine this question, we extracted factor score estimates from the first exploratory ‘mean 
performance’ factor, and related it to each variability factor in turn (Figure 2d). The first factor, 
working memory, was substantially correlated with mean performance (Pearson’s r = –.55, 
pHOLM < .001), while the mathematical reasoning factor was only weakly correlated with mean 
performance (Pearson’s r = –.16, pHOLM < .001). Contrary to our expectations, we found that the 
third, ‘Tangram’ variability factor showed the strongest association with mean performance 
(Pearson’s r = –.74, pHOLM < .001). Williams’s tests determined all of these correlations to be 
significantly different from each other (p’sHOLM < .001), further supporting both the distinction 
between variability and mean performance, as well as the specificity of distinct variability 
factors in our sample.

DISCUSSION
Across trial-by-trial data from 2,608 children, we find cognitive variability to be a distinct and 
ubiquitous behavioral phenotype. Individual differences in intra-individual variability were 
present across all 11 different cognitive tasks. Crucially, variability is distinct both qualitatively 
and quantitatively from mean performance, demonstrating some domain general properties, 
but showing substantially more task heterogeneity than mean performance. Despite the high 
within-task reliability, homogeneous task implementation, and large sample size, a substantial 

Figure 2 Illustrates 
interindividual variability 
measures (n = 2,608) in 
response time from Dynamic 
SEM across 11 cognitive tasks. 
Panel a) shows a Pearson 
r correlation plot with only 
significant (Holm’s multiple 
comparison correction) 
associations colored, while 
panel b) shows the loadings 
(SI Table 4) for the first three 
factors in an exploratory 
factor analysis. The first 
factor (‘Working Memory’) 
captured 22% of the variance, 
the second (‘Mathematical 
Reasoning’) accounted for 
9%, while the last (‘Tangram’) 
accounted for 6% of the 
variance. Panel c) shows 
the correlations between 
these three factors while d) 
illustrates the relationship of 
each variability factor with a 
single factor of mean level (i.e., 
Mean Performance).
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portion of tasks showed small or absent correlations in variability, suggesting unique, task 
specific properties contributing to the overall structure. These findings demonstrate that a 
variability perspective can offer a rich, novel cognitive phenotype derived from existing data. It 
also provides evidence that single cause explanations – such as attention, fatigue, dopamine – 
must be at least partially incomplete.

The absence of strong positive correlations across all tasks for cognitive variability is in stark 
contrast with mean performance measures (Deary et al., 2021; McGrew, 2009). Crucially, 
it makes global mechanistic accounts, which would suggest that greater variability on one 
task would be associated with more variability on all other tasks – less plausible or at least 
incomplete. Although we did observe some shared variance in cognitive variability through 
dimension reduction techniques, the pattern of associations observed suggests it is unlikely 
that any single individual mechanism, be it fatigue, affect, (in)attention or neural differences 
(e.g., dopamine & white matter integrity) could fully explain all interindividual differences in 
variability. In other words, although our findings do not allow for inferences about the role 
of any individual mechanism, it does provide indirect evidence suggesting multiple, partially 
distinct underlying causes are likely at play. This was further confirmed through a lack of 
subdomain structure in mathematics or spatial abilities, in contrast with mean performance 
measures (McGrew, 2009). However, we did observe that variability estimates from different 
working memory tasks show some substantial degree of covariation (~.5 correlations between 
tasks). Moreover, there was a limited subdomain structure found in both our confirmatory and 
exploratory analyses accounting for 23% of the variance. This suggests that although some 
drivers of variability may play a role in multiple tasks, it is highly likely multiple mechanisms are 
at play. Our findings suggest the need for a hybrid explanatory framework allowing for both 
task-specific and more general mechanisms driving variability.

While working memory showed strong within-domain variability correlations, these tasks had 
very weak and non-significant correlations with both number line and non-verbal reasoning 
– again in stark contrast with our findings here for mean performance, as well as the mean 
performance literature more generally (Ackerman et al., 2005; Gathercole et al., 2004). Working 
memory is so central to mean performance it has been theorized to be “the mechanism” causing 
interindividual differences in cognition (Kovacs & Conway, 2016). One potential reason for this 
diverging pattern between variability and mean performance is that both tasks (Numberline 
and NVR) have high complexity, allowing more strategy shifting as children progress through 
different levels. For example, number line progresses across different types of mathematics 
(e.g., addition, division, fractions, etc.) – each requiring different strategies, and, in turn, 
increasing task-specific variance. Cognitive variability’s low correlation between tasks – despite 
high within-task reliability, homogeneous task implementation and a large sample size – leads 
us to conclude the absence of certain task relationships and subdomains is most likely due to 
them being qualitatively different from each other.

Across the board, we observe robust negative correlations between our cognitive variability 
factors and mean performance, in line with previous single task findings for WM (Galeano 
Weber et al., 2018), simple reaction time tasks (Kofler et al., 2013), language (Kautto et al., 
2023) and matrix reasoning (Rabbitt et al., 2001). This indicates that children with worse mean 
performance show much more cognitive variability, while higher performing children are more 
consistent across trials. In practice, this means that one-off testing (e.g., standardized testing) 
is more likely to misestimate mean performance in lower ability children, potentially leading 
to longer-term consequences when used for educational stratification or diagnostics. Notably, 
even if a child with high variability were to score relatively highly in a high-stakes setting this is 
unlikely to have commensurate benefits – being tracked into a higher level than one’s ability – 
can lead to disillusion, dropout, and worse long-term academic outcomes (Abdulkadiroğlu et 
al., 2014; Duflo et al., 2011; Valentine et al., 2004).

This study is the first to examine the underlying structure of variability in a large sample with 
diverse cognitive tasks. However, there are of course limitations and outstanding questions 
left unanswered. We focus on a particular age range (6–8-year-olds), putting some a priori 
limitations on generalization to other developmental stages and samples. Moreover, the 
participants predominately come from Sweden and do not reflect a comprehensive sampling 
of the global population. While the application was tailored for teachers and a classroom 
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setting, we did not exclude based on this criterion, this means a small subset of children in 
our sample completed the task at home. Finally, our analytic approach using DSEM is powerful 
and flexible, but other quantitative approaches (e.g., drift-diffusion model or exgaussian 
models, e.g. (Epstein et al., 2023; Schmiedek et al., 2007)), will have a complementary set 
of strengths and weaknesses in uncovering key parameters. For instance, a drift-diffusion 
modeling strategy would allow the separation of motor preparation and execution (i.e., non-
decision time) component from a cognitive one (Ratcliff, 2006), at the expense of time-series 
modeling.

Exactly how motor variability might interplay with cognitive variability remains an outstanding 
question. There is strong experimental evidence that motor variability is involved in learning, an 
inherently cognitive process (Olveczky et al., 2005; Wu et al., 2014). Motor variability – thought 
to be an unwanted consequence of a noisy nervous system (Dhawale et al., 2017) – would 
increase the similarity of interindividual differences across tasks leading to larger correlations 
between tasks. Previous findings have found variability in simple response time tasks to be 
predominantly cognitive (when controlling for motor processes) (Epstein et al., 2023; Karalunas 
et al., 2014; Schmiedek et al., 2007), and crucially linked cognitive variability in more complex 
cognitive tasks to disparate outcomes such as cognitive decline (Lövdén et al., 2007; MacDonald 
et al., 2009), fluid intelligence (Galeano Weber et al., 2018; Rabbitt et al., 2001), inattention/
ADHD (Aristodemou et al., 2023; Kofler et al., 2013), and academic achievement (Judd et 
al., 2021). Nevertheless, our estimates most likely have a limited motor component, yet the 
lack of a large common factor across tasks suggests it cannot fully explain the patterns we 
observe. Moreover, each cognitive variability factor was related to mean performance, and 
two variability factors were more strongly correlated with mean performance than with each 
other, suggesting our interpretation of variability as a cognitive phenotype is warranted. Lastly, 
all of our tasks were designed to tap into high-level cognitive abilities and were administered 
within the same setting, response profile, and reward structure, leaving open (even) more high-
dimensional patterns.

Another intriguing avenue is in exploring the pattern of interindividual differences we found 
between cognitive tasks. Task heterogeneity hints towards the possibility of cognitive variability 
being a phenotypically differentiating tool, that is, variability in one task (e.g., math) might offer 
insights entirely separate from variability in another task (e.g., WM). This could be explored one 
of two ways, first 1) by identifying influences of global and task specific causes, and secondly 
2) determining the relationship between mean performance and variability over time. To be 
able to tease apart these relationships more dense longitudinal designs with detailed analysis 
focused on the processes that give rise to variability are needed (Siegler, 2007b). For instance, 
prior longitudinal work has explored how variability is related to cognitive aging, emotional 
dynamics, and motor performance (Janssen et al., 2016; MacDonald et al., 2003; Ram et al., 
2014; Reitsema et al., 2023). Crucially, trial-level data is necessary to identify temporally specific 
causes – evidence suggests distinct types of variability operate between short (moment-to-
moment) and long timescales (e.g., session-to-session & day-to-day) (Galeano-Keiner et al., 
2022). For instance, moment-to-moment variability could identify a period of intense focus 
or flow, while day-to-day variability could highlight longer-term fluctuations in sleep or affect 
(Neubauer et al., 2019; Siegler, 2007a).

Our results suggest that a few different cognitive tasks should be used when studying variability 
since findings in one task will not necessarily be informative of variability in another task. For 
example, future designs could modify dopamine levels experimentally with methylphenidate 
(Pertermann et al., 2019) while tracking task specific strategies on a trial-by-trial basis across 
a few disparate cognitive tasks. This design would allow the isolation of dopamine’s influences 
on cognitive variability, while its time-series nature would also allow insight (Williams et al., 
2021) into learning processes such as how early variability could cause differences in mean 
improvement (e.g., exploitation vs. exploration) (Frank et al., 2009; Gopnik et al., 2017; Van den 
Driessche et al., 2019). These are just a few examples of how a variability approach can offer 
novel questions and potentially unique insights into cognitive performance.

Here we report cognitive variability to be qualitatively and quantitatively distinct from mean 
performance across eleven tasks with over seven million trials. Variability was both substantially 
heterogeneous across tasks and highly reliable within tasks. Some relationships we expected a 
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priori, such as that between WM and reasoning, were intriguingly absent. Although we did find 
some common variance across tasks it was not enough to support a singular common cause 
explanation. Future work should attempt to disentangle these different causes of variability 
across tasks, as it is likely to offer novel insights into developmental processes underlying 
human cognitive performance.

METHODS
STUDY DESCRIPTION

We included children between the ages of six to eight who had completed a mathematical 
training app (Vektor) with number line based exercises that have been shown to improve math 
in 6-8-year-old children (Judd & Klingberg, 2021; Nemmi et al., 2016). We focused only on 
children with 25 sessions enrolled in the mixed cognitive training plan since it had the widest 
task diversity. This resulted in 2,608 children with a total of 7,204,127 trials across eleven 
cognitive tasks over eight weeks.

COGNITIVE TASKS

The battery in Vektor consists of 11 distinct tasks which, from a traditional cognitive psychological 
perspective, can be grouped into four classical domains; mathematics, working memory (WM), 
spatial abilities, and nonverbal reasoning (SI Fig. 1; Video: https://osf.io/vhcd5). All tasks had a 
set of guided trials at the start to help children figure out the task, these were all removed for 
our analysis.

Out of eleven tasks six were WM tasks; five of which were visuospatial-WM. These five all 
followed a very similar task design where dots were presented in different locations on a stimuli 
grid and needed to be repeated back in the correct order on a touch screen (SI Fig. 7). The tasks 
varied in their spatial layout to make them appealing to children. Difficulty was automatically 
adjusted by increasing the span of items. For example, the task ‘grid’ displays a 4-by-4 grid on 
which stimuli become highlighted while WM circle has 10 stimuli arranged in a circular layout. 
One WM task was conceptually different (WM numbers), this was a digit span backwards task in 
which Arabic numerals were presented and then needed to be repeated back in reverse order. 
Due to the age range studied, we considered it to also be part of the mathematics domain 
allowing it to cross-load on the mathematics subdomain (SI Fig. 2b).

Since the purpose of Vektor was to improve children’s mathematics, roughly half the time was 
spent on two mathematical tasks. Both tasks (i.e., Number line & Number pals) were based on a 
visual representation of a mental number line. The first task (numberline), had a visual number 
line where the child had to use their index finger to drag (left to right) it to the correct position 
corresponding to an Arabic numeral. The difficulty was first increased by removing contextual 
cues (e.g., ticks on the numberline) and later by introducing new mathematical concepts (e.g., 
addition, division, fractions, etc.). The second task (Npals), consisted of bars on the right side 
of the screen that were partially filled number lines. The participant was then instructed to pull 
the correct bar (that is, the one with the right number of units to fit) from multiple options on 
the right-hand side. The difficulty was moderated by bar length, the replacement of bars with 
Arabic numerals, and increasing the sum from 5 to 10 and then 15.

The non-verbal reasoning task consisted of sequential ordering tasks in which participants 
viewed a sequence of tiles with spatial patterns and had to choose the correct image to fill the 
blank in sequence (Bergman Nutley et al., 2011). The difficulty was increased by introducing 
additional stimulus dimensions (colors, shapes, and numbers of dots) on which the stimuli 
should be compared. Lastly, the spatial domain consisted of two tasks: 2D mental rotation & 
tangram. For 2D mental rotation, children were presented with a silhouette of a target image. 
Underneath the silhouette were multiple options that had to be mentally rotated, only the 
correct target image fit the silhouette. Difficulty was modified by increasing item complexity. 
The tangram task also had a black silhouette yet the items presented were all different pieces 
of the silhouette which needed to be manually rotated and put in the correct place. Difficulty 
was increased with item complexity and additional pieces (i.e., items).

https://osf.io/vhcd5
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MEAN PERFORMANCE MEASURES

For each task, we computed the mean correct level across all trials as our mean performance 
measure. For the WM tasks level corresponded to the number of items to be held in 
memory (i.e., span) for the other tasks level represents a difficult index that increases with 
task progression. Our mean performance measures showed high correlations across tasks 
regardless of domain (SI Fig. 4b) – in line with the well replicated finding of a positive manifold 
across cognitive tasks.

VARIABILITY MEASURES

For each cognitive task, we fit a dynamic structural equation model (DSEM) on response times 
using MPLUS (version 8) with 20,000 iterations (Asparouhov et al., 2018). Only response times 
from correct trials were included. Response time was measured in milliseconds as the time 
between the end of task presentation and the last response. Before each DSEM model fitting 
procedure, we log transformed response time (to improve distributional characteristics) and 
recoded outliers as missing (to limit outsized impact). Outliers (~1.5% of total trials) were 
identified as values more than 1.5 times the interquartile range within each task on the total 
population from the quartiles of a boxplot (i.e., Tukey method).

Some of the tasks were designed in a way in which difficulty was increased by adding stimuli, 
notably, this affected all the WM tasks and the tangram task. This task feature – an inherent 
property of WM tasks—forces a dependency between ability and response time. In WM tasks 
trials with larger spans take longer to respond to. To correct for this, we divided response time 
by the number of items presented. This was done before log transformation, outlier treatment, 
and further modeling.

DSEM has many benefits and is ideal for modeling variability (Hamaker et al., 2018; McNeish 
& Hamaker, 2020). Most importantly DSEM can account for within-subject trends and 
autoregression. We modeled four parameters of interest within and between-subjects; 1) 
the mean response time, 2) residual variability of response times, 3) inertia (trial carryover 
parameter), and 4) the trend (i.e., improvement). Supplementary Figure 3 illustrates the 
correlations of the between subject parameters for each DSEM fit.

All of the cognitive tasks converged and fit well according to DSEM model diagnostic checks 
(see https://osf.io/z53an/). To see if there is meaningful variability, we fit DSEMs with the 
interindividual variance of the residual variability parameter constrained to 0 and compared 
its fit to the full DSEM model using the DIC for each task. We found the fit was better with 
the addition of a variance parameter for all cognitive tasks (SI Table 1). We then tested three 
different scale reliabilities (.5, .7, & .9) using the mean trial length as the number of occasions, 
across the board we found high trial variance reliability even with low (i.e., .5) scale reliability (SI 
Table 2) (Du & Wang, 2018).

Lastly, we extracted variability factor scores from each DSEM and used them as our measure 
of cognitive variability for each cognitive task. This resulted in one measure per task of inter-
individual differences in response time variability. Previous work has suggested that variability 
at different timescales (e.g. trial to trial versus occasion to occasion, (Galeano-Keiner et al., 
2022)) may be only weakly correlated across individuals. As such, we wanted to ensure that 
differences in median RT’s between tasks (Table 1) were not governing differences in variability. 
To test this question, we computed pairwise dissimilarities as the absolute Euclidean distance 
between median RT using the daisy function in the cluster package (Maechler et al., 2023). The 
lower diagonal of this dissimilarity matrix was then vectorized and correlated with a vectorized 
variability correlation matrix (Figure 2a). If similarity in temporal resolution between tasks is in 
fact the source for between task variability correlations this would be reflected by a significant 
negative correlation. Conversely, if more temporarily dissimilar tasks correlated more with each 
other, we would expect a positive correlation. Lastly, if differences in median trial response 
length is unrelated to the strength of variability correlations, we would expect this relationship 
to be non-significant and around zero.

https://osf.io/z53an/
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CONFIRMATORY FACTOR MODELING

To test the factor structure of cognitive variability and mean performance measures we used 
confirmatory factor analysis (CFA). For each measure, 1) a single factor was fit, 2) then an a 
priori hierarchical factor with three sub-domains (WM, Math & Spatial) was used, and, if neither 
fit 3) a hierarchical factor with only WM as a subdomain (SI Fig. 2). The second model had ‘num’ 
a WM digit span task cross loading on both the mathematics and WM subdomains.

Models were fit in R (version 4.2.2) with the lavaan package (version 0.6–15) using robust 
maximum likelihood (Rosseel, 2012). Missing data (cognitive variability = .2%; mean 
performance = .2%) was handled using full information maximum likelihood under the 
assumption of missing at random (Enders & Bandalos, 2001). We assessed model fit using the 
comparative fit index (fit > 0.95) and the root-mean-square error of approximation (fit < 0.08) 
(Hu & Bentler, 1999). All results are reported in fully standardized units (mean = 0, SD = 1).

EXPLORATORY FACTOR MODELING

Since our confirmatory approach did not fully capture the structure of variability, we proceeded 
to use exploratory factor analysis for the cognitive variability measures using the psych package 
(version 2.3.3) (R Core Team, 2014; Revelle, 2018). To determine the optimal number of factors 
we used parallel analysis – a method for determining the number of factors by comparing the 
empirical eigenvalues to that of random data. In our sample parallel analysis was inconsistent 
between a three and four factor solution, to empirically test this we looped the analysis 100 
times with the first 100 seeds. We found parallel to prefer a 4-factor solution 58% of the time 
and a 3-factor solution 42% of the time. Upon examining the output, we decided to use a 
3-factor solution for the following reasons; 1) the fourth factor was uninterpretable, 2) very 
little explained variance (i.e., 3%) in the fourth factor, 3) the fourth factor was near the cutoff 
(SI Fig 6) and 4), three factors were needed to achieve moderate positive loadings from all 
tasks. Importantly, the loading pattern was similar for the first three factors regardless of 
whether a three or four factor solution was used. Therefore, we decided to report and interpret 
a three-factor solution with the defaults (i.e., oblimin rotation) from the ‘fa’ function (Figure 2b).

DATA ACCESSIBILITY STATEMENT
Data, code and model fits to replicate the analysis are openly available (https://osf.io/z53an/). 
Trial-by-trial data to fit DSEM models could not be publicly released for privacy concerns.

ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Supplementary Information. Supplementary Figures 1–7 and Supplementary Tables 1–4. 
DOI: https://doi.org/10.5334/joc.371.s1

TASK TOTAL 
TRIALS

MEDIAN TRIALS 
PER CHILD

RT 
MEDIAN

RT IQR RT 
MIN

RT MAX

WM_3dgrid (3DGrid) 203738 78.12 7502.75 1502.50 4088.0 12344.00

WM_circle (circle) 155878 59.77 7604.50 1406.62 4125.0 13004.00

WM_crush (crush) 243511 93.37 7356.75 1547.50 4100.0 10830.00

WM_grid (grid) 430708 165.15 7868.00 1319.00 3798.0 15205.00

WM_moving (move) 85640 33.34 7508.00 1471.50 4149.0 12348.50

WM_numbers (num) 98300 37.94 8017.00 1405.00 5754.0 23362.50

Number pals (npals) 2398463 919.66 3659.50 640.25 1846.0 8139.00

Numberline (nline) 1833909 703.19 6102.50 2201.38 2617.0 15905.00

Non-verbal reasoning (nvr) 548101 210.16 6780.75 1655.25 4088.0 12344.00

Rotation (rot) 1032751 395.99 3420.75 1118.38 4125.0 13004.00

Tangram (tan) 173128 66.38 7502.75 1502.50 4100.0 10830.00

Table 1 Task Overview – 
number of trials and response 
time (RT) descriptives.

https://osf.io/z53an/
https://doi.org/10.5334/joc.371.s1
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